Skip to main content
Top
Published in: Brain Tumor Pathology 4/2016

01-10-2016 | Review Article

Genetic landscape of meningioma

Authors: Sayaka Yuzawa, Hiroshi Nishihara, Shinya Tanaka

Published in: Brain Tumor Pathology | Issue 4/2016

Login to get access

Abstract

Meningioma is the most common intracranial tumor, arising from arachnoid cells of the meninges. Monosomy 22 and inactivating mutations of NF2 are well-known genetic alterations of meningiomas. More recently, mutations in TRAF7, AKT1, KLF4, SMO, and PIK3CA were identified by next-generation sequencing. We here reviewed 553 meningiomas for the mutational patterns of the six genes. NF2 aberration was observed in 55 % of meningiomas. Mutations of TRAF7, AKT1, KLF4, PIK3CA, and SMO were identified in 20, 9, 9, 4.5, and 3 % of cases, respectively. Altogether, 80 % of cases harbored at least one of the genetic alterations in these genes. NF2 alterations and mutations of the other genes were mutually exclusive with a few exceptions. Clinicopathologically, tumors with mutations in TRAF7/AKT1 and SMO shared specific features: they were located in the anterior fossa, median middle fossa, or anterior calvarium, and most of them were meningothelial or transitional meningiomas. TRAF7/KLF4 type meningiomas showed different characteristics in that they occurred in the lateral middle fossa and median posterior fossa as well as anterior fossa and median middle fossa, and contained a secretory meningioma component. We also discuss the mutational hotspots of these genes and other genetic/cytogenetic alterations contributing to tumorigenesis or progression of meningiomas.
Literature
1.
go back to reference Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17 Suppl 4:iv1–iv62 Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17 Suppl 4:iv1–iv62
2.
go back to reference Kotecha RS, Pascoe EM, Rushing EJ et al (2011) Meningiomas in children and adolescents: a meta-analysis of individual patient data. Lancet Oncol 12:1229–1239PubMedCrossRef Kotecha RS, Pascoe EM, Rushing EJ et al (2011) Meningiomas in children and adolescents: a meta-analysis of individual patient data. Lancet Oncol 12:1229–1239PubMedCrossRef
3.
go back to reference Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16 Suppl 4:iv1–63 Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16 Suppl 4:iv1–63
4.
go back to reference Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391PubMedCrossRef Mawrin C, Perry A (2010) Pathological classification and molecular genetics of meningiomas. J Neurooncol 99:379–391PubMedCrossRef
5.
go back to reference van Alkemade H, de Leau M, Dieleman EM et al (2012) Impaired survival and long-term neurological problems in benign meningioma. Neuro Oncol 14:658–666PubMedPubMedCentralCrossRef van Alkemade H, de Leau M, Dieleman EM et al (2012) Impaired survival and long-term neurological problems in benign meningioma. Neuro Oncol 14:658–666PubMedPubMedCentralCrossRef
6.
go back to reference Adeberg S, Hartmann C, Welzel T et al (2012) Long-term outcome after radiotherapy in patients with atypical and malignant meningiomas–clinical results in 85 patients treated in a single institution leading to optimized guidelines for early radiation therapy. Int J Radiat Oncol Biol Phys 83:859–864PubMedCrossRef Adeberg S, Hartmann C, Welzel T et al (2012) Long-term outcome after radiotherapy in patients with atypical and malignant meningiomas–clinical results in 85 patients treated in a single institution leading to optimized guidelines for early radiation therapy. Int J Radiat Oncol Biol Phys 83:859–864PubMedCrossRef
7.
go back to reference Mark J, Levan G, Mitelman F (1972) Identification by fluorescence of the G chromosome lost in human meningomas. Hereditas 71:163–168PubMedCrossRef Mark J, Levan G, Mitelman F (1972) Identification by fluorescence of the G chromosome lost in human meningomas. Hereditas 71:163–168PubMedCrossRef
8.
go back to reference Mark J, Mitelman F, Levan G (1972) On the specificity of the G abnormality in human meningomas studied by the fluorescence technique. Acta Pathol Microbiol Scand A 80:812–820PubMed Mark J, Mitelman F, Levan G (1972) On the specificity of the G abnormality in human meningomas studied by the fluorescence technique. Acta Pathol Microbiol Scand A 80:812–820PubMed
9.
go back to reference Zankl H, Zang KD (1972) Cytological and cytogenetical studies on brain tumors. 4. Identification of the missing G chromosome in human meningiomas as no. 22 by fluorescence technique. Humangenetik 14:167–169PubMedCrossRef Zankl H, Zang KD (1972) Cytological and cytogenetical studies on brain tumors. 4. Identification of the missing G chromosome in human meningiomas as no. 22 by fluorescence technique. Humangenetik 14:167–169PubMedCrossRef
10.
go back to reference Fontaine B, Rouleau GA, Seizinger BR et al (1991) Molecular genetics of neurofibromatosis 2 and related tumors (acoustic neuroma and meningioma). Ann N Y Acad Sci 615:338–343PubMedCrossRef Fontaine B, Rouleau GA, Seizinger BR et al (1991) Molecular genetics of neurofibromatosis 2 and related tumors (acoustic neuroma and meningioma). Ann N Y Acad Sci 615:338–343PubMedCrossRef
11.
go back to reference Rouleau GA, Merel P, Lutchman M et al (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363:515–521PubMedCrossRef Rouleau GA, Merel P, Lutchman M et al (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363:515–521PubMedCrossRef
12.
go back to reference Sanson M, Marineau C, Desmaze C et al (1993) Germline deletion in a neurofibromatosis type 2 kindred inactivates the NF2 gene and a candidate meningioma locus. Hum Mol Genet 2:1215–1220PubMedCrossRef Sanson M, Marineau C, Desmaze C et al (1993) Germline deletion in a neurofibromatosis type 2 kindred inactivates the NF2 gene and a candidate meningioma locus. Hum Mol Genet 2:1215–1220PubMedCrossRef
13.
go back to reference Trofatter JA, MacCollin MM, Rutter JL et al (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72:791–800PubMedCrossRef Trofatter JA, MacCollin MM, Rutter JL et al (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72:791–800PubMedCrossRef
14.
go back to reference MacCollin M, Ramesh V, Jacoby LB et al (1994) Mutational analysis of patients with neurofibromatosis 2. Am J Hum Genet 55:314–320PubMedPubMedCentral MacCollin M, Ramesh V, Jacoby LB et al (1994) Mutational analysis of patients with neurofibromatosis 2. Am J Hum Genet 55:314–320PubMedPubMedCentral
15.
go back to reference Ruttledge MH, Sarrazin J, Rangaratnam S et al (1994) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184PubMedCrossRef Ruttledge MH, Sarrazin J, Rangaratnam S et al (1994) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184PubMedCrossRef
16.
go back to reference De Vitis LR, Tedde A, Vitelli F et al (1996) Screening for mutations in the neurofibromatosis type 2 (NF2) gene in sporadic meningiomas. Hum Genet 97:632–637PubMedCrossRef De Vitis LR, Tedde A, Vitelli F et al (1996) Screening for mutations in the neurofibromatosis type 2 (NF2) gene in sporadic meningiomas. Hum Genet 97:632–637PubMedCrossRef
17.
go back to reference Clark VE, Erson-Omay EZ, Serin A et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339:1077–1080PubMedPubMedCentralCrossRef Clark VE, Erson-Omay EZ, Serin A et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339:1077–1080PubMedPubMedCentralCrossRef
18.
go back to reference Abedalthagafi M, Bi WL, Aizer AA et al (2016) Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol 18:649–655PubMedCrossRef Abedalthagafi M, Bi WL, Aizer AA et al (2016) Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol 18:649–655PubMedCrossRef
19.
go back to reference Louis DN, Ohgaki H, Wiestler OD et al (2016) WHO classification of tumours of the central nervous system. Lyon, France Louis DN, Ohgaki H, Wiestler OD et al (2016) WHO classification of tumours of the central nervous system. Lyon, France
20.
go back to reference Yuzawa S, Nishihara H, Yamaguchi S et al (2016) Clinical impact of targeted amplicon sequencing for meningioma as a practical clinical-sequencing system. Mod Pathol 29:708–716PubMedCrossRef Yuzawa S, Nishihara H, Yamaguchi S et al (2016) Clinical impact of targeted amplicon sequencing for meningioma as a practical clinical-sequencing system. Mod Pathol 29:708–716PubMedCrossRef
21.
go back to reference Brastianos PK, Horowitz PM, Santagata S et al (2013) Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 45:285–289PubMedPubMedCentralCrossRef Brastianos PK, Horowitz PM, Santagata S et al (2013) Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 45:285–289PubMedPubMedCentralCrossRef
22.
go back to reference Reuss DE, Piro RM, Jones DT et al (2013) Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol 125:351–358PubMedCrossRef Reuss DE, Piro RM, Jones DT et al (2013) Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol 125:351–358PubMedCrossRef
23.
go back to reference Pang JC, Chung NY, Chan NH et al (2006) Rare mutation of PIK3CA in meningiomas. Acta Neuropathol 111:284–285PubMedCrossRef Pang JC, Chung NY, Chan NH et al (2006) Rare mutation of PIK3CA in meningiomas. Acta Neuropathol 111:284–285PubMedCrossRef
24.
go back to reference Bujko M, Kober P, Tysarowski A et al (2014) EGFR, PIK3CA, KRAS and BRAF mutations in meningiomas. Oncol Lett 7:2019–2022PubMedPubMedCentral Bujko M, Kober P, Tysarowski A et al (2014) EGFR, PIK3CA, KRAS and BRAF mutations in meningiomas. Oncol Lett 7:2019–2022PubMedPubMedCentral
25.
go back to reference Bouwmeester T, Bauch A, Ruffner H et al (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105PubMedCrossRef Bouwmeester T, Bauch A, Ruffner H et al (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105PubMedCrossRef
26.
go back to reference Scudiero I, Zotti T, Ferravante A et al (2012) Tumor necrosis factor (TNF) receptor-associated factor 7 is required for TNFalpha-induced Jun NH2-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein. J Biol Chem 287:6053–6061PubMedPubMedCentralCrossRef Scudiero I, Zotti T, Ferravante A et al (2012) Tumor necrosis factor (TNF) receptor-associated factor 7 is required for TNFalpha-induced Jun NH2-terminal kinase activation and promotes cell death by regulating polyubiquitination and lysosomal degradation of c-FLIP protein. J Biol Chem 287:6053–6061PubMedPubMedCentralCrossRef
27.
go back to reference Wang L, Wang L, Zhang S et al (2013) Downregulation of ubiquitin E3 ligase TNF receptor-associated factor 7 leads to stabilization of p53 in breast cancer. Oncol Rep 29:283–287PubMed Wang L, Wang L, Zhang S et al (2013) Downregulation of ubiquitin E3 ligase TNF receptor-associated factor 7 leads to stabilization of p53 in breast cancer. Oncol Rep 29:283–287PubMed
28.
go back to reference Carpten JD, Faber AL, Horn C et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439–444PubMedCrossRef Carpten JD, Faber AL, Horn C et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439–444PubMedCrossRef
29.
go back to reference Kim MS, Jeong EG, Yoo NJ et al (2008) Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br J Cancer 98:1533–1535PubMedPubMedCentralCrossRef Kim MS, Jeong EG, Yoo NJ et al (2008) Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br J Cancer 98:1533–1535PubMedPubMedCentralCrossRef
30.
go back to reference Stemke-Hale K, Gonzalez-Angulo AM, Lluch A et al (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68:6084–6091PubMedPubMedCentralCrossRef Stemke-Hale K, Gonzalez-Angulo AM, Lluch A et al (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68:6084–6091PubMedPubMedCentralCrossRef
31.
go back to reference Bleeker FE, Felicioni L, Buttitta F et al (2008) AKT1(E17K) in human solid tumours. Oncogene 27:5648–5650PubMedCrossRef Bleeker FE, Felicioni L, Buttitta F et al (2008) AKT1(E17K) in human solid tumours. Oncogene 27:5648–5650PubMedCrossRef
32.
go back to reference Shoji K, Oda K, Nakagawa S et al (2009) The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer 101:145–148PubMedPubMedCentralCrossRef Shoji K, Oda K, Nakagawa S et al (2009) The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer 101:145–148PubMedPubMedCentralCrossRef
33.
go back to reference Askham JM, Platt F, Chambers PA et al (2010) AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene 29:150–155PubMedCrossRef Askham JM, Platt F, Chambers PA et al (2010) AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene 29:150–155PubMedCrossRef
34.
go back to reference Beaver JA, Gustin JP, Yi KH et al (2013) PIK3CA and AKT1 mutations have distinct effects on sensitivity to targeted pathway inhibitors in an isogenic luminal breast cancer model system. Clin Cancer Res 19:5413–5422PubMedPubMedCentralCrossRef Beaver JA, Gustin JP, Yi KH et al (2013) PIK3CA and AKT1 mutations have distinct effects on sensitivity to targeted pathway inhibitors in an isogenic luminal breast cancer model system. Clin Cancer Res 19:5413–5422PubMedPubMedCentralCrossRef
35.
36.
37.
go back to reference Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRef Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRef
38.
39.
go back to reference Zhao W, Hisamuddin IM, Nandan MO et al (2004) Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23:395–402PubMedPubMedCentralCrossRef Zhao W, Hisamuddin IM, Nandan MO et al (2004) Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23:395–402PubMedPubMedCentralCrossRef
40.
go back to reference Zammarchi F, Morelli M, Menicagli M et al (2011) KLF4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma. Am J Pathol 178:361–372PubMedPubMedCentralCrossRef Zammarchi F, Morelli M, Menicagli M et al (2011) KLF4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma. Am J Pathol 178:361–372PubMedPubMedCentralCrossRef
41.
go back to reference Yu T, Chen X, Zhang W et al (2016) KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer. Cell Death Differ 23:207–215PubMedCrossRef Yu T, Chen X, Zhang W et al (2016) KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer. Cell Death Differ 23:207–215PubMedCrossRef
42.
go back to reference Buttitta F, Felicioni L, Barassi F et al (2006) PIK3CA mutation and histological type in breast carcinoma: high frequency of mutations in lobular carcinoma. J Pathol 208:350–355PubMedCrossRef Buttitta F, Felicioni L, Barassi F et al (2006) PIK3CA mutation and histological type in breast carcinoma: high frequency of mutations in lobular carcinoma. J Pathol 208:350–355PubMedCrossRef
45.
go back to reference Oda K, Stokoe D, Taketani Y et al (2005) High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res 65:10669–10673PubMedCrossRef Oda K, Stokoe D, Taketani Y et al (2005) High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res 65:10669–10673PubMedCrossRef
46.
go back to reference Campbell IG, Russell SE, Choong DY et al (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64:7678–7681PubMedCrossRef Campbell IG, Russell SE, Choong DY et al (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64:7678–7681PubMedCrossRef
47.
go back to reference Schonleben F, Qiu W, Ciau NT et al (2006) PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin Cancer Res 12:3851–3855PubMedPubMedCentralCrossRef Schonleben F, Qiu W, Ciau NT et al (2006) PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin Cancer Res 12:3851–3855PubMedPubMedCentralCrossRef
48.
go back to reference Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 102:802–807PubMedPubMedCentralCrossRef Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 102:802–807PubMedPubMedCentralCrossRef
49.
go back to reference Ikenoue T, Kanai F, Hikiba Y et al (2005) Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 65:4562–4567PubMedCrossRef Ikenoue T, Kanai F, Hikiba Y et al (2005) Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res 65:4562–4567PubMedCrossRef
50.
go back to reference Reifenberger J, Wolter M, Weber RG et al (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803PubMed Reifenberger J, Wolter M, Weber RG et al (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803PubMed
51.
go back to reference Lam CW, Xie J, To KF et al (1999) A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18:833–836PubMedCrossRef Lam CW, Xie J, To KF et al (1999) A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18:833–836PubMedCrossRef
53.
54.
go back to reference Bacci C, Sestini R, Provenzano A et al (2010) Schwannomatosis associated with multiple meningiomas due to a familial SMARCB1 mutation. Neurogenetics 11:73–80PubMedCrossRef Bacci C, Sestini R, Provenzano A et al (2010) Schwannomatosis associated with multiple meningiomas due to a familial SMARCB1 mutation. Neurogenetics 11:73–80PubMedCrossRef
55.
go back to reference Christiaans I, Kenter SB, Brink HC et al (2011) Germline SMARCB1 mutation and somatic NF2 mutations in familial multiple meningiomas. J Med Genet 48:93–97PubMedCrossRef Christiaans I, Kenter SB, Brink HC et al (2011) Germline SMARCB1 mutation and somatic NF2 mutations in familial multiple meningiomas. J Med Genet 48:93–97PubMedCrossRef
56.
go back to reference Melean G, Velasco A, Hernandez-Imaz E et al (2012) RNA-based analysis of two SMARCB1 mutations associated with familial schwannomatosis with meningiomas. Neurogenetics 13:267–274PubMedCrossRef Melean G, Velasco A, Hernandez-Imaz E et al (2012) RNA-based analysis of two SMARCB1 mutations associated with familial schwannomatosis with meningiomas. Neurogenetics 13:267–274PubMedCrossRef
57.
go back to reference Smith MJ, O’Sullivan J, Bhaskar SS et al (2013) Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet 45:295–298PubMedCrossRef Smith MJ, O’Sullivan J, Bhaskar SS et al (2013) Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas. Nat Genet 45:295–298PubMedCrossRef
58.
go back to reference Smith MJ, Wallace AJ, Bennett C et al (2014) Germline SMARCE1 mutations predispose to both spinal and cranial clear cell meningiomas. J Pathol 234:436–440PubMedCrossRef Smith MJ, Wallace AJ, Bennett C et al (2014) Germline SMARCE1 mutations predispose to both spinal and cranial clear cell meningiomas. J Pathol 234:436–440PubMedCrossRef
59.
go back to reference Evans LT, Van Hoff J, Hickey WF et al (2015) SMARCE1 mutations in pediatric clear cell meningioma: case report. J Neurosurg Pediatr 16:296–300PubMedCrossRef Evans LT, Van Hoff J, Hickey WF et al (2015) SMARCE1 mutations in pediatric clear cell meningioma: case report. J Neurosurg Pediatr 16:296–300PubMedCrossRef
60.
go back to reference Raffalli-Ebezant H, Rutherford SA, Stivaros S et al (2015) Pediatric intracranial clear cell meningioma associated with a germline mutation of SMARCE1: a novel case. Childs Nerv Syst 31:441–447PubMedCrossRef Raffalli-Ebezant H, Rutherford SA, Stivaros S et al (2015) Pediatric intracranial clear cell meningioma associated with a germline mutation of SMARCE1: a novel case. Childs Nerv Syst 31:441–447PubMedCrossRef
61.
go back to reference Gerkes EH, Fock JM, den Dunnen WF et al (2016) A heritable form of SMARCE1-related meningiomas with important implications for follow-up and family screening. Neurogenetics 17:83–89PubMedPubMedCentralCrossRef Gerkes EH, Fock JM, den Dunnen WF et al (2016) A heritable form of SMARCE1-related meningiomas with important implications for follow-up and family screening. Neurogenetics 17:83–89PubMedPubMedCentralCrossRef
64.
go back to reference Kijima C, Miyashita T, Suzuki M et al (2012) Two cases of nevoid basal cell carcinoma syndrome associated with meningioma caused by a PTCH1 or SUFU germline mutation. Fam Cancer 11:565–570PubMedCrossRef Kijima C, Miyashita T, Suzuki M et al (2012) Two cases of nevoid basal cell carcinoma syndrome associated with meningioma caused by a PTCH1 or SUFU germline mutation. Fam Cancer 11:565–570PubMedCrossRef
65.
go back to reference Wicking C, Smyth I, Bale A (1999) The hedgehog signalling pathway in tumorigenesis and development. Oncogene 18:7844–7851PubMedCrossRef Wicking C, Smyth I, Bale A (1999) The hedgehog signalling pathway in tumorigenesis and development. Oncogene 18:7844–7851PubMedCrossRef
66.
go back to reference Staal FJ, van der Luijt RB, Baert MR et al (2002) A novel germline mutation of PTEN associated with brain tumours of multiple lineages. Br J Cancer 86:1586–1591PubMedPubMedCentralCrossRef Staal FJ, van der Luijt RB, Baert MR et al (2002) A novel germline mutation of PTEN associated with brain tumours of multiple lineages. Br J Cancer 86:1586–1591PubMedPubMedCentralCrossRef
67.
go back to reference Lyons CJ, Wilson CB, Horton JC (1993) Association between meningioma and Cowden’s disease. Neurology 43:1436–1437PubMedCrossRef Lyons CJ, Wilson CB, Horton JC (1993) Association between meningioma and Cowden’s disease. Neurology 43:1436–1437PubMedCrossRef
68.
go back to reference De Moura J, Kavalec FL, Doghman M et al (2010) Heterozygous TP53stop146/R72P fibroblasts from a Li–Fraumeni syndrome patient with impaired response to DNA damage. Int J Oncol 36:983–990PubMed De Moura J, Kavalec FL, Doghman M et al (2010) Heterozygous TP53stop146/R72P fibroblasts from a Li–Fraumeni syndrome patient with impaired response to DNA damage. Int J Oncol 36:983–990PubMed
69.
go back to reference Kanno H, Yamamoto I, Yoshida M et al (2003) Meningioma showing VHL gene inactivation in a patient with von Hippel–Lindau disease. Neurology 60:1197–1199PubMedCrossRef Kanno H, Yamamoto I, Yoshida M et al (2003) Meningioma showing VHL gene inactivation in a patient with von Hippel–Lindau disease. Neurology 60:1197–1199PubMedCrossRef
70.
go back to reference Nakamura Y, Shimizu T, Ohigashi Y et al (2005) Meningioma arising in Werner syndrome confirmed by mutation analysis. J Clin Neurosci 12:503–506PubMedCrossRef Nakamura Y, Shimizu T, Ohigashi Y et al (2005) Meningioma arising in Werner syndrome confirmed by mutation analysis. J Clin Neurosci 12:503–506PubMedCrossRef
71.
go back to reference Leblanc R (2000) Familial adenomatous polyposis and benign intracranial tumors: a new variant of Gardner’s syndrome. Can J Neurol Sci 27:341–346PubMedCrossRef Leblanc R (2000) Familial adenomatous polyposis and benign intracranial tumors: a new variant of Gardner’s syndrome. Can J Neurol Sci 27:341–346PubMedCrossRef
73.
go back to reference Abdel-Rahman MH, Pilarski R, Cebulla CM et al (2011) Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet 48:856–859PubMedCrossRef Abdel-Rahman MH, Pilarski R, Cebulla CM et al (2011) Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet 48:856–859PubMedCrossRef
74.
go back to reference Dougherty MJ, Santi M, Brose MS et al (2010) Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 12:621–630PubMedPubMedCentralCrossRef Dougherty MJ, Santi M, Brose MS et al (2010) Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol 12:621–630PubMedPubMedCentralCrossRef
75.
go back to reference Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405PubMedCrossRef Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405PubMedCrossRef
76.
go back to reference Kleinschmidt-DeMasters BK, Aisner DL, Birks DK et al (2013) Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 37:685–698PubMedPubMedCentralCrossRef Kleinschmidt-DeMasters BK, Aisner DL, Birks DK et al (2013) Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 37:685–698PubMedPubMedCentralCrossRef
77.
go back to reference Sugimoto K, Ideguchi M, Kimura T et al (2016) Epithelioid/rhabdoid glioblastoma: a highly aggressive subtype of glioblastoma. Brain Tumor Pathol 33:137–146PubMedCrossRef Sugimoto K, Ideguchi M, Kimura T et al (2016) Epithelioid/rhabdoid glioblastoma: a highly aggressive subtype of glioblastoma. Brain Tumor Pathol 33:137–146PubMedCrossRef
78.
go back to reference Mordechai O, Postovsky S, Vlodavsky E et al (2015) Metastatic rhabdoid meningioma with BRAF V600E mutation and good response to personalized therapy: case report and review of the literature. Pediatr Hematol Oncol 32:207–211PubMedCrossRef Mordechai O, Postovsky S, Vlodavsky E et al (2015) Metastatic rhabdoid meningioma with BRAF V600E mutation and good response to personalized therapy: case report and review of the literature. Pediatr Hematol Oncol 32:207–211PubMedCrossRef
79.
80.
go back to reference Forest F, Yvorel V, Vassal F et al (2015) BRAF V600 point mutation is not present in relapsing meningioma. Clin Neuropathol 34:164–165PubMedCrossRef Forest F, Yvorel V, Vassal F et al (2015) BRAF V600 point mutation is not present in relapsing meningioma. Clin Neuropathol 34:164–165PubMedCrossRef
81.
go back to reference Bello MJ, de Campos JM, Kusak ME et al (1994) Allelic loss at 1p is associated with tumor progression of meningiomas. Genes Chromosomes Cancer 9:296–298PubMedCrossRef Bello MJ, de Campos JM, Kusak ME et al (1994) Allelic loss at 1p is associated with tumor progression of meningiomas. Genes Chromosomes Cancer 9:296–298PubMedCrossRef
82.
go back to reference Simon M, von Deimling A, Larson JJ et al (1995) Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55:4696–4701PubMed Simon M, von Deimling A, Larson JJ et al (1995) Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55:4696–4701PubMed
83.
go back to reference Weber RG, Bostrom J, Wolter M et al (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724PubMedPubMedCentralCrossRef Weber RG, Bostrom J, Wolter M et al (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724PubMedPubMedCentralCrossRef
84.
go back to reference Lamszus K, Kluwe L, Matschke J et al (1999) Allelic losses at 1p, 9q, 10q, 14q, and 22q in the progression of aggressive meningiomas and undifferentiated meningeal sarcomas. Cancer Genet Cytogenet 110:103–110PubMedCrossRef Lamszus K, Kluwe L, Matschke J et al (1999) Allelic losses at 1p, 9q, 10q, 14q, and 22q in the progression of aggressive meningiomas and undifferentiated meningeal sarcomas. Cancer Genet Cytogenet 110:103–110PubMedCrossRef
85.
go back to reference Cai DX, Banerjee R, Scheithauer BW et al (2001) Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 60:628–636PubMedCrossRef Cai DX, Banerjee R, Scheithauer BW et al (2001) Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 60:628–636PubMedCrossRef
86.
go back to reference Aizer AA, Abedalthagafi M, Bi WL et al (2016) A prognostic cytogenetic scoring system to guide the adjuvant management of patients with atypical meningioma. Neuro Oncol 18:269–274PubMedCrossRef Aizer AA, Abedalthagafi M, Bi WL et al (2016) A prognostic cytogenetic scoring system to guide the adjuvant management of patients with atypical meningioma. Neuro Oncol 18:269–274PubMedCrossRef
87.
go back to reference Sulman EP, Dumanski JP, White PS et al (1998) Identification of a consistent region of allelic loss on 1p32 in meningiomas: correlation with increased morbidity. Cancer Res 58:3226–3230PubMed Sulman EP, Dumanski JP, White PS et al (1998) Identification of a consistent region of allelic loss on 1p32 in meningiomas: correlation with increased morbidity. Cancer Res 58:3226–3230PubMed
88.
go back to reference Tabernero MD, Espinosa AB, Maillo A et al (2005) Characterization of chromosome 14 abnormalities by interphase in situ hybridization and comparative genomic hybridization in 124 meningiomas: correlation with clinical, histopathologic, and prognostic features. Am J Clin Pathol 123:744–751PubMedCrossRef Tabernero MD, Espinosa AB, Maillo A et al (2005) Characterization of chromosome 14 abnormalities by interphase in situ hybridization and comparative genomic hybridization in 124 meningiomas: correlation with clinical, histopathologic, and prognostic features. Am J Clin Pathol 123:744–751PubMedCrossRef
89.
90.
go back to reference Lusis EA, Watson MA, Chicoine MR et al (2005) Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res 65:7121–7126PubMedCrossRef Lusis EA, Watson MA, Chicoine MR et al (2005) Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res 65:7121–7126PubMedCrossRef
91.
go back to reference Zhang X, Gejman R, Mahta A et al (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70:2350–2358PubMedPubMedCentralCrossRef Zhang X, Gejman R, Mahta A et al (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70:2350–2358PubMedPubMedCentralCrossRef
92.
go back to reference Abedalthagafi MS, Merrill PH, Bi WL et al (2014) Angiomatous meningiomas have a distinct genetic profile with multiple chromosomal polysomies including polysomy of chromosome 5. Oncotarget 5:10596–10606PubMedPubMedCentralCrossRef Abedalthagafi MS, Merrill PH, Bi WL et al (2014) Angiomatous meningiomas have a distinct genetic profile with multiple chromosomal polysomies including polysomy of chromosome 5. Oncotarget 5:10596–10606PubMedPubMedCentralCrossRef
93.
go back to reference Hasselblatt M, Nolte KW, Paulus W (2004) Angiomatous meningioma: a clinicopathologic study of 38 cases. Am J Surg Pathol 28:390–393PubMedCrossRef Hasselblatt M, Nolte KW, Paulus W (2004) Angiomatous meningioma: a clinicopathologic study of 38 cases. Am J Surg Pathol 28:390–393PubMedCrossRef
94.
go back to reference Ketter R, Kim YJ, Storck S et al (2007) Hyperdiploidy defines a distinct cytogenetic entity of meningiomas. J Neurooncol 83:213–221PubMedCrossRef Ketter R, Kim YJ, Storck S et al (2007) Hyperdiploidy defines a distinct cytogenetic entity of meningiomas. J Neurooncol 83:213–221PubMedCrossRef
95.
go back to reference Bostrom J, Meyer-Puttlitz B, Wolter M et al (2001) Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol 159:661–669PubMedPubMedCentralCrossRef Bostrom J, Meyer-Puttlitz B, Wolter M et al (2001) Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol 159:661–669PubMedPubMedCentralCrossRef
96.
go back to reference Simon M, Park TW, Koster G et al (2001) Alterations of INK4a(p16-p14ARF)/INK4b(p15) expression and telomerase activation in meningioma progression. J Neurooncol 55:149–158PubMedCrossRef Simon M, Park TW, Koster G et al (2001) Alterations of INK4a(p16-p14ARF)/INK4b(p15) expression and telomerase activation in meningioma progression. J Neurooncol 55:149–158PubMedCrossRef
97.
go back to reference Perry A, Banerjee R, Lohse CM et al (2002) A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol 12:183–190PubMed Perry A, Banerjee R, Lohse CM et al (2002) A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol 12:183–190PubMed
98.
go back to reference Goutagny S, Nault JC, Mallet M et al (2014) High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol 24:184–189PubMedCrossRef Goutagny S, Nault JC, Mallet M et al (2014) High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol 24:184–189PubMedCrossRef
99.
go back to reference Sahm F, Schrimpf D, Olar A et al (2016) TERT promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst 108 Sahm F, Schrimpf D, Olar A et al (2016) TERT promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst 108
101.
go back to reference Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961PubMedCrossRef Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961PubMedCrossRef
102.
go back to reference Rachakonda PS, Hosen I, de Verdier PJ et al (2013) TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA 110:17426–17431PubMedPubMedCentralCrossRef Rachakonda PS, Hosen I, de Verdier PJ et al (2013) TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA 110:17426–17431PubMedPubMedCentralCrossRef
103.
go back to reference Huang DS, Wang Z, He XJ et al (2015) Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer 51:969–976PubMedPubMedCentralCrossRef Huang DS, Wang Z, He XJ et al (2015) Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer 51:969–976PubMedPubMedCentralCrossRef
104.
go back to reference Reuss DE, Kratz A, Sahm F et al (2015) Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130:407–417PubMedCrossRef Reuss DE, Kratz A, Sahm F et al (2015) Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol 130:407–417PubMedCrossRef
105.
go back to reference Brat DJ, Verhaak RG, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498PubMedCrossRef Brat DJ, Verhaak RG, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498PubMedCrossRef
106.
go back to reference Johanns TM, Fu Y, Kobayashi DK et al (2016) High incidence of TERT mutation in brain tumor cell lines. Brain Tumor Pathol 33:222–227PubMedCrossRef Johanns TM, Fu Y, Kobayashi DK et al (2016) High incidence of TERT mutation in brain tumor cell lines. Brain Tumor Pathol 33:222–227PubMedCrossRef
107.
go back to reference Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468PubMedCrossRef Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468PubMedCrossRef
108.
go back to reference Kato Y (2015) Specific monoclonal antibodies against IDH1/2 mutations as diagnostic tools for gliomas. Brain Tumor Pathol 32:3–11PubMedCrossRef Kato Y (2015) Specific monoclonal antibodies against IDH1/2 mutations as diagnostic tools for gliomas. Brain Tumor Pathol 32:3–11PubMedCrossRef
109.
go back to reference Sahm F, Bissel J, Koelsche C et al (2013) AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry. Acta Neuropathol 126:757–762PubMedCrossRef Sahm F, Bissel J, Koelsche C et al (2013) AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry. Acta Neuropathol 126:757–762PubMedCrossRef
110.
go back to reference Buccoliero AM, Gheri CF, Castiglione F et al (2007) Merlin expression in secretory meningiomas: evidence of an NF2-independent pathogenesis? Immunohistochemical study. Appl Immunohistochem Mol Morphol 15:353–357PubMedCrossRef Buccoliero AM, Gheri CF, Castiglione F et al (2007) Merlin expression in secretory meningiomas: evidence of an NF2-independent pathogenesis? Immunohistochemical study. Appl Immunohistochem Mol Morphol 15:353–357PubMedCrossRef
111.
go back to reference Pavelin S, Becic K, Forempoher G et al (2014) The significance of immunohistochemical expression of merlin, Ki-67, and p53 in meningiomas. Appl Immunohistochem Mol Morphol 22:46–49PubMedCrossRef Pavelin S, Becic K, Forempoher G et al (2014) The significance of immunohistochemical expression of merlin, Ki-67, and p53 in meningiomas. Appl Immunohistochem Mol Morphol 22:46–49PubMedCrossRef
Metadata
Title
Genetic landscape of meningioma
Authors
Sayaka Yuzawa
Hiroshi Nishihara
Shinya Tanaka
Publication date
01-10-2016
Publisher
Springer Japan
Published in
Brain Tumor Pathology / Issue 4/2016
Print ISSN: 1433-7398
Electronic ISSN: 1861-387X
DOI
https://doi.org/10.1007/s10014-016-0271-7

Other articles of this Issue 4/2016

Brain Tumor Pathology 4/2016 Go to the issue