Skip to main content
Top
Published in: Brain Tumor Pathology 3/2016

01-07-2016 | Original Article

Expression and gene doses changes of the p53-regulator PPM1D in meningiomas: a role in meningioma progression?

Authors: Shinjiro Fukami, Markus J. Riemenschneider, Michihiro Kohno, Hans Jakob Steiger

Published in: Brain Tumor Pathology | Issue 3/2016

Login to get access

Abstract

The aim of our study was to clarify the expression and gene copy number levels of protein phosphatase 1D magnesium-dependent, delta isoform (PPM1D), which is thought to be a regulator of the p53 protein in meningiomas of all three different WHO grades. Genomic DNA and mRNA were extracted from frozen tissues of meningiomas (WHO grade I, 20 cases; grade II, 17 cases; grade III, 20 cases). For analysis of the mRNA expression and gene dosage level of PPM1D, semiquantitative duplex RT-PCR, real-time RT-PCR, and semiquantitative duplex PCR were performed. We also analyzed several genes which locate near PPM1D in the genomic locus 17q22–24 using semiquantitative duplex RT-PCR. We found that the mean mRNA expression of PPM1D is higher in WHO grade II and III meningiomas than in grade I tumors. This finding is accompanied by moderate gene dosage increases for PPM1D in meningiomas of higher grades. Other genes located in the vicinity of PPM1D also showed mRNA overexpression in single meningioma cases. For these genes, however, no significant expression differences between meningioma grades could be observed. Thus, PPM1D in the chromosomal location 17q22–24 might be the most relevant candidate gene with respect to a potential functional implication in meningioma progression.
Literature
1.
go back to reference Perry A, Louis D, Scheithauer B et al (2007) Meningiomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) The 2007 WHO classification of tumours of the central nervous system, 4th edn. IARC Press, Lyon, pp 164–172 Perry A, Louis D, Scheithauer B et al (2007) Meningiomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) The 2007 WHO classification of tumours of the central nervous system, 4th edn. IARC Press, Lyon, pp 164–172
2.
go back to reference Perry A, Scheithauer BW, Stafford SL et al (1999) “Malignancy” in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85:2046–2056PubMed Perry A, Scheithauer BW, Stafford SL et al (1999) “Malignancy” in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85:2046–2056PubMed
3.
go back to reference Weber RG, Bostrom J, Wolter M et al (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724CrossRefPubMedPubMedCentral Weber RG, Bostrom J, Wolter M et al (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724CrossRefPubMedPubMedCentral
4.
go back to reference Barski D, Wolter M, Reifenberger G et al (2010) Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12.3 and malignancy in meningiomas. Brain Pathol 20:623–631CrossRefPubMed Barski D, Wolter M, Reifenberger G et al (2010) Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12.3 and malignancy in meningiomas. Brain Pathol 20:623–631CrossRefPubMed
5.
go back to reference Clark VE, Erson-Omay EZ, Serin A et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339:1077–1080CrossRefPubMedPubMedCentral Clark VE, Erson-Omay EZ, Serin A et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339:1077–1080CrossRefPubMedPubMedCentral
8.
go back to reference Abdelzaher E, El-Gendi SM, Yehya A et al (2011) Recurrence of benign meningiomas: predictive value of proliferative index, BCL2, p53, hormonal receptors and HER2 expression. Br J Neurosurg 25:707–713CrossRefPubMed Abdelzaher E, El-Gendi SM, Yehya A et al (2011) Recurrence of benign meningiomas: predictive value of proliferative index, BCL2, p53, hormonal receptors and HER2 expression. Br J Neurosurg 25:707–713CrossRefPubMed
9.
go back to reference Aguiar PH, Agner C, Simm R et al (2002) p53 Protein expression in meningiomas—a clinicopathologic study of 55 patients. Neurosurg Rev 25:252–257CrossRefPubMed Aguiar PH, Agner C, Simm R et al (2002) p53 Protein expression in meningiomas—a clinicopathologic study of 55 patients. Neurosurg Rev 25:252–257CrossRefPubMed
10.
go back to reference Amatya VJ, Takeshima Y, Inai K (2004) Methylation of p14(ARF) gene in meningiomas and its correlation to the p53 expression and mutation. Mod Pathol 17:705–710CrossRefPubMed Amatya VJ, Takeshima Y, Inai K (2004) Methylation of p14(ARF) gene in meningiomas and its correlation to the p53 expression and mutation. Mod Pathol 17:705–710CrossRefPubMed
11.
go back to reference Yang SY, Park CK, Park SH et al (2008) Atypical and anaplastic meningiomas: prognostic implications of clinicopathological features. J Neurol Neurosurg Psychiatry 79:574–580CrossRefPubMed Yang SY, Park CK, Park SH et al (2008) Atypical and anaplastic meningiomas: prognostic implications of clinicopathological features. J Neurol Neurosurg Psychiatry 79:574–580CrossRefPubMed
12.
go back to reference Bostrom J, Meyer-Puttlitz B, Wolter M et al (2001) Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol 159:661–669CrossRefPubMedPubMedCentral Bostrom J, Meyer-Puttlitz B, Wolter M et al (2001) Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol 159:661–669CrossRefPubMedPubMedCentral
13.
go back to reference Bulavin DV, Demidov ON, Saito S et al (2002) Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31:210–215CrossRefPubMed Bulavin DV, Demidov ON, Saito S et al (2002) Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31:210–215CrossRefPubMed
14.
go back to reference Lu X, Nguyen TA, Moon SH et al (2008) The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 27:123–135CrossRefPubMedPubMedCentral Lu X, Nguyen TA, Moon SH et al (2008) The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 27:123–135CrossRefPubMedPubMedCentral
15.
go back to reference Saito-Ohara F, Imoto I, Inoue J et al (2003) PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63:1876–1883PubMed Saito-Ohara F, Imoto I, Inoue J et al (2003) PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res 63:1876–1883PubMed
16.
go back to reference Hirasawa A, Saito-Ohara F, Inoue J et al (2003) Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res 9:1995–2004PubMed Hirasawa A, Saito-Ohara F, Inoue J et al (2003) Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin Cancer Res 9:1995–2004PubMed
17.
go back to reference van den Boom J, Wolter M, Kuick R et al (2003) Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163:1033–1043CrossRefPubMedPubMedCentral van den Boom J, Wolter M, Kuick R et al (2003) Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 163:1033–1043CrossRefPubMedPubMedCentral
18.
go back to reference Buschges R, Ichimura K, Weber RG et al (2002) Allelic gain and amplification on the long arm of chromosome 17 in anaplastic meningiomas. Brain Pathol 12:145–153CrossRefPubMed Buschges R, Ichimura K, Weber RG et al (2002) Allelic gain and amplification on the long arm of chromosome 17 in anaplastic meningiomas. Brain Pathol 12:145–153CrossRefPubMed
19.
go back to reference Yokota J, Yamamoto T, Toyoshima K et al (1986) Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. Lancet 1:765–767CrossRefPubMed Yokota J, Yamamoto T, Toyoshima K et al (1986) Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. Lancet 1:765–767CrossRefPubMed
20.
go back to reference Sinclair CS, Rowley M, Naderi A et al (2003) The 17q23 amplicon and breast cancer. Breast Cancer Res Treat 78:313–322CrossRefPubMed Sinclair CS, Rowley M, Naderi A et al (2003) The 17q23 amplicon and breast cancer. Breast Cancer Res Treat 78:313–322CrossRefPubMed
21.
go back to reference Ehrbrecht A, Muller U, Wolter M et al (2006) Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 208:554–563CrossRefPubMed Ehrbrecht A, Muller U, Wolter M et al (2006) Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 208:554–563CrossRefPubMed
22.
go back to reference Couch FJ, Wang XY, Wu GJ et al (1999) Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res 59:1408–1411PubMed Couch FJ, Wang XY, Wu GJ et al (1999) Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res 59:1408–1411PubMed
23.
go back to reference Jacobs JJ, Keblusek P, Robanus-Maandag E et al (2000) Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet 26:291–299CrossRefPubMed Jacobs JJ, Keblusek P, Robanus-Maandag E et al (2000) Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet 26:291–299CrossRefPubMed
24.
go back to reference Cai DX, James CD, Scheithauer BW et al (2001) PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol 115:213–218CrossRefPubMed Cai DX, James CD, Scheithauer BW et al (2001) PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol 115:213–218CrossRefPubMed
25.
go back to reference Surace EI, Lusis E, Haipek CA et al (2004) Functional significance of S6K overexpression in meningioma progression. Ann Neurol 56:295–298CrossRefPubMed Surace EI, Lusis E, Haipek CA et al (2004) Functional significance of S6K overexpression in meningioma progression. Ann Neurol 56:295–298CrossRefPubMed
26.
go back to reference Fiscella M, Zhang H, Fan S et al (1997) Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 94:6048–6053CrossRefPubMedPubMedCentral Fiscella M, Zhang H, Fan S et al (1997) Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 94:6048–6053CrossRefPubMedPubMedCentral
27.
go back to reference Takekawa M, Adachi M, Nakahata A et al (2000) p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19:6517–6526CrossRefPubMedPubMedCentral Takekawa M, Adachi M, Nakahata A et al (2000) p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19:6517–6526CrossRefPubMedPubMedCentral
28.
29.
go back to reference Hanada M, Kobayashi T, Ohnishi M et al (1998) Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Lett 437:172–176CrossRefPubMed Hanada M, Kobayashi T, Ohnishi M et al (1998) Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Lett 437:172–176CrossRefPubMed
30.
go back to reference Bulavin DV, Phillips C, Nannenga B et al (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 36:343–350CrossRefPubMed Bulavin DV, Phillips C, Nannenga B et al (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 36:343–350CrossRefPubMed
31.
go back to reference Li J, Yang Y, Peng Y et al (2002) Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31:133–134CrossRefPubMed Li J, Yang Y, Peng Y et al (2002) Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31:133–134CrossRefPubMed
32.
go back to reference Tan DS, Lambros MB, Rayter S et al (2009) PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res 15:2269–2280CrossRefPubMed Tan DS, Lambros MB, Rayter S et al (2009) PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res 15:2269–2280CrossRefPubMed
33.
go back to reference Wang P, Rao J, Yang H et al (2011) Wip1 over-expression correlated with TP53/p14(ARF) pathway disruption in human astrocytomas. J Surg Oncol 104:679–684CrossRefPubMed Wang P, Rao J, Yang H et al (2011) Wip1 over-expression correlated with TP53/p14(ARF) pathway disruption in human astrocytomas. J Surg Oncol 104:679–684CrossRefPubMed
34.
go back to reference Rauta J, Alarmo EL, Kauraniemi P et al (2006) The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Res Treat 95:257–263CrossRefPubMed Rauta J, Alarmo EL, Kauraniemi P et al (2006) The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Res Treat 95:257–263CrossRefPubMed
35.
go back to reference Khan J, Parsa NZ, Harada T et al (1998) Detection of gains and losses in 18 meningiomas by comparative genomic hybridization. Cancer Genet Cytogenet 103:95–100CrossRefPubMed Khan J, Parsa NZ, Harada T et al (1998) Detection of gains and losses in 18 meningiomas by comparative genomic hybridization. Cancer Genet Cytogenet 103:95–100CrossRefPubMed
36.
go back to reference Yagi H, Chuman Y, Kozakai Y et al (2012) A small molecule inhibitor of p53-inducible protein phosphatase PPM1D. Bioorg Med Chem Lett 22:729–732CrossRefPubMed Yagi H, Chuman Y, Kozakai Y et al (2012) A small molecule inhibitor of p53-inducible protein phosphatase PPM1D. Bioorg Med Chem Lett 22:729–732CrossRefPubMed
37.
go back to reference Zhang X, Wan G, Mlotshwa S et al (2010) Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 70:7176–7186CrossRefPubMedPubMedCentral Zhang X, Wan G, Mlotshwa S et al (2010) Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 70:7176–7186CrossRefPubMedPubMedCentral
38.
go back to reference Kim MS, Kim KH, Lee EH et al (2014) Results of immunohistochemical staining for cell cycle regulators predict the recurrence of atypical meningiomas. J Neurosurg 121:1189–1200CrossRefPubMed Kim MS, Kim KH, Lee EH et al (2014) Results of immunohistochemical staining for cell cycle regulators predict the recurrence of atypical meningiomas. J Neurosurg 121:1189–1200CrossRefPubMed
39.
go back to reference Ellison DW, Lunec J, Gallagher PJ et al (1995) Accumulation of wild-type p53 in meningiomas. Neuropathol Appl Neurobiol 21:136–142CrossRefPubMed Ellison DW, Lunec J, Gallagher PJ et al (1995) Accumulation of wild-type p53 in meningiomas. Neuropathol Appl Neurobiol 21:136–142CrossRefPubMed
40.
go back to reference Ohgaki H, Eibl RH, Schwab M et al (1993) Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system. Mol Carcinog 8:74–80CrossRefPubMed Ohgaki H, Eibl RH, Schwab M et al (1993) Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system. Mol Carcinog 8:74–80CrossRefPubMed
41.
go back to reference Wang JL, Zhang ZJ, Hartman M et al (1995) Detection of TP53 gene mutation in human meningiomas: a study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. Int J Cancer 64:223–228CrossRefPubMed Wang JL, Zhang ZJ, Hartman M et al (1995) Detection of TP53 gene mutation in human meningiomas: a study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. Int J Cancer 64:223–228CrossRefPubMed
42.
Metadata
Title
Expression and gene doses changes of the p53-regulator PPM1D in meningiomas: a role in meningioma progression?
Authors
Shinjiro Fukami
Markus J. Riemenschneider
Michihiro Kohno
Hans Jakob Steiger
Publication date
01-07-2016
Publisher
Springer Japan
Published in
Brain Tumor Pathology / Issue 3/2016
Print ISSN: 1433-7398
Electronic ISSN: 1861-387X
DOI
https://doi.org/10.1007/s10014-016-0252-x

Other articles of this Issue 3/2016

Brain Tumor Pathology 3/2016 Go to the issue