Skip to main content
Top
Published in: Medical Molecular Morphology 3/2016

01-09-2016 | Original Paper

Intracellular localization of α-tubulin acetyltransferase ATAT1 in rat ciliated cells

Authors: Takashi Nakakura, Takeshi Suzuki, Takahiro Nemoto, Hideyuki Tanaka, Anshin Asano-Hoshino, Kenjiro Arisawa, Yoshimi Nishijima, Yoshiko Kiuchi, Haruo Hagiwara

Published in: Medical Molecular Morphology | Issue 3/2016

Login to get access

Abstract

Cilia are microtubule-based hair-like organelles on basal bodies located beneath the cell membrane in various tissues of multicellular animals, and are usually classified into motile cilia and primary cilia. Microtubules are assembled from the heterodimers of α- and β-tubulin. The lysine residue at position 40 (K40) of α-tubulin is an important site for acetylation, and this site is acetylated in the cilium. α-Tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to the K40 residue of α-tubulin; however, its intracellular distribution in mammalian tissues remains unclear. In this study, we analyzed ATAT1 localization in rat trachea, oviduct, kidney, retina, testis and the third ventricle of the brain by immunohistochemical techniques using a specific antibody against ATAT1. ATAT1 was distributed to the motile cilia of multiciliated cells of the trachea, third ventricle of the brain and oviduct, and in the primary cilia of the renal medullary collecting duct. ATAT1 also localized to the primary cilia, inner and outer segments of retinal photoreceptor cells, and at the Golgi apparatus of spermatocytes and spermatids of testis. These results indicated that α-tubulin acetylation by ATAT1 at distinct subcellular positions may influence the functional regulation of microtubules and cilia in a variety of ciliated cells.
Literature
2.
go back to reference Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400CrossRefPubMed Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400CrossRefPubMed
3.
go back to reference Dalen H (1983) An ultrastructural study of the tracheal epithelium of the guinea-pig with special reference to the ciliary structure. J Anat 136:47–67PubMedPubMedCentral Dalen H (1983) An ultrastructural study of the tracheal epithelium of the guinea-pig with special reference to the ciliary structure. J Anat 136:47–67PubMedPubMedCentral
4.
go back to reference Hagiwara H, Ohwada N, Aoki T, Suzuki T, Takata K (2008) The primary cilia of secretory cells in the human oviduct mucosa. Med Mol Morphol 41:193–198CrossRefPubMed Hagiwara H, Ohwada N, Aoki T, Suzuki T, Takata K (2008) The primary cilia of secretory cells in the human oviduct mucosa. Med Mol Morphol 41:193–198CrossRefPubMed
5.
go back to reference Brooks Eric R, Wallingford John B (2014) Multiciliated cells. Curr Biol 24:973–982CrossRef Brooks Eric R, Wallingford John B (2014) Multiciliated cells. Curr Biol 24:973–982CrossRef
6.
go back to reference Hagiwara H, Ohwada N, Takata K (2004) Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium. Int Rev Cytol 234:101–141CrossRefPubMed Hagiwara H, Ohwada N, Takata K (2004) Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium. Int Rev Cytol 234:101–141CrossRefPubMed
7.
go back to reference Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:378–380CrossRef Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:378–380CrossRef
11.
go back to reference Soppina V, Herbstman JF, Skiniotis G, Verhey KJ (2012) Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS ONE 7:e48204CrossRefPubMedPubMedCentral Soppina V, Herbstman JF, Skiniotis G, Verhey KJ (2012) Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS ONE 7:e48204CrossRefPubMedPubMedCentral
12.
go back to reference Perdiz D, Mackeh R, Poüs C, Baillet A (2011) The ins and outs of tubulin acetylation: more than just a post-translational modification? Cell Signal 23:763–771CrossRefPubMed Perdiz D, Mackeh R, Poüs C, Baillet A (2011) The ins and outs of tubulin acetylation: more than just a post-translational modification? Cell Signal 23:763–771CrossRefPubMed
13.
go back to reference Piperno G, Fuller MT (1985) Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol 101:2085–2094CrossRefPubMed Piperno G, Fuller MT (1985) Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol 101:2085–2094CrossRefPubMed
14.
go back to reference Piperno G, LeDizet M, Chang XJ (1987) Microtubules containing acetylated α-tubulin in mammalian cells in culture. J Cell Biol 104:289–302CrossRefPubMed Piperno G, LeDizet M, Chang XJ (1987) Microtubules containing acetylated α-tubulin in mammalian cells in culture. J Cell Biol 104:289–302CrossRefPubMed
15.
go back to reference Nakakura T, Asano-Hoshino A, Suzuki T, Arisawa K, Tanaka H, Sekino Y, Kiuchi Y, Kawai K, Hagiwara H (2015) The elongation of primary cilia via the acetylation of α-tubulin by the treatment with lithium chloride in human fibroblast KD cells. Med Mol Morphol 48:44–53CrossRefPubMed Nakakura T, Asano-Hoshino A, Suzuki T, Arisawa K, Tanaka H, Sekino Y, Kiuchi Y, Kawai K, Hagiwara H (2015) The elongation of primary cilia via the acetylation of α-tubulin by the treatment with lithium chloride in human fibroblast KD cells. Med Mol Morphol 48:44–53CrossRefPubMed
16.
go back to reference Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S, Morrissette NS, Dougan ST, Kipreos ET, Gaertig J (2010) MEC-17 is an α-tubulin acetyltransferase. Nature 467:218–222CrossRefPubMedPubMedCentral Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S, Morrissette NS, Dougan ST, Kipreos ET, Gaertig J (2010) MEC-17 is an α-tubulin acetyltransferase. Nature 467:218–222CrossRefPubMedPubMedCentral
17.
go back to reference Shida T, Cueva JG, Xu Z, Goodman MB, Nachury MV (2010) The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci USA 107:21517–21522CrossRefPubMedPubMedCentral Shida T, Cueva JG, Xu Z, Goodman MB, Nachury MV (2010) The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci USA 107:21517–21522CrossRefPubMedPubMedCentral
18.
go back to reference Friedmann DR, Aguilar A, Fan J, Nachury MV, Marmorstein R (2012) Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation. Proc Natl Acad Sci USA 109:19655–19660CrossRefPubMedPubMedCentral Friedmann DR, Aguilar A, Fan J, Nachury MV, Marmorstein R (2012) Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation. Proc Natl Acad Sci USA 109:19655–19660CrossRefPubMedPubMedCentral
19.
go back to reference Kormendi V, Szyk A, Piszczek G, Roll-Mecak A (2012) Crystal structures of tubulin acetyltransferase reveal a conserved catalytic core and the plasticity of the essential N terminus. J Biol Chem 287:41569–41575CrossRefPubMedPubMedCentral Kormendi V, Szyk A, Piszczek G, Roll-Mecak A (2012) Crystal structures of tubulin acetyltransferase reveal a conserved catalytic core and the plasticity of the essential N terminus. J Biol Chem 287:41569–41575CrossRefPubMedPubMedCentral
20.
go back to reference Taschner M, Vetter M, Lorentzen E (2012) Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA. Proc Natl Acad Sci USA 109:19649–19654CrossRefPubMedPubMedCentral Taschner M, Vetter M, Lorentzen E (2012) Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA. Proc Natl Acad Sci USA 109:19649–19654CrossRefPubMedPubMedCentral
21.
go back to reference Kalebic N, Sorrentino S, Perlas E, Bolasco G, Martinez C, Heppenstall PA (2013) αTAT1 is the major α-tubulin acetyltransferase in mice. Nat Commun 4:1962CrossRefPubMed Kalebic N, Sorrentino S, Perlas E, Bolasco G, Martinez C, Heppenstall PA (2013) αTAT1 is the major α-tubulin acetyltransferase in mice. Nat Commun 4:1962CrossRefPubMed
22.
go back to reference Kim G-W, Li L, Gorbani M, You L, Yang X-J (2013) Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion. J Biol Chem 288:20334–20350CrossRefPubMedPubMedCentral Kim G-W, Li L, Gorbani M, You L, Yang X-J (2013) Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion. J Biol Chem 288:20334–20350CrossRefPubMedPubMedCentral
23.
go back to reference Liu JP, Nakakura T, Tomura H, Tobo M, Mogi C, Wang JQ, He XD, Takano M, Damirin A, Komachi M, Sato K, Okajima F (2010) Each one of certain histidine residues in G-protein-coupled receptor GPR4 is critical for extracellular proton-induced stimulation of multiple G-protein-signaling pathways. Pharmacol Res 61:499–505CrossRefPubMed Liu JP, Nakakura T, Tomura H, Tobo M, Mogi C, Wang JQ, He XD, Takano M, Damirin A, Komachi M, Sato K, Okajima F (2010) Each one of certain histidine residues in G-protein-coupled receptor GPR4 is critical for extracellular proton-induced stimulation of multiple G-protein-signaling pathways. Pharmacol Res 61:499–505CrossRefPubMed
24.
go back to reference Nakakura T, Sato M, Suzuki M, Hatano O, Takemori H, Taniguchi Y, Minoshima Y, Tanaka S (2009) The spatial and temporal expression of delta-like protein 1 in the rat pituitary gland during development. Histochem Cell Biol 131:141–153CrossRefPubMed Nakakura T, Sato M, Suzuki M, Hatano O, Takemori H, Taniguchi Y, Minoshima Y, Tanaka S (2009) The spatial and temporal expression of delta-like protein 1 in the rat pituitary gland during development. Histochem Cell Biol 131:141–153CrossRefPubMed
25.
go back to reference Watanabe K, Nemoto T, Akira S, Takeshita T, Shibasaki T (2013) Estrogens downregulate urocortin 2 expression in rat uterus. J Endocrinol 219:269–278CrossRefPubMed Watanabe K, Nemoto T, Akira S, Takeshita T, Shibasaki T (2013) Estrogens downregulate urocortin 2 expression in rat uterus. J Endocrinol 219:269–278CrossRefPubMed
26.
go back to reference Nakakura T, Suzuki M, Watanabe Y, Tanaka S (2007) Possible involvement of brain-derived neurotrophic factor (BDNF) in the innervation of dopaminergic neurons from the rat periventricular nucleus to the pars intermedia. Zool Sci 24:1086–1093CrossRefPubMed Nakakura T, Suzuki M, Watanabe Y, Tanaka S (2007) Possible involvement of brain-derived neurotrophic factor (BDNF) in the innervation of dopaminergic neurons from the rat periventricular nucleus to the pars intermedia. Zool Sci 24:1086–1093CrossRefPubMed
27.
go back to reference Nakakura T, Soda A, Unno K, Suzuki M, Tanaka S (2010) Expression of IGFBP7 mRNA in corticotrophs in the anterior pituitary of adrenalectomized rats. J Histochem Cytochem 58:969–978CrossRefPubMedPubMedCentral Nakakura T, Soda A, Unno K, Suzuki M, Tanaka S (2010) Expression of IGFBP7 mRNA in corticotrophs in the anterior pituitary of adrenalectomized rats. J Histochem Cytochem 58:969–978CrossRefPubMedPubMedCentral
28.
go back to reference Hagiwara H, Aoki T, Fujimoto T (1997) Ultrastructural observation on ‘transitional tubules’ in human oviductal ciliogenic cells. J Anat 191:285–290CrossRefPubMedPubMedCentral Hagiwara H, Aoki T, Fujimoto T (1997) Ultrastructural observation on ‘transitional tubules’ in human oviductal ciliogenic cells. J Anat 191:285–290CrossRefPubMedPubMedCentral
29.
go back to reference Hagiwara H, Harada S, Maeda S, Aoki T, Ohwada N, Takata K (2002) Ultrastructural and immunohistochemical study of the basal apparatus of solitary cilia in the human oviduct epithelium. J Anat 200:89–96CrossRefPubMedPubMedCentral Hagiwara H, Harada S, Maeda S, Aoki T, Ohwada N, Takata K (2002) Ultrastructural and immunohistochemical study of the basal apparatus of solitary cilia in the human oviduct epithelium. J Anat 200:89–96CrossRefPubMedPubMedCentral
30.
go back to reference Nakada T, Hagino-Yamagishi K, Nakanishi K, Yokosuka M, Saito TR, Toyoda F, Hasunuma I, Nakakura T, Kikuyama S (2014) Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs. J Comp Neurol 522:3501–3519CrossRefPubMed Nakada T, Hagino-Yamagishi K, Nakanishi K, Yokosuka M, Saito TR, Toyoda F, Hasunuma I, Nakakura T, Kikuyama S (2014) Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs. J Comp Neurol 522:3501–3519CrossRefPubMed
31.
go back to reference Abe H, Oikawa T (1993) Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases. Anat Rec 235:399–410CrossRefPubMed Abe H, Oikawa T (1993) Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases. Anat Rec 235:399–410CrossRefPubMed
32.
go back to reference Abe H, Hoshi H (2007) Regional and cyclic variations in the ultrastructural features of secretory cells in the oviductal epithelium of the chinese meishan pig. Reprod Domest Anim 42:292–298CrossRefPubMed Abe H, Hoshi H (2007) Regional and cyclic variations in the ultrastructural features of secretory cells in the oviductal epithelium of the chinese meishan pig. Reprod Domest Anim 42:292–298CrossRefPubMed
33.
go back to reference Steinhauer N, Boos A, Günzel-Apel AR (2004) Morphological changes and proliferative activity in the oviductal epithelium during hormonally defined stages of the oestrous cycle in the bitch. Reprod Domest Anim 39:110–119CrossRefPubMed Steinhauer N, Boos A, Günzel-Apel AR (2004) Morphological changes and proliferative activity in the oviductal epithelium during hormonally defined stages of the oestrous cycle in the bitch. Reprod Domest Anim 39:110–119CrossRefPubMed
35.
go back to reference Zhang Q, Taulman PD, Yoder BK (2004) Cystic kidney diseases: all roads lead to the cilium. Physiology 19:225–230CrossRefPubMed Zhang Q, Taulman PD, Yoder BK (2004) Cystic kidney diseases: all roads lead to the cilium. Physiology 19:225–230CrossRefPubMed
37.
go back to reference Wang J, Deretic D (2014) Molecular complexes that direct rhodopsin transport to primary cilia. Prog Retin Eye Res 38:1–19CrossRefPubMed Wang J, Deretic D (2014) Molecular complexes that direct rhodopsin transport to primary cilia. Prog Retin Eye Res 38:1–19CrossRefPubMed
39.
go back to reference Smith T, Spitzbarth B, Li J, Dugger D, Stern-Schneider G, Sehn E, Bolch S, McDowell JH, Tipton J, Wolfrum U, Smith WC (2013) Light-dependent phosphorylation of Bardet-Biedl syndrome 5 in photoreceptor cells modulates its interaction with arrestin1. Cell Mol Life Sci 70:4603–4616CrossRefPubMed Smith T, Spitzbarth B, Li J, Dugger D, Stern-Schneider G, Sehn E, Bolch S, McDowell JH, Tipton J, Wolfrum U, Smith WC (2013) Light-dependent phosphorylation of Bardet-Biedl syndrome 5 in photoreceptor cells modulates its interaction with arrestin1. Cell Mol Life Sci 70:4603–4616CrossRefPubMed
40.
go back to reference Reidel B, Goldmann T, Giessl A, Wolfrum U (2008) The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton. Cell Motil Cytoskeleton 65:785–800CrossRefPubMed Reidel B, Goldmann T, Giessl A, Wolfrum U (2008) The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton. Cell Motil Cytoskeleton 65:785–800CrossRefPubMed
41.
go back to reference Karam A, Tebbe L, Weber C, Messaddeq N, Morlé L, Kessler P, Wolfrum U, Trottier Y (2015) A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington’s disease mice. Neurobiol Dis 80:15–28CrossRefPubMed Karam A, Tebbe L, Weber C, Messaddeq N, Morlé L, Kessler P, Wolfrum U, Trottier Y (2015) A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington’s disease mice. Neurobiol Dis 80:15–28CrossRefPubMed
42.
go back to reference Parab S, Shetty O, Gaonkar R, Balasinor N, Khole V, Parte P (2015) HDAC6 deacetylates alpha tubulin in sperm and modulates sperm motility in Holtzman rat. Cell Tissue Res 359:665–678CrossRefPubMed Parab S, Shetty O, Gaonkar R, Balasinor N, Khole V, Parte P (2015) HDAC6 deacetylates alpha tubulin in sperm and modulates sperm motility in Holtzman rat. Cell Tissue Res 359:665–678CrossRefPubMed
Metadata
Title
Intracellular localization of α-tubulin acetyltransferase ATAT1 in rat ciliated cells
Authors
Takashi Nakakura
Takeshi Suzuki
Takahiro Nemoto
Hideyuki Tanaka
Anshin Asano-Hoshino
Kenjiro Arisawa
Yoshimi Nishijima
Yoshiko Kiuchi
Haruo Hagiwara
Publication date
01-09-2016
Publisher
Springer Japan
Published in
Medical Molecular Morphology / Issue 3/2016
Print ISSN: 1860-1480
Electronic ISSN: 1860-1499
DOI
https://doi.org/10.1007/s00795-015-0132-1

Other articles of this Issue 3/2016

Medical Molecular Morphology 3/2016 Go to the issue