Skip to main content
Top
Published in: Clinical Oral Investigations 2/2015

01-03-2015 | Original Article

Shotgun proteomics analysis of proliferating STRO-1-positive human dental pulp cell after exposure to nacreous water-soluble matrix

Authors: Titikan Laothumthut, Jeeraphat Jantarat, Atchara Paemanee, Sittiruk Roytrakul, Panjit Chunhabundit

Published in: Clinical Oral Investigations | Issue 2/2015

Login to get access

Abstract

Introduction

For dental treatment, dentin regeneration is required after a tooth injury with dental pulp exposure. The effects of the water-soluble matrix (WSM) extracted from the nacreous layer of the bivalve Pinctada maxima on human dental pulp cells in vitro were challenging and useful for clinical application.

Material and methods

The biological activity of the STRO-1-positive human dental pulp cells in response to WSM compared to Dulbecco’s modified Eagle medium (DMEM) as a normal control was monitored. The cell survival rate was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Proteomic profiles among inducers and noninducers with time dependency were compared by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis combined with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS).

Results

The human dental pulp cells cultured in nacreous WSM exhibited higher relative cell viability than those in DMEM with similar morphological appearance. Significant changes were found in the relative abundance of 44 proteins in cells after exposure to WSM for 2 weeks. They play a role in cell adhesion, cell proliferation, metabolic process, signal transduction, stress response, transcription, translation, and transport.

Conclusion

These results indicate that WSM of P. maxima has the ability to induce proliferation of human dental pulp cells.

Clinical relevance

This finding initiated the study to evaluate the suitability of nacre as biomaterial for dentistry.
Literature
1.
go back to reference Murray PE, Garcia-Godoy F, Hargreaves KM (2007) Regenerative endodontics: a review of current status and a call for action. J Endod 33:377–390CrossRefPubMed Murray PE, Garcia-Godoy F, Hargreaves KM (2007) Regenerative endodontics: a review of current status and a call for action. J Endod 33:377–390CrossRefPubMed
2.
go back to reference Nakashima M, Reddi AH (2003) The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 21:1025–1032CrossRefPubMed Nakashima M, Reddi AH (2003) The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 21:1025–1032CrossRefPubMed
3.
go back to reference Nakashima M, Mizunuma K, Murakami T, Akamine A (2002) Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther 9:814–818CrossRefPubMed Nakashima M, Mizunuma K, Murakami T, Akamine A (2002) Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther 9:814–818CrossRefPubMed
4.
go back to reference Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704CrossRefPubMed Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704CrossRefPubMed
5.
go back to reference Yang X, van den Dolder J, Walboomers XF, Zhang W, Bian Z, Fan M et al (2007) The odontogenic potential of STRO-1 sorted rat dental pulp stem cells in vitro. J Tissue Eng Regen Med 1:66–73CrossRefPubMed Yang X, van den Dolder J, Walboomers XF, Zhang W, Bian Z, Fan M et al (2007) The odontogenic potential of STRO-1 sorted rat dental pulp stem cells in vitro. J Tissue Eng Regen Med 1:66–73CrossRefPubMed
6.
go back to reference Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31:711–718CrossRefPubMed Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31:711–718CrossRefPubMed
7.
go back to reference Lee SK, Lee SK, Lee SI, Park JH, Jang JH, Kim HW, Kim EC (2010) Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J Endod 36:1537–1542CrossRefPubMed Lee SK, Lee SK, Lee SI, Park JH, Jang JH, Kim HW, Kim EC (2010) Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J Endod 36:1537–1542CrossRefPubMed
8.
go back to reference Akkouch A, Zhang Z, Rouabhia M (2014) Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-ε-caprolactone) scaffold. J Biomater Appl 28:922–936CrossRefPubMed Akkouch A, Zhang Z, Rouabhia M (2014) Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-ε-caprolactone) scaffold. J Biomater Appl 28:922–936CrossRefPubMed
9.
go back to reference Fricain JC, Bareille R, Ulysse F, Dupuy B, Amedee J (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite of calcite form. J Biomed Mater Res 42:96–102CrossRefPubMed Fricain JC, Bareille R, Ulysse F, Dupuy B, Amedee J (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite of calcite form. J Biomed Mater Res 42:96–102CrossRefPubMed
10.
go back to reference Oaki Y, Imai H (2005) The hierarchical architecture of nacre and its mimetic material. Angew Chem Int Ed 44:6571–6575CrossRef Oaki Y, Imai H (2005) The hierarchical architecture of nacre and its mimetic material. Angew Chem Int Ed 44:6571–6575CrossRef
11.
go back to reference Weiner S, Hood L (1975) Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 190:987–989CrossRefPubMed Weiner S, Hood L (1975) Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 190:987–989CrossRefPubMed
12.
go back to reference Bedouet L, Marie A, Dubost L, Peduzzi J, Duplat D, Berland S, Puisségur M, Boulzaguet H, Rousseau M, Milet C, Lopez E (2007) Proteomics analysis of the nacre soluble and insoluble proteins from the oyster Pinctada margaritifera. Mar Biotechnol 9:638–649CrossRefPubMed Bedouet L, Marie A, Dubost L, Peduzzi J, Duplat D, Berland S, Puisségur M, Boulzaguet H, Rousseau M, Milet C, Lopez E (2007) Proteomics analysis of the nacre soluble and insoluble proteins from the oyster Pinctada margaritifera. Mar Biotechnol 9:638–649CrossRefPubMed
13.
go back to reference Rousseau M, Pereira-Mouriès L, Almeida MJ, Milet C, Lopez E (2003) The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 135:1–7PubMed Rousseau M, Pereira-Mouriès L, Almeida MJ, Milet C, Lopez E (2003) The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 135:1–7PubMed
14.
go back to reference Bédouet L, Schuller MJ, Marin F, Milet C, Lopez E, Giraud M (2001) Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. Comp Biochem Physiol B 128:389–400CrossRefPubMed Bédouet L, Schuller MJ, Marin F, Milet C, Lopez E, Giraud M (2001) Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. Comp Biochem Physiol B 128:389–400CrossRefPubMed
15.
go back to reference Pereira-Mourié L, Almeida MJ, Ribeiro C, Peuzzi J, Barthélemy M, Milet C, Lopez E (2002) Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. Eur J Biochem 269:4994–5003CrossRef Pereira-Mourié L, Almeida MJ, Ribeiro C, Peuzzi J, Barthélemy M, Milet C, Lopez E (2002) Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. Eur J Biochem 269:4994–5003CrossRef
16.
go back to reference Lopez E, Vidal B, Berland S, Camprasse S, Camprasse G, Silve C (1992) Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 24:667–679CrossRefPubMed Lopez E, Vidal B, Berland S, Camprasse S, Camprasse G, Silve C (1992) Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 24:667–679CrossRefPubMed
17.
go back to reference Atlan G, Balmain N, Berland S, Vidal B, Lopez E (1997) Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. C R Acad Sci III 320:253–258CrossRefPubMed Atlan G, Balmain N, Berland S, Vidal B, Lopez E (1997) Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. C R Acad Sci III 320:253–258CrossRefPubMed
18.
go back to reference Asvanund P, Chunhabundit P, Suddhasthira T (2011) Potential induction of bone regeneration by nacre: an in vitro study. Implant Dent 20:32–39CrossRefPubMed Asvanund P, Chunhabundit P, Suddhasthira T (2011) Potential induction of bone regeneration by nacre: an in vitro study. Implant Dent 20:32–39CrossRefPubMed
19.
go back to reference Asvanund P, Chunhabundit P (2012) Alveolar bone regeneration by implantation of nacre and B-tricalcium phosphate in guinea pig. Implant Dent 21:248–253CrossRefPubMed Asvanund P, Chunhabundit P (2012) Alveolar bone regeneration by implantation of nacre and B-tricalcium phosphate in guinea pig. Implant Dent 21:248–253CrossRefPubMed
20.
go back to reference Mossmann T (1983) Rapid colorimetric assay for cellular growth and survival. Application to proliferation and cytotoxic assays. J Immunol Methods 65:55–63CrossRef Mossmann T (1983) Rapid colorimetric assay for cellular growth and survival. Application to proliferation and cytotoxic assays. J Immunol Methods 65:55–63CrossRef
21.
go back to reference Lowry OH, Rosbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed Lowry OH, Rosbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed
22.
go back to reference Helmut B, Hildburg B, Hans JG (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99CrossRef Helmut B, Hildburg B, Hans JG (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99CrossRef
23.
go back to reference Terry DE, Umstot E, Desiderio DM (2004) Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests. J Am Soc Mass Spectrom 15:784–794CrossRefPubMed Terry DE, Umstot E, Desiderio DM (2004) Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests. J Am Soc Mass Spectrom 15:784–794CrossRefPubMed
24.
go back to reference Thorsell A, Portelius E, Blennow K, Westman BA (2007) Evaluation of sample fractionation using microscale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. Rapid Commun Mass Spectrom 21:771–778CrossRefPubMed Thorsell A, Portelius E, Blennow K, Westman BA (2007) Evaluation of sample fractionation using microscale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. Rapid Commun Mass Spectrom 21:771–778CrossRefPubMed
25.
go back to reference Johansson C, Samskog J, Sundstrom L, Wadensten H, Bjorkesten L, Flensburg J (2006) Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics 6:4475–4485CrossRefPubMed Johansson C, Samskog J, Sundstrom L, Wadensten H, Bjorkesten L, Flensburg J (2006) Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics 6:4475–4485CrossRefPubMed
26.
go back to reference Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567CrossRefPubMed Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567CrossRefPubMed
27.
go back to reference Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, von Mering C, Jensen LJ, Bork P (2014) STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res 42:D401–D407CrossRefPubMedCentralPubMed Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, von Mering C, Jensen LJ, Bork P (2014) STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res 42:D401–D407CrossRefPubMedCentralPubMed
28.
go back to reference Mouries LP, Almeida MJ, Milet C, Berland S, Lopez E (2002) Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 132:217–229CrossRefPubMed Mouries LP, Almeida MJ, Milet C, Berland S, Lopez E (2002) Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 132:217–229CrossRefPubMed
29.
go back to reference Zhu Q, Fan M, Blan Z, Chen Z, Zhang Q, Peng B (2000) In situ hybridization analysis of transforming growth factor-beta 1 RNA expression during mouse tooth development. Clin J Dent Res 3:21–25 Zhu Q, Fan M, Blan Z, Chen Z, Zhang Q, Peng B (2000) In situ hybridization analysis of transforming growth factor-beta 1 RNA expression during mouse tooth development. Clin J Dent Res 3:21–25
30.
go back to reference Sassá Benedeta AP, Sobral AP, Lima DM, Kamibeppu L, Soares FA, Lourenco SV (2008) Expression of transforming growth factor-beta 1, −beta 2, and -beta3 in human developing teeth: immunolocalization according to the odontogenesis phases. Pediatr Dev Pathol 11:206–212CrossRef Sassá Benedeta AP, Sobral AP, Lima DM, Kamibeppu L, Soares FA, Lourenco SV (2008) Expression of transforming growth factor-beta 1, −beta 2, and -beta3 in human developing teeth: immunolocalization according to the odontogenesis phases. Pediatr Dev Pathol 11:206–212CrossRef
31.
go back to reference Melin M, Joffre-Romeas A, Faeges JC, Couble ML, Magloire H, Bleicher F (2000) Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res 79:1689–1696CrossRefPubMed Melin M, Joffre-Romeas A, Faeges JC, Couble ML, Magloire H, Bleicher F (2000) Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res 79:1689–1696CrossRefPubMed
32.
go back to reference Kettunen P, Karavanova I, Thesleff I (1998) Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, −2, −3, and FGFR4; and stimulation of cell proliferation by FGF-2, −4, −8, and −9. Dev Genet 22:374–385CrossRefPubMed Kettunen P, Karavanova I, Thesleff I (1998) Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, −2, −3, and FGFR4; and stimulation of cell proliferation by FGF-2, −4, −8, and −9. Dev Genet 22:374–385CrossRefPubMed
33.
go back to reference Nie X, Tian W, Zhang Y, Chen X, Dong R, Jiang M, Chen F, Jin Y (2006) Induction of transforming growth factor-beta 1 on dentine pulp cells in different culture patterns. Cell Biol Int 30:295–300CrossRefPubMed Nie X, Tian W, Zhang Y, Chen X, Dong R, Jiang M, Chen F, Jin Y (2006) Induction of transforming growth factor-beta 1 on dentine pulp cells in different culture patterns. Cell Biol Int 30:295–300CrossRefPubMed
34.
go back to reference Burbelo PD, Miyamoto S, Utani A, Brill S, Yamada KM, Hall A, Yamada Y (1995) p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking. J Biol Chem 270:30919–30926CrossRefPubMed Burbelo PD, Miyamoto S, Utani A, Brill S, Yamada KM, Hall A, Yamada Y (1995) p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking. J Biol Chem 270:30919–30926CrossRefPubMed
35.
go back to reference Honda JY, Kobayashi I, Kiyoshima T, Yamaza H, Xie M, Takahashi K, Enoki N, Nagata K, Nakashima A, Sakai H (2008) Glycolytic enzyme Pgk1 is strongly expressed in the developing tooth germ of the mouse lower first molar. Histol Histopathol 23:423–432PubMed Honda JY, Kobayashi I, Kiyoshima T, Yamaza H, Xie M, Takahashi K, Enoki N, Nagata K, Nakashima A, Sakai H (2008) Glycolytic enzyme Pgk1 is strongly expressed in the developing tooth germ of the mouse lower first molar. Histol Histopathol 23:423–432PubMed
36.
go back to reference Shichijo S, Azuma K, Komatsu N, Ito M, Maeda Y, Ishihara Y, Itoh K (2004) Two proliferation-related proteins, TYMS and PGK1, could be new cytotoxic T lymphocyte-directed tumor-associated antigens of HLA-A2+ colon cancer. Clin Cancer Res 10:5828–5836CrossRefPubMed Shichijo S, Azuma K, Komatsu N, Ito M, Maeda Y, Ishihara Y, Itoh K (2004) Two proliferation-related proteins, TYMS and PGK1, could be new cytotoxic T lymphocyte-directed tumor-associated antigens of HLA-A2+ colon cancer. Clin Cancer Res 10:5828–5836CrossRefPubMed
37.
go back to reference Wang J, Ying G, Wang J, Jung Y, Lu J, Zhu J, Pienta KJ, Taichman RS (2010) Characterization of PGK1 expression by stromal cells derived from the tumor microenvironment in prostate cancer progression. Cancer Res 15:471–480CrossRef Wang J, Ying G, Wang J, Jung Y, Lu J, Zhu J, Pienta KJ, Taichman RS (2010) Characterization of PGK1 expression by stromal cells derived from the tumor microenvironment in prostate cancer progression. Cancer Res 15:471–480CrossRef
38.
go back to reference Saad FA, Hofstaetter JG (2011) Proteomic analysis of mineralizing osteoblasts identifies novel genes related to bone matrix mineralization. Int Orthop 22:447–451CrossRef Saad FA, Hofstaetter JG (2011) Proteomic analysis of mineralizing osteoblasts identifies novel genes related to bone matrix mineralization. Int Orthop 22:447–451CrossRef
Metadata
Title
Shotgun proteomics analysis of proliferating STRO-1-positive human dental pulp cell after exposure to nacreous water-soluble matrix
Authors
Titikan Laothumthut
Jeeraphat Jantarat
Atchara Paemanee
Sittiruk Roytrakul
Panjit Chunhabundit
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Clinical Oral Investigations / Issue 2/2015
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-014-1256-8

Other articles of this Issue 2/2015

Clinical Oral Investigations 2/2015 Go to the issue