Skip to main content
Top
Published in: Clinical Oral Investigations 2/2015

01-03-2015 | Original Article

Azithromycin suppresses P. gingivalis LPS-induced pro-inflammatory cytokine and chemokine production by human gingival fibroblasts in vitro

Authors: C. J. Doyle, T. R. Fitzsimmons, C. Marchant, A. A. S. S. K. Dharmapatni, R. Hirsch, P. M. Bartold

Published in: Clinical Oral Investigations | Issue 2/2015

Login to get access

Abstract

Objective

Azithromycin is a macrolide antibiotic that appears to have both antibacterial and anti-inflammatory properties. This study aimed to investigate the effect of azithromycin on the production of pro-inflammatory cytokines and chemokines by human gingival fibroblasts (HGF) in vitro.

Materials and methods

The effects of azithromycin (0.1 to 10 μg/mL) on the production of interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), and growth-regulated oncogene (GRO) by human gingival fibroblasts cultured in the presence or absence of Porphyromonas gingivalis lipopolysaccharide (LPS) was studied. Cytokine and chemokine protein levels in the culture supernatant were assessed using a Luminex® multiplex immunoassay.

Results

P. gingivalis LPS induced cytokine/chemokine (IL-6, IL-8, MCP-1, and GRO) protein production in HGFs, and this effect was suppressed by azithromycin at all concentrations tested.

Conclusions

This study demonstrates that azithromycin suppresses P. gingivalis LPS-induced cytokine/chemokine protein production in HGF, which may explain some of the clinical benefits observed with the adjunctive use of azithromycin in the treatment of periodontitis.

Clinical relevance

The current study examines the anti-inflammatory properties of azithromycin which may make it useful as an adjunct treatment to periodontitis. Specifically, we used azithromycin to modulate the production of pro-inflammatory cytokines by gingival fibroblasts known to be important in periodontal inflammation.
Literature
1.
2.
go back to reference Greenstein G (1992) Periodontal response to mechanical non-surgical therapy: a review. J Periodontol 63:118–130CrossRefPubMed Greenstein G (1992) Periodontal response to mechanical non-surgical therapy: a review. J Periodontol 63:118–130CrossRefPubMed
3.
go back to reference Drisko CH (2001) Nonsurgical periodontal therapy. Periodontol 2000(25):77–88CrossRef Drisko CH (2001) Nonsurgical periodontal therapy. Periodontol 2000(25):77–88CrossRef
4.
go back to reference Gomi K, Yashima A, Nagano T, Kanazashi M, Maeda N, Arai T (2007) Effects of full-mouth scaling and root planing in conjunction with systemically administered azithromycin. J Periodontol 78:422–429CrossRefPubMed Gomi K, Yashima A, Nagano T, Kanazashi M, Maeda N, Arai T (2007) Effects of full-mouth scaling and root planing in conjunction with systemically administered azithromycin. J Periodontol 78:422–429CrossRefPubMed
5.
go back to reference Heitz-Mayfield LJ (2009) Systemic antibiotics in periodontal therapy. Aust Dent J 54(Suppl 1):S96–S101CrossRefPubMed Heitz-Mayfield LJ (2009) Systemic antibiotics in periodontal therapy. Aust Dent J 54(Suppl 1):S96–S101CrossRefPubMed
6.
go back to reference Preshaw PM (2008) Host response modulation in periodontics. Periodontol 2000(48):92–110CrossRef Preshaw PM (2008) Host response modulation in periodontics. Periodontol 2000(48):92–110CrossRef
7.
go back to reference Pajukanta R (1993) In vitro antimicrobial susceptibility of Porphyromonas gingivalis to azithromycin, a novel macrolide. Oral Microbiol Immunol 8:325–326CrossRefPubMed Pajukanta R (1993) In vitro antimicrobial susceptibility of Porphyromonas gingivalis to azithromycin, a novel macrolide. Oral Microbiol Immunol 8:325–326CrossRefPubMed
8.
go back to reference Pajukanta R, Asikainen S, Saarela M, Alaluusua S, Jousimies-Somer H (1992) In vitro activity of azithromycin compared with that of erythromycin against Actinobacillus actinomycetemcomitans. Antimicrob Agents Chemother 36:1241–1243CrossRefPubMedCentralPubMed Pajukanta R, Asikainen S, Saarela M, Alaluusua S, Jousimies-Somer H (1992) In vitro activity of azithromycin compared with that of erythromycin against Actinobacillus actinomycetemcomitans. Antimicrob Agents Chemother 36:1241–1243CrossRefPubMedCentralPubMed
9.
go back to reference Bartold PM, du Bois AH, Gannon S, Haynes DR, Hirsch RS (2013) Antibacterial and immunomodulatory properties of azithromycin treatment implications for periodontitis. Inflammopharmacology 21:321–338CrossRefPubMed Bartold PM, du Bois AH, Gannon S, Haynes DR, Hirsch RS (2013) Antibacterial and immunomodulatory properties of azithromycin treatment implications for periodontitis. Inflammopharmacology 21:321–338CrossRefPubMed
10.
go back to reference Hirsch R, Deng H, Laohachai MN (2012) Azithromycin in periodontal treatment: more than an antibiotic. J Periodontal Res 47:137–148CrossRefPubMed Hirsch R, Deng H, Laohachai MN (2012) Azithromycin in periodontal treatment: more than an antibiotic. J Periodontal Res 47:137–148CrossRefPubMed
11.
go back to reference Muniz FW, de Oliveira CC, de Sousa CR, Moreira MM, de Moraes ME, Martins RS (2013) Azithromycin: a new concept in adjuvant treatment of periodontitis. Eur J Pharmacol 705:135–139CrossRefPubMed Muniz FW, de Oliveira CC, de Sousa CR, Moreira MM, de Moraes ME, Martins RS (2013) Azithromycin: a new concept in adjuvant treatment of periodontitis. Eur J Pharmacol 705:135–139CrossRefPubMed
12.
go back to reference Hirsch R (2010) Periodontal healing and bone regeneration in response to azithromycin. Aust Dent J 55:193–199CrossRefPubMed Hirsch R (2010) Periodontal healing and bone regeneration in response to azithromycin. Aust Dent J 55:193–199CrossRefPubMed
13.
go back to reference Schmidt EF, Bretz WA (2007) Benefits of additional courses of systemic azithromycin in periodontal disease case report. N Y State Dent J 73:40–45PubMed Schmidt EF, Bretz WA (2007) Benefits of additional courses of systemic azithromycin in periodontal disease case report. N Y State Dent J 73:40–45PubMed
14.
go back to reference Altenburg J, de Graaff CS, van der Werf TS, Boersma WG (2011) Immunomodulatory effects of macrolide antibiotics—part 1: biological mechanisms. Respir Int Rev Thorac Dis 81:67–74 Altenburg J, de Graaff CS, van der Werf TS, Boersma WG (2011) Immunomodulatory effects of macrolide antibiotics—part 1: biological mechanisms. Respir Int Rev Thorac Dis 81:67–74
15.
go back to reference Kudoh S, Uetake T, Hagiwara K, Hirayama M, Hus LH, Kimura H, Sugiyama Y (1987) Clinical effects of low-dose long-term erythromycin chemotherapy on diffuse panbronchiolitis. Nihon Kyobu Shikkan Gakkai Zasshi 25:632–642PubMed Kudoh S, Uetake T, Hagiwara K, Hirayama M, Hus LH, Kimura H, Sugiyama Y (1987) Clinical effects of low-dose long-term erythromycin chemotherapy on diffuse panbronchiolitis. Nihon Kyobu Shikkan Gakkai Zasshi 25:632–642PubMed
16.
go back to reference Bartold PM, Van Dyke TE (2013) Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol 2000(62):203–217CrossRef Bartold PM, Van Dyke TE (2013) Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol 2000(62):203–217CrossRef
17.
go back to reference Kamemoto A, Ara T, Hattori T, Fujinami Y, Imamura Y, Wang PL (2009) Macrolide antibiotics like azithromycin increase lipopolysaccharide-induced IL-8 production by human gingival fibroblasts. Eur J Med Res 14:309–314CrossRefPubMedCentralPubMed Kamemoto A, Ara T, Hattori T, Fujinami Y, Imamura Y, Wang PL (2009) Macrolide antibiotics like azithromycin increase lipopolysaccharide-induced IL-8 production by human gingival fibroblasts. Eur J Med Res 14:309–314CrossRefPubMedCentralPubMed
18.
go back to reference Gannon SC, Cantley MD, Haynes DR, Hirsch R, Bartold PM (2013) Azithromycin suppresses human osteoclast formation and activity in vitro. J Cell Physiol 228:1098–1107CrossRefPubMed Gannon SC, Cantley MD, Haynes DR, Hirsch R, Bartold PM (2013) Azithromycin suppresses human osteoclast formation and activity in vitro. J Cell Physiol 228:1098–1107CrossRefPubMed
19.
go back to reference Takashiba S, Naruishi K, Murayama Y (2003) Perspective of cytokine regulation for periodontal treatment: fibroblast biology. J Periodontol 74:103–110CrossRefPubMed Takashiba S, Naruishi K, Murayama Y (2003) Perspective of cytokine regulation for periodontal treatment: fibroblast biology. J Periodontol 74:103–110CrossRefPubMed
20.
go back to reference Scheres N, Laine ML, de Vries TJ, Everts V, van Winkelhoff AJ (2010) Gingival and periodontal ligament fibroblasts differ in their inflammatory response to viable Porphyromonas gingivalis. J Periodontal Res 45:262–270CrossRefPubMed Scheres N, Laine ML, de Vries TJ, Everts V, van Winkelhoff AJ (2010) Gingival and periodontal ligament fibroblasts differ in their inflammatory response to viable Porphyromonas gingivalis. J Periodontal Res 45:262–270CrossRefPubMed
21.
go back to reference Morandini AC, Sipert CR, Gasparoto TH, Greghi SL, Passanezi E, Rezende ML, Sant’ana AP, Campanelli AP, Garlet GP, Santos CF (2010) Differential production of macrophage inflammatory protein-1alpha, stromal-derived factor-1, and IL-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide from P. gingivalis. J Periodontol 81:310–317CrossRefPubMed Morandini AC, Sipert CR, Gasparoto TH, Greghi SL, Passanezi E, Rezende ML, Sant’ana AP, Campanelli AP, Garlet GP, Santos CF (2010) Differential production of macrophage inflammatory protein-1alpha, stromal-derived factor-1, and IL-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide from P. gingivalis. J Periodontol 81:310–317CrossRefPubMed
22.
go back to reference Ara T, Kurata K, Hirai K, Uchihashi T, Uematsu T, Imamura Y, Furusawa K, Kurihara S, Wang PL (2009) Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res 44:21–27CrossRefPubMed Ara T, Kurata K, Hirai K, Uchihashi T, Uematsu T, Imamura Y, Furusawa K, Kurihara S, Wang PL (2009) Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res 44:21–27CrossRefPubMed
23.
go back to reference Jonsson D, Amisten S, Bratthall G, Holm A, Nilsson BO (2009) LPS induces GROalpha chemokine production via NF-kappaB in oral fibroblasts. Inflamm Res 58:791–796CrossRefPubMed Jonsson D, Amisten S, Bratthall G, Holm A, Nilsson BO (2009) LPS induces GROalpha chemokine production via NF-kappaB in oral fibroblasts. Inflamm Res 58:791–796CrossRefPubMed
24.
go back to reference Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303PubMed Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T et al (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303PubMed
25.
go back to reference Wada N, Maeda H, Yoshimine Y, Akamine A (2004) Lipopolysaccharide stimulates expression of osteoprotegerin and receptor activator of NF-kappa B ligand in periodontal ligament fibroblasts through the induction of interleukin-1 beta and tumor necrosis factor-alpha. Bone 35:629–635CrossRefPubMed Wada N, Maeda H, Yoshimine Y, Akamine A (2004) Lipopolysaccharide stimulates expression of osteoprotegerin and receptor activator of NF-kappa B ligand in periodontal ligament fibroblasts through the induction of interleukin-1 beta and tumor necrosis factor-alpha. Bone 35:629–635CrossRefPubMed
26.
go back to reference Mogi M, Otogoto J, Ota N, Inagaki H, Minami M, Kojima K (1999) Interleukin 1 beta, interleukin 6, beta 2-microglobulin, and transforming growth factor-alpha in gingival crevicular fluid from human periodontal disease. Arch Oral Biol 44:535–539CrossRefPubMed Mogi M, Otogoto J, Ota N, Inagaki H, Minami M, Kojima K (1999) Interleukin 1 beta, interleukin 6, beta 2-microglobulin, and transforming growth factor-alpha in gingival crevicular fluid from human periodontal disease. Arch Oral Biol 44:535–539CrossRefPubMed
27.
go back to reference Fitzsimmons TR, Sanders AE, Slade GD, Bartold PM (2009) Biomarkers of periodontal inflammation in the Australian adult population. Aust Dent J 54:115–122CrossRefPubMed Fitzsimmons TR, Sanders AE, Slade GD, Bartold PM (2009) Biomarkers of periodontal inflammation in the Australian adult population. Aust Dent J 54:115–122CrossRefPubMed
28.
go back to reference Yu X, Graves DT (1995) Fibroblasts, mononuclear phagocytes, and endothelial cells express monocyte chemoattractant protein-1 (MCP-1) in inflamed human gingiva. J Periodontol 66:80–88CrossRefPubMed Yu X, Graves DT (1995) Fibroblasts, mononuclear phagocytes, and endothelial cells express monocyte chemoattractant protein-1 (MCP-1) in inflamed human gingiva. J Periodontol 66:80–88CrossRefPubMed
29.
go back to reference Wang PL, Ohura K, Fujii T, Oido-Mori M, Kowashi Y, Kikuchi M, Suetsugu Y, Tanaka J (2003) DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun 305:970–973CrossRefPubMed Wang PL, Ohura K, Fujii T, Oido-Mori M, Kowashi Y, Kikuchi M, Suetsugu Y, Tanaka J (2003) DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun 305:970–973CrossRefPubMed
30.
go back to reference Wada N, Wang B, Lin NH, Laslett AL, Gronthos S, Bartold PM (2011) Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res 46:438–447CrossRefPubMed Wada N, Wang B, Lin NH, Laslett AL, Gronthos S, Bartold PM (2011) Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res 46:438–447CrossRefPubMed
31.
go back to reference Gomi K, Yashima A, Iino F, Kanazashi M, Nagano T, Shibukawa N, Ohshima T, Maeda N, Arai T (2007) Drug concentration in inflamed periodontal tissues after systemically administered azithromycin. J Periodontol 78:918–923CrossRefPubMed Gomi K, Yashima A, Iino F, Kanazashi M, Nagano T, Shibukawa N, Ohshima T, Maeda N, Arai T (2007) Drug concentration in inflamed periodontal tissues after systemically administered azithromycin. J Periodontol 78:918–923CrossRefPubMed
32.
go back to reference Lai PC, Ho W, Jain N, Walters JD (2011) Azithromycin concentrations in blood and gingival crevicular fluid after systemic administration. J Periodontol 82:1582–1586CrossRefPubMedCentralPubMed Lai PC, Ho W, Jain N, Walters JD (2011) Azithromycin concentrations in blood and gingival crevicular fluid after systemic administration. J Periodontol 82:1582–1586CrossRefPubMedCentralPubMed
33.
go back to reference Malizia T, Tejada MR, Ghelardi E, Senesi S, Gabriele M, Giuca MR, Blandizzi C, Danesi R, Campa M, Del Tacca M (1997) Periodontal tissue disposition of azithromycin. J Periodontol 68:1206–1209CrossRefPubMed Malizia T, Tejada MR, Ghelardi E, Senesi S, Gabriele M, Giuca MR, Blandizzi C, Danesi R, Campa M, Del Tacca M (1997) Periodontal tissue disposition of azithromycin. J Periodontol 68:1206–1209CrossRefPubMed
35.
go back to reference Ho W, Eubank T, Leblebicioglu B, Marsh C, Walters J (2010) Azithromycin decreases crevicular fluid volume and mediator content. J Dent Res 89:831–835CrossRefPubMedCentralPubMed Ho W, Eubank T, Leblebicioglu B, Marsh C, Walters J (2010) Azithromycin decreases crevicular fluid volume and mediator content. J Dent Res 89:831–835CrossRefPubMedCentralPubMed
36.
go back to reference Matsumura Y, Mitani A, Suga T, Kamiya Y, Kikuchi T, Tanaka S, Aino M, Noguchi T (2011) Azithromycin may inhibit interleukin-8 through suppression of Rac1 and a nuclear factor-kappa B pathway in KB cells stimulated with lipopolysaccharide. J Periodontol 82:1623–1631CrossRefPubMed Matsumura Y, Mitani A, Suga T, Kamiya Y, Kikuchi T, Tanaka S, Aino M, Noguchi T (2011) Azithromycin may inhibit interleukin-8 through suppression of Rac1 and a nuclear factor-kappa B pathway in KB cells stimulated with lipopolysaccharide. J Periodontol 82:1623–1631CrossRefPubMed
37.
go back to reference Zhou J, Windsor LJ (2007) Heterogeneity in the collagen-degrading ability of Porphyromonas gingivalis-stimulated human gingival fibroblasts. J Periodontal Res 42:77–84CrossRefPubMed Zhou J, Windsor LJ (2007) Heterogeneity in the collagen-degrading ability of Porphyromonas gingivalis-stimulated human gingival fibroblasts. J Periodontal Res 42:77–84CrossRefPubMed
38.
go back to reference Retsema J, Girard A, Schelkly W, Manousos M, Anderson M, Bright G, Borovoy R, Brennan L, Mason R (1987) Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother 31:1939–1947CrossRefPubMedCentralPubMed Retsema J, Girard A, Schelkly W, Manousos M, Anderson M, Bright G, Borovoy R, Brennan L, Mason R (1987) Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother 31:1939–1947CrossRefPubMedCentralPubMed
39.
go back to reference Bartold PM, Narayanan AS (2006) Molecular and cell biology of healthy and diseased periodontal tissues. Periodontol 2000(40):29–49CrossRef Bartold PM, Narayanan AS (2006) Molecular and cell biology of healthy and diseased periodontal tissues. Periodontol 2000(40):29–49CrossRef
Metadata
Title
Azithromycin suppresses P. gingivalis LPS-induced pro-inflammatory cytokine and chemokine production by human gingival fibroblasts in vitro
Authors
C. J. Doyle
T. R. Fitzsimmons
C. Marchant
A. A. S. S. K. Dharmapatni
R. Hirsch
P. M. Bartold
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Clinical Oral Investigations / Issue 2/2015
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-014-1249-7

Other articles of this Issue 2/2015

Clinical Oral Investigations 2/2015 Go to the issue