Skip to main content
Top
Published in: Journal of Neural Transmission 8/2018

01-08-2018 | Neurology and Preclinical Neurological Studies - Review Article

The striatal cholinergic system in l-dopa-induced dyskinesias

Authors: X. A. Perez, T. Bordia, M. Quik

Published in: Journal of Neural Transmission | Issue 8/2018

Login to get access

Abstract

Cholinergic signaling plays a key role in regulating striatal function. The principal source of acetylcholine in the striatum is the cholinergic interneurons which, although low in number, densely arborize to modulate striatal neurotransmission. This modulation occurs via strategically positioned nicotinic and muscarinic acetylcholine receptors that influence striatal dopamine, GABA and other neurotransmitter release. Cholinergic interneurons integrate multiple striatal synaptic inputs and outputs to regulate motor activity under normal physiological conditions. Consequently, an imbalance between these systems is associated with basal ganglia disorders. Here, we provide an overview of how striatal cholinergic interneurons modulate striatal activity under normal and pathological conditions. Numerous studies show that nigrostriatal damage such as that occurs with Parkinson’s disease affects cholinergic receptor-mediated striatal activity. This altered cholinergic signaling is an important contributor to Parkinson’s disease as well as to the dyskinesias that develop with l-dopa therapy, the gold standard for treatment. Indeed, multiple preclinical studies show that cholinergic receptor drugs may be beneficial for the treatment of l-dopa-induced dyskinesias. In this review, we discuss the evidence indicating that therapeutic modulation of the cholinergic system, particularly targeting of nicotinic cholinergic receptors, may offer a novel approach to manage this debilitating side effect of dopamine replacement therapy for Parkinson’s disease.
Literature
go back to reference Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458PubMedCrossRef Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458PubMedCrossRef
go back to reference Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120PubMedPubMedCentralCrossRef Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120PubMedPubMedCentralCrossRef
go back to reference Alcacer C, Andreoli L, Sebastianutto I, Jakobsson J, Fieblinger T, Cenci MA (2017) Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy. J Clin Invest 127:720–734PubMedPubMedCentralCrossRef Alcacer C, Andreoli L, Sebastianutto I, Jakobsson J, Fieblinger T, Cenci MA (2017) Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy. J Clin Invest 127:720–734PubMedPubMedCentralCrossRef
go back to reference Aldrin-Kirk P, Heuer A, Rylander Ottosson D, Davidsson M, Mattsson B, Bjorklund T (2018) Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum. Neurobiol Dis 109:148–162PubMedCrossRef Aldrin-Kirk P, Heuer A, Rylander Ottosson D, Davidsson M, Mattsson B, Bjorklund T (2018) Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum. Neurobiol Dis 109:148–162PubMedCrossRef
go back to reference Aosaki T, Kimura M, Graybiel AM (1995) Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J Neurophysiol 73:1234–1252PubMedCrossRef Aosaki T, Kimura M, Graybiel AM (1995) Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J Neurophysiol 73:1234–1252PubMedCrossRef
go back to reference Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdere P, Ko WK, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bezard E (2015) Pathophysiology of l-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168PubMedCrossRef Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdere P, Ko WK, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bezard E (2015) Pathophysiology of l-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168PubMedCrossRef
go back to reference Bennett BD, Wilson CJ (1998) Synaptic regulation of action potential timing in neostriatal cholinergic interneurons. J Neurosci 18:8539–8549PubMedCrossRef Bennett BD, Wilson CJ (1998) Synaptic regulation of action potential timing in neostriatal cholinergic interneurons. J Neurosci 18:8539–8549PubMedCrossRef
go back to reference Bennett BD, Callaway JC, Wilson CJ (2000) Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci 20:8493–8503PubMedCrossRef Bennett BD, Callaway JC, Wilson CJ (2000) Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J Neurosci 20:8493–8503PubMedCrossRef
go back to reference Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600PubMedCrossRef Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600PubMedCrossRef
go back to reference Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221:564–573PubMedCrossRef Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221:564–573PubMedCrossRef
go back to reference Bolam JP, Wainer BH, Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12:711–718PubMedCrossRef Bolam JP, Wainer BH, Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12:711–718PubMedCrossRef
go back to reference Bordia T, Grady SR, McIntosh JM, Quik M (2007) Nigrostriatal damage preferentially decreases a subpopulation of alpha6beta2* nAChRs in mouse, monkey, and Parkinson’s disease striatum. Mol Pharmacol 72:52–61PubMedCrossRef Bordia T, Grady SR, McIntosh JM, Quik M (2007) Nigrostriatal damage preferentially decreases a subpopulation of alpha6beta2* nAChRs in mouse, monkey, and Parkinson’s disease striatum. Mol Pharmacol 72:52–61PubMedCrossRef
go back to reference Bordia T, Campos C, Huang L, Quik M (2008) Continuous and intermittent nicotine treatment reduces l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesias in a rat model of Parkinson’s disease. J Pharmacol Exp Ther 327:239–247PubMedCrossRef Bordia T, Campos C, Huang L, Quik M (2008) Continuous and intermittent nicotine treatment reduces l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesias in a rat model of Parkinson’s disease. J Pharmacol Exp Ther 327:239–247PubMedCrossRef
go back to reference Bordia T, Campos C, McIntosh JM, Quik M (2010) Nicotinic receptor-mediated reduction in l-DOPA-induced dyskinesias may occur via desensitization. J Pharmacol Exp Ther 333:929–938PubMedPubMedCentralCrossRef Bordia T, Campos C, McIntosh JM, Quik M (2010) Nicotinic receptor-mediated reduction in l-DOPA-induced dyskinesias may occur via desensitization. J Pharmacol Exp Ther 333:929–938PubMedPubMedCentralCrossRef
go back to reference Bordia T, McIntosh JM, Quik M (2013) The nicotine-mediated decline in l-dopa-induced dyskinesias is associated with a decrease in striatal dopamine release. J Neurochem 125:291–302PubMedPubMedCentralCrossRef Bordia T, McIntosh JM, Quik M (2013) The nicotine-mediated decline in l-dopa-induced dyskinesias is associated with a decrease in striatal dopamine release. J Neurochem 125:291–302PubMedPubMedCentralCrossRef
go back to reference Bordia T, McGregor M, McIntosh JM, Drenan RM, Quik M (2015) Evidence for a role for alpha6(*) nAChRs in l-dopa-induced dyskinesias using Parkinsonian alpha6(*) nAChR gain-of-function mice. Neuroscience 295:187–197PubMedPubMedCentralCrossRef Bordia T, McGregor M, McIntosh JM, Drenan RM, Quik M (2015) Evidence for a role for alpha6(*) nAChRs in l-dopa-induced dyskinesias using Parkinsonian alpha6(*) nAChR gain-of-function mice. Neuroscience 295:187–197PubMedPubMedCentralCrossRef
go back to reference Bordia T, Perez XA, Heiss J, Zhang D, Quik M (2016) Optogenetic activation of striatal cholinergic interneurons regulates l-dopa-induced dyskinesias. Neurobiol Dis 91:47–58PubMedPubMedCentralCrossRef Bordia T, Perez XA, Heiss J, Zhang D, Quik M (2016) Optogenetic activation of striatal cholinergic interneurons regulates l-dopa-induced dyskinesias. Neurobiol Dis 91:47–58PubMedPubMedCentralCrossRef
go back to reference Brotchie J (2010) Antidyskinetic actions of amantadine in Parkinson’s disease: are benefits maintained in the long term? Expert Rev Neurother 10:871–873PubMedCrossRef Brotchie J (2010) Antidyskinetic actions of amantadine in Parkinson’s disease: are benefits maintained in the long term? Expert Rev Neurother 10:871–873PubMedCrossRef
go back to reference Cachope R, Mateo Y, Mathur BN, Irving J, Wang HL, Morales M, Lovinger DM, Cheer JF (2012) Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep 2:33–41PubMedPubMedCentralCrossRef Cachope R, Mateo Y, Mathur BN, Irving J, Wang HL, Morales M, Lovinger DM, Cheer JF (2012) Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep 2:33–41PubMedPubMedCentralCrossRef
go back to reference Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (1998) Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. Eur J Neurosci 10:3020–3023PubMedCrossRef Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (1998) Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. Eur J Neurosci 10:3020–3023PubMedCrossRef
go back to reference Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (2000) Acetylcholine-mediated modulation of striatal function. Trends Neurosci 23:120–126PubMedCrossRef Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (2000) Acetylcholine-mediated modulation of striatal function. Trends Neurosci 23:120–126PubMedCrossRef
go back to reference Carrillo-Reid L, Tecuapetla F, Vautrelle N, Hernandez A, Vergara R, Galarraga E, Bargas J (2009) Muscarinic enhancement of persistent sodium current synchronizes striatal medium spiny neurons. J Neurophysiol 102:682–690PubMedCrossRef Carrillo-Reid L, Tecuapetla F, Vautrelle N, Hernandez A, Vergara R, Galarraga E, Bargas J (2009) Muscarinic enhancement of persistent sodium current synchronizes striatal medium spiny neurons. J Neurophysiol 102:682–690PubMedCrossRef
go back to reference Cenci MA, Konradi C (2010) Maladaptive striatal plasticity in l-DOPA-induced dyskinesia. Prog Brain Res 183C:209–233CrossRef Cenci MA, Konradi C (2010) Maladaptive striatal plasticity in l-DOPA-induced dyskinesia. Prog Brain Res 183C:209–233CrossRef
go back to reference Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23:7820–7829PubMedCrossRef Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N, McIntosh JM, Gardier AM, Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23:7820–7829PubMedCrossRef
go back to reference Contant C, Umbriaco D, Garcia S, Watkins KC, Descarries L (1996) Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience 71:937–947PubMedCrossRef Contant C, Umbriaco D, Garcia S, Watkins KC, Descarries L (1996) Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience 71:937–947PubMedCrossRef
go back to reference Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324PubMedCrossRef Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324PubMedCrossRef
go back to reference Darmopil S, Martin AB, De Diego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits l-DOPA-induced dyskinesia and histone activation. Biol Psychiat 66:603–613PubMedCrossRef Darmopil S, Martin AB, De Diego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits l-DOPA-induced dyskinesia and histone activation. Biol Psychiat 66:603–613PubMedCrossRef
go back to reference Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34:4509–4518PubMedPubMedCentralCrossRef Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34:4509–4518PubMedPubMedCentralCrossRef
go back to reference Delfino M, Kalisch R, Czisch M, Larramendy C, Ricatti J, Taravini IR, Trenkwalder C, Murer MG, Auer DP, Gershanik OS (2007) Mapping the effects of three dopamine agonists with different dyskinetogenic potential and receptor selectivity using pharmacological functional magnetic resonance imaging. Neuropsychopharmacology 32:1911–1921PubMedCrossRef Delfino M, Kalisch R, Czisch M, Larramendy C, Ricatti J, Taravini IR, Trenkwalder C, Murer MG, Auer DP, Gershanik OS (2007) Mapping the effects of three dopamine agonists with different dyskinetogenic potential and receptor selectivity using pharmacological functional magnetic resonance imaging. Neuropsychopharmacology 32:1911–1921PubMedCrossRef
go back to reference Di Paolo T, Gregoire L, Feuerbach D, Elbast W, Weiss M, Gomez-Mancilla B (2014) AQW051, a novel and selective nicotinic acetylcholine receptor alpha7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys. Parkinsonism Relat Disord 20:1119–1123PubMedCrossRef Di Paolo T, Gregoire L, Feuerbach D, Elbast W, Weiss M, Gomez-Mancilla B (2014) AQW051, a novel and selective nicotinic acetylcholine receptor alpha7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys. Parkinsonism Relat Disord 20:1119–1123PubMedCrossRef
go back to reference Ding J, Guzman JN, Tkatch T, Chen S, Goldberg JA, Ebert PJ, Levitt P, Wilson CJ, Hamm HE, Surmeier DJ (2006) RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 9:832–842PubMedCrossRef Ding J, Guzman JN, Tkatch T, Chen S, Goldberg JA, Ebert PJ, Levitt P, Wilson CJ, Hamm HE, Surmeier DJ (2006) RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 9:832–842PubMedCrossRef
go back to reference Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307PubMedPubMedCentralCrossRef Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307PubMedPubMedCentralCrossRef
go back to reference Ding Y, Won L, Britt JP, Lim SA, McGehee DS, Kang UJ (2011) Enhanced striatal cholinergic neuronal activity mediates l-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci USA 108:340–345 Ding Y, Won L, Britt JP, Lim SA, McGehee DS, Kang UJ (2011) Enhanced striatal cholinergic neuronal activity mediates l-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci USA 108:340–345
go back to reference Drenan RM, Grady SR, Steele AD, McKinney S, Patzlaff NE, McIntosh JM, Marks MJ, Miwa JM, Lester HA (2010) Cholinergic modulation of locomotion and striatal dopamine release is mediated by alpha6alpha4* nicotinic acetylcholine receptors. J Neurosci 30:9877–9889PubMedPubMedCentralCrossRef Drenan RM, Grady SR, Steele AD, McKinney S, Patzlaff NE, McIntosh JM, Marks MJ, Miwa JM, Lester HA (2010) Cholinergic modulation of locomotion and striatal dopamine release is mediated by alpha6alpha4* nicotinic acetylcholine receptors. J Neurosci 30:9877–9889PubMedPubMedCentralCrossRef
go back to reference Duvoisin RC (1967) Cholinergic-anticholinergic antagonism in parkinsonism. Arch Neurol 17:124–136PubMedCrossRef Duvoisin RC (1967) Cholinergic-anticholinergic antagonism in parkinsonism. Arch Neurol 17:124–136PubMedCrossRef
go back to reference Engeln M, Bastide MF, Toulme E, Dehay B, Bourdenx M, Doudnikoff E, Li Q, Gross CE, Boue-Grabot E, Pisani A, Bezard E, Fernagut PO (2016) Selective inactivation of striatal FosB/DeltaFosB-expressing neurons alleviates l-DOPA-induced dyskinesia. Biol Psychiat 79:354–361PubMedCrossRef Engeln M, Bastide MF, Toulme E, Dehay B, Bourdenx M, Doudnikoff E, Li Q, Gross CE, Boue-Grabot E, Pisani A, Bezard E, Fernagut PO (2016) Selective inactivation of striatal FosB/DeltaFosB-expressing neurons alleviates l-DOPA-induced dyskinesia. Biol Psychiat 79:354–361PubMedCrossRef
go back to reference Exley R, Cragg SJ (2008) Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol 153(Suppl 1):S283–S297PubMed Exley R, Cragg SJ (2008) Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol 153(Suppl 1):S283–S297PubMed
go back to reference Exley R, Clements MA, Hartung H, McIntosh JM, Franklin M, Bermudez I, Cragg SJ (2013) Striatal dopamine transmission is reduced after chronic nicotine with a decrease in alpha6-nicotinic receptor control in nucleus accumbens. Eur J Neurosci 38(7):3036–3643PubMed Exley R, Clements MA, Hartung H, McIntosh JM, Franklin M, Bermudez I, Cragg SJ (2013) Striatal dopamine transmission is reduced after chronic nicotine with a decrease in alpha6-nicotinic receptor control in nucleus accumbens. Eur J Neurosci 38(7):3036–3643PubMed
go back to reference Fino E, Glowinski J, Venance L (2007) Effects of acute dopamine depletion on the electrophysiological properties of striatal neurons. Neurosci Res 58:305–316PubMedCrossRef Fino E, Glowinski J, Venance L (2007) Effects of acute dopamine depletion on the electrophysiological properties of striatal neurons. Neurosci Res 58:305–316PubMedCrossRef
go back to reference Foster DJ, Gentry PR, Lizardi-Ortiz JE, Bridges TM, Wood MR, Niswender CM, Sulzer D, Lindsley CW, Xiang Z, Conn PJ (2014) M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor’s location. J Neurosci 34:3253–3262PubMedPubMedCentralCrossRef Foster DJ, Gentry PR, Lizardi-Ortiz JE, Bridges TM, Wood MR, Niswender CM, Sulzer D, Lindsley CW, Xiang Z, Conn PJ (2014) M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor’s location. J Neurosci 34:3253–3262PubMedPubMedCentralCrossRef
go back to reference Foster DJ, Wilson JM, Remke DH, Mahmood MS, Uddin MJ, Wess J, Patel S, Marnett LJ, Niswender CM, Jones CK, Xiang Z, Lindsley CW, Rook JM, Conn PJ (2016) Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine release. Neuron 91:1244–1252PubMedPubMedCentralCrossRef Foster DJ, Wilson JM, Remke DH, Mahmood MS, Uddin MJ, Wess J, Patel S, Marnett LJ, Niswender CM, Jones CK, Xiang Z, Lindsley CW, Rook JM, Conn PJ (2016) Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine release. Neuron 91:1244–1252PubMedPubMedCentralCrossRef
go back to reference Mather J, Burdette D, Cebers G, Posener J, Alexander R, Leventer S, Ye N, Poole M, Dunlop J, Fox SH, Ravenscroft P, Johnston TH, Hill MP and Brotchie JM (2014) Potential of AZD1446, a novel nicotinic agonist, for the treatment of l-DOPA-induced dyskinesia in Parkinson’s disease. Soc Neurosci Abstr 43:137.111/L131 Mather J, Burdette D, Cebers G, Posener J, Alexander R, Leventer S, Ye N, Poole M, Dunlop J, Fox SH, Ravenscroft P, Johnston TH, Hill MP and Brotchie JM (2014) Potential of AZD1446, a novel nicotinic agonist, for the treatment of l-DOPA-induced dyskinesia in Parkinson’s disease. Soc Neurosci Abstr 43:137.111/L131
go back to reference Galarraga E, Hernandez-Lopez S, Reyes A, Miranda I, Bermudez-Rattoni F, Vilchis C, Bargas J (1999) Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci 19:3629–3638PubMedCrossRef Galarraga E, Hernandez-Lopez S, Reyes A, Miranda I, Bermudez-Rattoni F, Vilchis C, Bargas J (1999) Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci 19:3629–3638PubMedCrossRef
go back to reference Garcia-Montes JR, Boronat-Garcia A, Lopez-Colome AM, Bargas J, Guerra-Crespo M, Drucker-Colin R (2012) Is nicotine protective against Parkinson’s disease? An experimental analysis. CNS Neurol Disord: Drug Targets 11:897–906CrossRef Garcia-Montes JR, Boronat-Garcia A, Lopez-Colome AM, Bargas J, Guerra-Crespo M, Drucker-Colin R (2012) Is nicotine protective against Parkinson’s disease? An experimental analysis. CNS Neurol Disord: Drug Targets 11:897–906CrossRef
go back to reference Gold SJ, Hoang CV, Potts BW, Porras G, Pioli E, Kim KW, Nadjar A, Qin C, LaHoste GJ, Li Q, Bioulac BH, Waugh JL, Gurevich E, Neve RL, Bezard E (2007) RGS9-2 negatively modulates l-3,4-dihydroxyphenylalanine-induced dyskinesia in experimental Parkinson’s disease. J Neurosci 27:14338–14348PubMedCrossRef Gold SJ, Hoang CV, Potts BW, Porras G, Pioli E, Kim KW, Nadjar A, Qin C, LaHoste GJ, Li Q, Bioulac BH, Waugh JL, Gurevich E, Neve RL, Bezard E (2007) RGS9-2 negatively modulates l-3,4-dihydroxyphenylalanine-induced dyskinesia in experimental Parkinson’s disease. J Neurosci 27:14338–14348PubMedCrossRef
go back to reference Goldberg JA, Wilson CJ (2005) Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. J Neurosci 25:10230–10238PubMedPubMedCentralCrossRef Goldberg JA, Wilson CJ (2005) Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. J Neurosci 25:10230–10238PubMedPubMedCentralCrossRef
go back to reference Goldberg JA, Teagarden MA, Foehring RC, Wilson CJ (2009) Nonequilibrium calcium dynamics regulate the autonomous firing pattern of rat striatal cholinergic interneurons. J Neurosci 29:8396–8407PubMedPubMedCentralCrossRef Goldberg JA, Teagarden MA, Foehring RC, Wilson CJ (2009) Nonequilibrium calcium dynamics regulate the autonomous firing pattern of rat striatal cholinergic interneurons. J Neurosci 29:8396–8407PubMedPubMedCentralCrossRef
go back to reference Goldberg JA, Ding JB, Surmeier DJ (2012) Muscarinic modulation of striatal function and circuitry. Handb Exp Pharmacol (208):223–241 Goldberg JA, Ding JB, Surmeier DJ (2012) Muscarinic modulation of striatal function and circuitry. Handb Exp Pharmacol (208):223–241
go back to reference Grady S, Marks MJ, Wonnacott S, Collins AC (1992) Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem 59:848–856PubMedCrossRef Grady S, Marks MJ, Wonnacott S, Collins AC (1992) Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem 59:848–856PubMedCrossRef
go back to reference Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254PubMedCrossRef Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254PubMedCrossRef
go back to reference Gregorio ML, Wietzikoski EC, Ferro MM, Silveira JL, Vital MA, Da Cunha C (2009) Nicotine induces sensitization of turning behavior in 6-hydroxydopamine lesioned rats. Neurotox Res 15:359–366PubMedCrossRef Gregorio ML, Wietzikoski EC, Ferro MM, Silveira JL, Vital MA, Da Cunha C (2009) Nicotine induces sensitization of turning behavior in 6-hydroxydopamine lesioned rats. Neurotox Res 15:359–366PubMedCrossRef
go back to reference Grondin R, Goulet M, Morissette M, Bedard PJ, Di Paolo T (1999) Dopamine D1 receptor mRNA and receptor levels in the striatum of MPTP monkeys chronically treated with SKF-82958. Eur J Pharmacol 378:259–263PubMedCrossRef Grondin R, Goulet M, Morissette M, Bedard PJ, Di Paolo T (1999) Dopamine D1 receptor mRNA and receptor levels in the striatum of MPTP monkeys chronically treated with SKF-82958. Eur J Pharmacol 378:259–263PubMedCrossRef
go back to reference Hernandez-Flores T, Hernandez-Gonzalez O, Perez-Ramirez MB, Lara-Gonzalez E, Arias-Garcia MA, Duhne M, Perez-Burgos A, Prieto GA, Figueroa A, Galarraga E, Bargas J (2015) Modulation of direct pathway striatal projection neurons by muscarinic M(4)-type receptors. Neuropharmacology 89:232–244PubMedCrossRef Hernandez-Flores T, Hernandez-Gonzalez O, Perez-Ramirez MB, Lara-Gonzalez E, Arias-Garcia MA, Duhne M, Perez-Burgos A, Prieto GA, Figueroa A, Galarraga E, Bargas J (2015) Modulation of direct pathway striatal projection neurons by muscarinic M(4)-type receptors. Neuropharmacology 89:232–244PubMedCrossRef
go back to reference Hersch SM, Gutekunst CA, Rees HD, Heilman CJ, Levey AI (1994) Distribution of m1–m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci 14:3351–3363PubMedCrossRef Hersch SM, Gutekunst CA, Rees HD, Heilman CJ, Levey AI (1994) Distribution of m1–m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci 14:3351–3363PubMedCrossRef
go back to reference Heumann R, Moratalla R, Herrero MT, Chakrabarty K, Drucker-Colin R, Garcia-Montes JR, Simola N, Morelli M (2014) Dyskinesia in Parkinson’s disease: mechanisms and current non-pharmacological interventions. J Neurochem 130:472–489PubMedCrossRef Heumann R, Moratalla R, Herrero MT, Chakrabarty K, Drucker-Colin R, Garcia-Montes JR, Simola N, Morelli M (2014) Dyskinesia in Parkinson’s disease: mechanisms and current non-pharmacological interventions. J Neurochem 130:472–489PubMedCrossRef
go back to reference Howe AR, Surmeier DJ (1995) Muscarinic receptors modulate N-, P-, and l-type Ca2+ currents in rat striatal neurons through parallel pathways. J Neurosci 15:458–469PubMedCrossRef Howe AR, Surmeier DJ (1995) Muscarinic receptors modulate N-, P-, and l-type Ca2+ currents in rat striatal neurons through parallel pathways. J Neurosci 15:458–469PubMedCrossRef
go back to reference Huang LZ, Campos C, Ly J, Ivy Carroll F, Quik M (2011a) Nicotinic receptor agonists decrease l-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology 60:861–868PubMedPubMedCentralCrossRef Huang LZ, Campos C, Ly J, Ivy Carroll F, Quik M (2011a) Nicotinic receptor agonists decrease l-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology 60:861–868PubMedPubMedCentralCrossRef
go back to reference Huang LZ, Grady SR, Quik M (2011b) Nicotine reduces l-DOPA-induced dyskinesias by acting at beta2* nicotinic receptors. J Pharmacol Exp Ther 338:932–941PubMedPubMedCentralCrossRef Huang LZ, Grady SR, Quik M (2011b) Nicotine reduces l-DOPA-induced dyskinesias by acting at beta2* nicotinic receptors. J Pharmacol Exp Ther 338:932–941PubMedPubMedCentralCrossRef
go back to reference Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM (2013) The pharmacology of l-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 65:171–222PubMedCrossRef Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM (2013) The pharmacology of l-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 65:171–222PubMedCrossRef
go back to reference Jennings KA, Platt NJ, Cragg SJ (2015) The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation. Neurobiol Dis 82:262–268PubMedPubMedCentralCrossRef Jennings KA, Platt NJ, Cragg SJ (2015) The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation. Neurobiol Dis 82:262–268PubMedPubMedCentralCrossRef
go back to reference Jeon J, Dencker D, Wortwein G, Woldbye DP, Cui Y, Davis AA, Levey AI, Schutz G, Sager TN, Mork A, Li C, Deng CX, Fink-Jensen A, Wess J (2010) A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J Neurosci 30:2396–2405PubMedPubMedCentralCrossRef Jeon J, Dencker D, Wortwein G, Woldbye DP, Cui Y, Davis AA, Levey AI, Schutz G, Sager TN, Mork A, Li C, Deng CX, Fink-Jensen A, Wess J (2010) A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J Neurosci 30:2396–2405PubMedPubMedCentralCrossRef
go back to reference Johnston TH, Huot P, Fox SH, Koprich JB, Szeliga KT, James JW, Graef JD, Letchworth SR, Jordan KG, Hill MP, Brotchie JM (2013) TC-8831, a nicotinic acetylcholine receptor agonist, reduces l-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology 73:337–347PubMedCrossRef Johnston TH, Huot P, Fox SH, Koprich JB, Szeliga KT, James JW, Graef JD, Letchworth SR, Jordan KG, Hill MP, Brotchie JM (2013) TC-8831, a nicotinic acetylcholine receptor agonist, reduces l-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology 73:337–347PubMedCrossRef
go back to reference Kaiser S, Wonnacott S (2000) alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [(3)H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58:312–318PubMedCrossRef Kaiser S, Wonnacott S (2000) alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [(3)H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58:312–318PubMedCrossRef
go back to reference Katzenschlager R, Sampaio C, Costa J, Lees A (2003) Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database System Rev (2):CD003735 Katzenschlager R, Sampaio C, Costa J, Lees A (2003) Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Database System Rev (2):CD003735
go back to reference Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908–4923PubMedCrossRef Kawaguchi Y (1993) Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908–4923PubMedCrossRef
go back to reference Koos T, Tepper JM (2002) Dual cholinergic control of fast-spiking interneurons in the neostriatum. J Neurosci 22:529–535PubMedCrossRef Koos T, Tepper JM (2002) Dual cholinergic control of fast-spiking interneurons in the neostriatum. J Neurosci 22:529–535PubMedCrossRef
go back to reference Koranda JL, Cone JJ, McGehee DS, Roitman MF, Beeler JA, Zhuang X (2014) Nicotinic receptors regulate the dynamic range of dopamine release in vivo. J Neurophysiol 111:103–111PubMedCrossRef Koranda JL, Cone JJ, McGehee DS, Roitman MF, Beeler JA, Zhuang X (2014) Nicotinic receptors regulate the dynamic range of dopamine release in vivo. J Neurophysiol 111:103–111PubMedCrossRef
go back to reference Kosillo P, Zhang YF, Threlfell S, Cragg SJ (2016) Cortical control of striatal dopamine transmission via striatal cholinergic interneurons. Cereb Cortex 26(11):4160–4169PubMedCentralCrossRef Kosillo P, Zhang YF, Threlfell S, Cragg SJ (2016) Cortical control of striatal dopamine transmission via striatal cholinergic interneurons. Cereb Cortex 26(11):4160–4169PubMedCentralCrossRef
go back to reference Kuroiwa M, Hamada M, Hieda E, Shuto T, Sotogaku N, Flajolet M, Snyder GL, Hendrick JP, Fienberg A, Nishi A (2012) Muscarinic receptors acting at pre- and post-synaptic sites differentially regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons. Neuropharmacology 63:1248–1257PubMedCrossRef Kuroiwa M, Hamada M, Hieda E, Shuto T, Sotogaku N, Flajolet M, Snyder GL, Hendrick JP, Fienberg A, Nishi A (2012) Muscarinic receptors acting at pre- and post-synaptic sites differentially regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons. Neuropharmacology 63:1248–1257PubMedCrossRef
go back to reference Larramendy C, Taravini IR, Saborido MD, Ferrario JE, Murer MG, Gershanik OS (2008) Cabergoline and pramipexole fail to modify already established dyskinesias in an animal model of parkinsonism. Behav Brain Res 194:44–51PubMedCrossRef Larramendy C, Taravini IR, Saborido MD, Ferrario JE, Murer MG, Gershanik OS (2008) Cabergoline and pramipexole fail to modify already established dyskinesias in an animal model of parkinsonism. Behav Brain Res 194:44–51PubMedCrossRef
go back to reference Lenz JD, Lobo MK (2013) Optogenetic insights into striatal function and behavior. Behav Brain Res 255:44–54PubMedCrossRef Lenz JD, Lobo MK (2013) Optogenetic insights into striatal function and behavior. Behav Brain Res 255:44–54PubMedCrossRef
go back to reference Lindgren HS, Ohlin KE, Cenci MA (2009) Differential involvement of D1 and D2 dopamine receptors in l-DOPA-induced angiogenic activity in a rat model of Parkinson’s disease. Neuropsychopharmacology 34:2477–2488PubMedCrossRef Lindgren HS, Ohlin KE, Cenci MA (2009) Differential involvement of D1 and D2 dopamine receptors in l-DOPA-induced angiogenic activity in a rat model of Parkinson’s disease. Neuropsychopharmacology 34:2477–2488PubMedCrossRef
go back to reference Livingstone PD, Wonnacott S (2009) Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem Pharmacol 78:744–755PubMedCrossRef Livingstone PD, Wonnacott S (2009) Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem Pharmacol 78:744–755PubMedCrossRef
go back to reference Luo R, Janssen MJ, Partridge JG, Vicini S (2013) Direct and GABA-mediated indirect effects of nicotinic ACh receptor agonists on striatal neurones. J Physiol 591:203–217PubMedCrossRef Luo R, Janssen MJ, Partridge JG, Vicini S (2013) Direct and GABA-mediated indirect effects of nicotinic ACh receptor agonists on striatal neurones. J Physiol 591:203–217PubMedCrossRef
go back to reference Lv X, Dickerson JW, Rook JM, Lindsley CW, Conn PJ, Xiang Z (2017) M1 muscarinic activation induces long-lasting increase in intrinsic excitability of striatal projection neurons. Neuropharmacology 118:209–222PubMedPubMedCentralCrossRef Lv X, Dickerson JW, Rook JM, Lindsley CW, Conn PJ, Xiang Z (2017) M1 muscarinic activation induces long-lasting increase in intrinsic excitability of striatal projection neurons. Neuropharmacology 118:209–222PubMedPubMedCentralCrossRef
go back to reference Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M (2002) Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem 80:1071–1078PubMedCrossRef Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M (2002) Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem 80:1071–1078PubMedCrossRef
go back to reference Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68:1511–1519PubMedCrossRef Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68:1511–1519PubMedCrossRef
go back to reference Matsubayashi H, Amano T, Amano H, Sasa M (2001) Excitation of rat striatal large neurons by dopamine and/or glutamate released from nerve terminals via presynaptic nicotinic receptor (A4beta2 type) stimulation. Jpn J Pharmacol 86:429–436PubMedCrossRef Matsubayashi H, Amano T, Amano H, Sasa M (2001) Excitation of rat striatal large neurons by dopamine and/or glutamate released from nerve terminals via presynaptic nicotinic receptor (A4beta2 type) stimulation. Jpn J Pharmacol 86:429–436PubMedCrossRef
go back to reference Maurice N, Liberge M, Jaouen F, Ztaou S, Hanini M, Camon J, Deisseroth K, Amalric M, Kerkerian-Le Goff L, Beurrier C (2015) Striatal cholinergic interneurons control motor behavior and basal ganglia function in experimental parkinsonism. Cell Rep 13:657–666PubMedCrossRef Maurice N, Liberge M, Jaouen F, Ztaou S, Hanini M, Camon J, Deisseroth K, Amalric M, Kerkerian-Le Goff L, Beurrier C (2015) Striatal cholinergic interneurons control motor behavior and basal ganglia function in experimental parkinsonism. Cell Rep 13:657–666PubMedCrossRef
go back to reference McCallum SE, Parameswaran N, Bordia T, McIntosh JM, Grady SR, Quik M (2005) Decrease in alpha3*/alpha6* nicotinic receptors but not nicotine-evoked dopamine release in monkey brain after nigrostriatal damage. Mol Pharmacol 68:737–746PubMed McCallum SE, Parameswaran N, Bordia T, McIntosh JM, Grady SR, Quik M (2005) Decrease in alpha3*/alpha6* nicotinic receptors but not nicotine-evoked dopamine release in monkey brain after nigrostriatal damage. Mol Pharmacol 68:737–746PubMed
go back to reference McCallum SE, Parameswaran N, Perez XA, Bao S, McIntosh JM, Grady SR, Quik M (2006) Compensation in pre-synaptic dopaminergic function following nigrostriatal damage in primates. J Neurochem 96:960–972PubMedCrossRef McCallum SE, Parameswaran N, Perez XA, Bao S, McIntosh JM, Grady SR, Quik M (2006) Compensation in pre-synaptic dopaminergic function following nigrostriatal damage in primates. J Neurochem 96:960–972PubMedCrossRef
go back to reference Merola A, Rizzi L, Zibetti M, Artusi CA, Montanaro E, Angrisano S, Lanotte M, Rizzone MG, Lopiano L (2014) Medical therapy and subthalamic deep brain stimulation in advanced Parkinson’s disease: a different long-term outcome? J Neurol Neurosurg Psychiatry 85:552–559PubMedCrossRef Merola A, Rizzi L, Zibetti M, Artusi CA, Montanaro E, Angrisano S, Lanotte M, Rizzone MG, Lopiano L (2014) Medical therapy and subthalamic deep brain stimulation in advanced Parkinson’s disease: a different long-term outcome? J Neurol Neurosurg Psychiatry 85:552–559PubMedCrossRef
go back to reference Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323:252–268PubMedCrossRef Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323:252–268PubMedCrossRef
go back to reference Millar NS, Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56:237–246PubMedCrossRef Millar NS, Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56:237–246PubMedCrossRef
go back to reference Nelson AB, Hammack N, Yang CF, Shah NM, Seal RP, Kreitzer AC (2014b) Striatal cholinergic interneurons Drive GABA release from dopamine terminals. Neuron 82:63–70PubMedPubMedCentralCrossRef Nelson AB, Hammack N, Yang CF, Shah NM, Seal RP, Kreitzer AC (2014b) Striatal cholinergic interneurons Drive GABA release from dopamine terminals. Neuron 82:63–70PubMedPubMedCentralCrossRef
go back to reference Nishijima H, Suzuki S, Kon T, Funamizu Y, Ueno T, Haga R, Suzuki C, Arai A, Kimura T, Suzuki C, Meguro R, Miki Y, Yamada J, Migita K, Ichinohe N, Ueno S, Baba M, Tomiyama M (2014) Morphologic changes of dendritic spines of striatal neurons in the levodopa-induced dyskinesia model. Mov Disord 29:336–343PubMedCrossRef Nishijima H, Suzuki S, Kon T, Funamizu Y, Ueno T, Haga R, Suzuki C, Arai A, Kimura T, Suzuki C, Meguro R, Miki Y, Yamada J, Migita K, Ichinohe N, Ueno S, Baba M, Tomiyama M (2014) Morphologic changes of dendritic spines of striatal neurons in the levodopa-induced dyskinesia model. Mov Disord 29:336–343PubMedCrossRef
go back to reference Pakhotin P, Bracci E (2007) Cholinergic interneurons control the excitatory input to the striatum. J Neurosci 27:391–400PubMedCrossRef Pakhotin P, Bracci E (2007) Cholinergic interneurons control the excitatory input to the striatum. J Neurosci 27:391–400PubMedCrossRef
go back to reference Pavon N, Martin AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with l-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiat 59:64–74PubMedCrossRef Pavon N, Martin AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with l-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiat 59:64–74PubMedCrossRef
go back to reference Perez XA (2015) Preclinical evidence for a role of the nicotinic cholinergic system in Parkinson’s disease. Neuropsychol Rev 25:371–383PubMedCrossRef Perez XA (2015) Preclinical evidence for a role of the nicotinic cholinergic system in Parkinson’s disease. Neuropsychol Rev 25:371–383PubMedCrossRef
go back to reference Perez XA, Quik M (2011) Focus on alpha4beta2* and alpha6beta2* nAChRs for Parkinson’s disease therapeutics. Mol Cell Pharmacol 3:1–6PubMedPubMedCentral Perez XA, Quik M (2011) Focus on alpha4beta2* and alpha6beta2* nAChRs for Parkinson’s disease therapeutics. Mol Cell Pharmacol 3:1–6PubMedPubMedCentral
go back to reference Perez XA, Bordia T, McIntosh JM, Grady SR, Quik M (2008) Long-term nicotine treatment differentially regulates striatal alpha6alpha4beta2* and alpha6(nonalpha4)beta2* nAChR expression and function. Mol Pharmacol 74:844–853PubMedPubMedCentralCrossRef Perez XA, Bordia T, McIntosh JM, Grady SR, Quik M (2008) Long-term nicotine treatment differentially regulates striatal alpha6alpha4beta2* and alpha6(nonalpha4)beta2* nAChR expression and function. Mol Pharmacol 74:844–853PubMedPubMedCentralCrossRef
go back to reference Perez XA, Bordia T, McIntosh JM, Quik M (2010) {Alpha}6{beta}2* and {alpha}4{beta}2* nicotinic receptors both regulate dopamine signaling with increased nigrostriatal damage: relevance to Parkinson’s disease. Mol Pharmacol 78:971–980PubMedPubMedCentralCrossRef Perez XA, Bordia T, McIntosh JM, Quik M (2010) {Alpha}6{beta}2* and {alpha}4{beta}2* nicotinic receptors both regulate dopamine signaling with increased nigrostriatal damage: relevance to Parkinson’s disease. Mol Pharmacol 78:971–980PubMedPubMedCentralCrossRef
go back to reference Perez X, Ly J, McIntosh JM, Quik M (2012) Chronic nicotine exposure depresses dopamine release in nonhuman primate nucleus accumbens. J Pharmacol Exp Ther 342:335–344PubMedPubMedCentralCrossRef Perez X, Ly J, McIntosh JM, Quik M (2012) Chronic nicotine exposure depresses dopamine release in nonhuman primate nucleus accumbens. J Pharmacol Exp Ther 342:335–344PubMedPubMedCentralCrossRef
go back to reference Perez XA, McIntosh JM, Quik M (2013) Long-term nicotine treatment down-regulates alpha6beta2* nicotinic receptor expression and function in nucleus accumbens. J Neurochem 127:762–771PubMedCrossRef Perez XA, McIntosh JM, Quik M (2013) Long-term nicotine treatment down-regulates alpha6beta2* nicotinic receptor expression and function in nucleus accumbens. J Neurochem 127:762–771PubMedCrossRef
go back to reference Perez XA, Zhang D, Bordia T, Quik M (2017) Striatal D1 medium spiny neuron activation induces dyskinesias in parkinsonian mice. Mov Disord 32(4):538–548PubMedPubMedCentralCrossRef Perez XA, Zhang D, Bordia T, Quik M (2017) Striatal D1 medium spiny neuron activation induces dyskinesias in parkinsonian mice. Mov Disord 32(4):538–548PubMedPubMedCentralCrossRef
go back to reference Perez-Rosello T, Figueroa A, Salgado H, Vilchis C, Tecuapetla F, Guzman JN, Galarraga E, Bargas J (2005) Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. J Neurophysiol 93:2507–2519PubMedCrossRef Perez-Rosello T, Figueroa A, Salgado H, Vilchis C, Tecuapetla F, Guzman JN, Galarraga E, Bargas J (2005) Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. J Neurophysiol 93:2507–2519PubMedCrossRef
go back to reference Quik M, Wonnacott S (2011) {alpha}6{beta}2* and {alpha}4{beta}2* nicotinic acetylcholine receptors as drug targets for Parkinson’s disease. Pharmacol Rev 63:938–966PubMedPubMedCentralCrossRef Quik M, Wonnacott S (2011) {alpha}6{beta}2* and {alpha}4{beta}2* nicotinic acetylcholine receptors as drug targets for Parkinson’s disease. Pharmacol Rev 63:938–966PubMedPubMedCentralCrossRef
go back to reference Quik M, Sum JD, Whiteaker P, McCallum SE, Marks MJ, Musachio J, McIntosh JM, Collins AC, Grady SR (2003) Differential declines in striatal nicotinic receptor subtype function after nigrostriatal damage in mice. Mol Pharmacol 63:1169–1179PubMedCrossRef Quik M, Sum JD, Whiteaker P, McCallum SE, Marks MJ, Musachio J, McIntosh JM, Collins AC, Grady SR (2003) Differential declines in striatal nicotinic receptor subtype function after nigrostriatal damage in mice. Mol Pharmacol 63:1169–1179PubMedCrossRef
go back to reference Quik M, Chen L, Parameswaran N, Xie X, Langston JW, McCallum SE (2006) Chronic oral nicotine normalizes dopaminergic function and synaptic plasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. J Neurosci 26:4681–4689PubMedCrossRef Quik M, Chen L, Parameswaran N, Xie X, Langston JW, McCallum SE (2006) Chronic oral nicotine normalizes dopaminergic function and synaptic plasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. J Neurosci 26:4681–4689PubMedCrossRef
go back to reference Quik M, Cox H, Parameswaran N, O’Leary K, Langston JW, Di Monte D (2007) Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Ann Neurol 62:588–596PubMedCrossRef Quik M, Cox H, Parameswaran N, O’Leary K, Langston JW, Di Monte D (2007) Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Ann Neurol 62:588–596PubMedCrossRef
go back to reference Quik M, Perez XA, Grady SR (2011) Role of alpha6 nicotinic receptors in CNS dopaminergic function: relevance to addiction and neurological disorders. Biochem Pharmacol 82:873–882PubMedPubMedCentralCrossRef Quik M, Perez XA, Grady SR (2011) Role of alpha6 nicotinic receptors in CNS dopaminergic function: relevance to addiction and neurological disorders. Biochem Pharmacol 82:873–882PubMedPubMedCentralCrossRef
go back to reference Quik M, Park KM, Hrachova M, Mallela A, Huang LZ, McIntosh JM, Grady SR (2012a) Role for alpha6 nicotinic receptors in l-dopa-induced dyskinesias in parkinsonian mice. Neuropharmacology 63:450–459PubMedPubMedCentralCrossRef Quik M, Park KM, Hrachova M, Mallela A, Huang LZ, McIntosh JM, Grady SR (2012a) Role for alpha6 nicotinic receptors in l-dopa-induced dyskinesias in parkinsonian mice. Neuropharmacology 63:450–459PubMedPubMedCentralCrossRef
go back to reference Quik M, Campos C, Bordia T, Strachan JP, Zhang J, McIntosh JM, Letchworth S, Jordan K (2013a) alpha4beta2 Nicotinic receptors play a role in the nAChR-mediated decline in l-dopa-induced dyskinesias in parkinsonian rats. Neuropharmacology 71:191–203PubMedPubMedCentralCrossRef Quik M, Campos C, Bordia T, Strachan JP, Zhang J, McIntosh JM, Letchworth S, Jordan K (2013a) alpha4beta2 Nicotinic receptors play a role in the nAChR-mediated decline in l-dopa-induced dyskinesias in parkinsonian rats. Neuropharmacology 71:191–203PubMedPubMedCentralCrossRef
go back to reference Quik M, Campos C, Grady SR (2013b) Multiple CNS nicotinic receptors mediate l-dopa-induced dyskinesias: studies with parkinsonian nicotinic receptor knockout mice. Biochem Pharmacol 86:1153–1162PubMedPubMedCentralCrossRef Quik M, Campos C, Grady SR (2013b) Multiple CNS nicotinic receptors mediate l-dopa-induced dyskinesias: studies with parkinsonian nicotinic receptor knockout mice. Biochem Pharmacol 86:1153–1162PubMedPubMedCentralCrossRef
go back to reference Quik M, Mallela A, Chin M, McIntosh JM, Perez XA, Bordia T (2013c) Nicotine-mediated improvement in l-dopa-induced dyskinesias in MPTP-lesioned monkeys is dependent on dopamine nerve terminal function. Neurobiol Dis 50:30–41PubMedCrossRef Quik M, Mallela A, Chin M, McIntosh JM, Perez XA, Bordia T (2013c) Nicotine-mediated improvement in l-dopa-induced dyskinesias in MPTP-lesioned monkeys is dependent on dopamine nerve terminal function. Neurobiol Dis 50:30–41PubMedCrossRef
go back to reference Quik M, Mallela A, Ly J, Zhang D (2013d) Nicotine reduces established levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord 28:1398–1406PubMedPubMedCentralCrossRef Quik M, Mallela A, Ly J, Zhang D (2013d) Nicotine reduces established levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord 28:1398–1406PubMedPubMedCentralCrossRef
go back to reference Quik M, Zhang D, Perez XA, Bordia T (2014) Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacol Ther 144(1):50–59PubMedPubMedCentralCrossRef Quik M, Zhang D, Perez XA, Bordia T (2014) Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacol Ther 144(1):50–59PubMedPubMedCentralCrossRef
go back to reference Quik M, Bordia T, Zhang D, Perez XA (2015a) Nicotine and nicotinic receptor drugs: potential for Parkinson’s disease and drug-induced movement disorders. Int Rev Neurobiol 124:247–271PubMedCrossRef Quik M, Bordia T, Zhang D, Perez XA (2015a) Nicotine and nicotinic receptor drugs: potential for Parkinson’s disease and drug-induced movement disorders. Int Rev Neurobiol 124:247–271PubMedCrossRef
go back to reference Quik M, Zhang D, McGregor M, Bordia T (2015b) Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochem Pharmacol 97:399–407PubMedPubMedCentralCrossRef Quik M, Zhang D, McGregor M, Bordia T (2015b) Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochem Pharmacol 97:399–407PubMedPubMedCentralCrossRef
go back to reference Quinn NP (1998) Classification of fluctuations in patients with Parkinson’s disease. Neurology 51:S25–S29PubMedCrossRef Quinn NP (1998) Classification of fluctuations in patients with Parkinson’s disease. Neurology 51:S25–S29PubMedCrossRef
go back to reference Quinn N, Marsden CD, Parkes JD (1982) Complicated response fluctuations in Parkinson’s disease: response to intravenous infusion of levodopa. Lancet 2:412–415PubMedCrossRef Quinn N, Marsden CD, Parkes JD (1982) Complicated response fluctuations in Parkinson’s disease: response to intravenous infusion of levodopa. Lancet 2:412–415PubMedCrossRef
go back to reference Raz A, Feingold A, Zelanskaya V, Vaadia E, Bergman H (1996) Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J Neurophysiol 76:2083–2088PubMedCrossRef Raz A, Feingold A, Zelanskaya V, Vaadia E, Bergman H (1996) Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J Neurophysiol 76:2083–2088PubMedCrossRef
go back to reference Revy D, Jaouen F, Salin P, Melon C, Chabbert D, Tafi E, Concetta L, Langa F, Amalric M, Kerkerian-Le Goff L, Marie H, Beurrier C (2014) Cellular and Behavioral Outcomes of Dorsal Striatonigral Neuron Ablation: New Insights into Striatal Functions. Neuropsychopharmacology 39(11):2662–2672PubMedPubMedCentralCrossRef Revy D, Jaouen F, Salin P, Melon C, Chabbert D, Tafi E, Concetta L, Langa F, Amalric M, Kerkerian-Le Goff L, Marie H, Beurrier C (2014) Cellular and Behavioral Outcomes of Dorsal Striatonigral Neuron Ablation: New Insights into Striatal Functions. Neuropsychopharmacology 39(11):2662–2672PubMedPubMedCentralCrossRef
go back to reference Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 7:583–584PubMedCrossRef Rice ME, Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 7:583–584PubMedCrossRef
go back to reference Rizzone MG, Fasano A, Daniele A, Zibetti M, Merola A, Rizzi L, Piano C, Piccininni C, Romito LM, Lopiano L, Albanese A (2014) Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: from the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord 20:376–381PubMedCrossRef Rizzone MG, Fasano A, Daniele A, Zibetti M, Merola A, Rizzi L, Piano C, Piccininni C, Romito LM, Lopiano L, Albanese A (2014) Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: from the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord 20:376–381PubMedCrossRef
go back to reference Salin P, Lopez IP, Kachidian P, Barroso-Chinea P, Rico AJ, Gomez-Bautista V, Coulon P, Kerkerian-Le Goff L, Lanciego JL (2009) Changes to interneuron-driven striatal microcircuits in a rat model of Parkinson’s disease. Neurobiol Dis 34:545–552PubMedCrossRef Salin P, Lopez IP, Kachidian P, Barroso-Chinea P, Rico AJ, Gomez-Bautista V, Coulon P, Kerkerian-Le Goff L, Lanciego JL (2009) Changes to interneuron-driven striatal microcircuits in a rat model of Parkinson’s disease. Neurobiol Dis 34:545–552PubMedCrossRef
go back to reference Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC, Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65:1526–1535PubMedCrossRef Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC, Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65:1526–1535PubMedCrossRef
go back to reference Schaeffer E, Pilotto A, Berg D (2014) Pharmacological strategies for the management of levodopa-induced dyskinesia in patients with Parkinson’s disease. CNS Drugs 28:1155–1184PubMedCrossRef Schaeffer E, Pilotto A, Berg D (2014) Pharmacological strategies for the management of levodopa-induced dyskinesia in patients with Parkinson’s disease. CNS Drugs 28:1155–1184PubMedCrossRef
go back to reference Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM, Surmeier DJ (2007) Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 10:1458–1466PubMedCrossRef Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM, Surmeier DJ (2007) Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 10:1458–1466PubMedCrossRef
go back to reference Shen W, Plotkin JL, Francardo V, Ko WK, Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley CW, Conn PJ, Greengard P, Bezard E, Cenci MA, Surmeier DJ (2015) M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of l-DOPA-induced dyskinesia. Neuron 88:762–773PubMedPubMedCentralCrossRef Shen W, Plotkin JL, Francardo V, Ko WK, Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley CW, Conn PJ, Greengard P, Bezard E, Cenci MA, Surmeier DJ (2015) M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of l-DOPA-induced dyskinesia. Neuron 88:762–773PubMedPubMedCentralCrossRef
go back to reference Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13:259–265PubMedCrossRef Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13:259–265PubMedCrossRef
go back to reference Solis O, Garcia-Montes JR, Gonzalez-Granillo A, Xu M, Moratalla R (2015) Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb Cortex 27(1):435–446PubMedCentral Solis O, Garcia-Montes JR, Gonzalez-Granillo A, Xu M, Moratalla R (2015) Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb Cortex 27(1):435–446PubMedCentral
go back to reference Suarez LM, Solis O, Aguado C, Lujan R, Moratalla R (2016) l-DOPA oppositely regulates synaptic strength and spine morphology in D1 and D2 striatal projection neurons in dyskinesia. Cereb Cortex 26(11):4253–4264PubMedPubMedCentralCrossRef Suarez LM, Solis O, Aguado C, Lujan R, Moratalla R (2016) l-DOPA oppositely regulates synaptic strength and spine morphology in D1 and D2 striatal projection neurons in dyskinesia. Cereb Cortex 26(11):4253–4264PubMedPubMedCentralCrossRef
go back to reference Takahashi H, Takada Y, Nagai N, Urano T, Takada A (1998) Nicotine increases stress-induced serotonin release by stimulating nicotinic acetylcholine receptor in rat striatum. Synapse 28:212–219PubMedCrossRef Takahashi H, Takada Y, Nagai N, Urano T, Takada A (1998) Nicotine increases stress-induced serotonin release by stimulating nicotinic acetylcholine receptor in rat striatum. Synapse 28:212–219PubMedCrossRef
go back to reference Tambasco N, Simoni S, Marsili E, Sacchini E, Murasecco D, Cardaioli G, Rossi A, Calabresi P (2012) Clinical aspects and management of levodopa-induced dyskinesia. Parkinsons Dis 2012:745947PubMedPubMedCentral Tambasco N, Simoni S, Marsili E, Sacchini E, Murasecco D, Cardaioli G, Rossi A, Calabresi P (2012) Clinical aspects and management of levodopa-induced dyskinesia. Parkinsons Dis 2012:745947PubMedPubMedCentral
go back to reference Taylor JL, Bishop C, Walker PD (2005) Dopamine D1 and D2 receptor contributions to l-DOPA-induced dyskinesia in the dopamine-depleted rat. Pharmacol Biochem Behav 81:887–893PubMedCrossRef Taylor JL, Bishop C, Walker PD (2005) Dopamine D1 and D2 receptor contributions to l-DOPA-induced dyskinesia in the dopamine-depleted rat. Pharmacol Biochem Behav 81:887–893PubMedCrossRef
go back to reference Threlfell S, Clements MA, Khodai T, Pienaar IS, Exley R, Wess J, Cragg SJ (2010) Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. J Neurosci 30:3398–3408PubMedPubMedCentralCrossRef Threlfell S, Clements MA, Khodai T, Pienaar IS, Exley R, Wess J, Cragg SJ (2010) Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. J Neurosci 30:3398–3408PubMedPubMedCentralCrossRef
go back to reference Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64PubMedCrossRef Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64PubMedCrossRef
go back to reference Tubert C, Taravini IR, Flores-Barrera E, Sanchez GM, Prost MA, Avale ME, Tseng KY, Rela L, Murer MG (2016) Decrease of a current mediated by Kv1.3 channels causes striatal cholinergic interneuron hyperexcitability in experimental parkinsonism. Cell Rep 16:2749–2762PubMedCrossRef Tubert C, Taravini IR, Flores-Barrera E, Sanchez GM, Prost MA, Avale ME, Tseng KY, Rela L, Murer MG (2016) Decrease of a current mediated by Kv1.3 channels causes striatal cholinergic interneuron hyperexcitability in experimental parkinsonism. Cell Rep 16:2749–2762PubMedCrossRef
go back to reference van Vulpen EH, van der Kooy D (1998) Striatal cholinergic interneurons: birthdates predict compartmental localization. Brain Res Dev Brain Res 109:51–58PubMedCrossRef van Vulpen EH, van der Kooy D (1998) Striatal cholinergic interneurons: birthdates predict compartmental localization. Brain Res Dev Brain Res 109:51–58PubMedCrossRef
go back to reference Wang Z, Kai L, Day M, Ronesi J, Yin HH, Ding J, Tkatch T, Lovinger DM, Surmeier DJ (2006) Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50:443–452PubMedCrossRef Wang Z, Kai L, Day M, Ronesi J, Yin HH, Ding J, Tkatch T, Lovinger DM, Surmeier DJ (2006) Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50:443–452PubMedCrossRef
go back to reference Wang L, Shang S, Kang X, Teng S, Zhu F, Liu B, Wu Q, Li M, Liu W, Xu H, Zhou L, Jiao R, Dou H, Zuo P, Zhang X, Zheng L, Wang S, Wang C, Zhou Z (2014) Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine. Nat Commun 5:3925PubMedCrossRef Wang L, Shang S, Kang X, Teng S, Zhu F, Liu B, Wu Q, Li M, Liu W, Xu H, Zhou L, Jiao R, Dou H, Zuo P, Zhang X, Zheng L, Wang S, Wang C, Zhou Z (2014) Modulation of dopamine release in the striatum by physiologically relevant levels of nicotine. Nat Commun 5:3925PubMedCrossRef
go back to reference Westin JE, Vercammen L, Strome EM, Konradi C, Cenci MA (2007) Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of l-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiat 62:800–810PubMedCrossRef Westin JE, Vercammen L, Strome EM, Konradi C, Cenci MA (2007) Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of l-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiat 62:800–810PubMedCrossRef
go back to reference Wilson CJ, Goldberg JA (2006) Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons. J Neurophysiol 95:196–204PubMedCrossRef Wilson CJ, Goldberg JA (2006) Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons. J Neurophysiol 95:196–204PubMedCrossRef
go back to reference Wilson CJ, Chang HT, Kitai ST (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 10:508–519PubMedCrossRef Wilson CJ, Chang HT, Kitai ST (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 10:508–519PubMedCrossRef
go back to reference Won L, Ding Y, Singh P, Kang UJ (2014) Striatal cholinergic cell ablation attenuates l-DOPA induced dyskinesia in Parkinsonian mice. J Neurosci 34:3090–3094PubMedPubMedCentralCrossRef Won L, Ding Y, Singh P, Kang UJ (2014) Striatal cholinergic cell ablation attenuates l-DOPA induced dyskinesia in Parkinsonian mice. J Neurosci 34:3090–3094PubMedPubMedCentralCrossRef
go back to reference Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol 393:51–58PubMedCrossRef Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol 393:51–58PubMedCrossRef
go back to reference Woolf NJ, Butcher LL (1981) Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: a combined Evans blue and acetylcholinesterase analysis. Brain Res Bull 7:487–507PubMedCrossRef Woolf NJ, Butcher LL (1981) Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: a combined Evans blue and acetylcholinesterase analysis. Brain Res Bull 7:487–507PubMedCrossRef
go back to reference Xiang Z, Thompson AD, Jones CK, Lindsley CW, Conn PJ (2012) Roles of the M1 muscarinic acetylcholine receptor subtype in the regulation of basal ganglia function and implications for the treatment of Parkinson’s disease. J Pharmacol Exp Ther 340:595–603PubMedPubMedCentralCrossRef Xiang Z, Thompson AD, Jones CK, Lindsley CW, Conn PJ (2012) Roles of the M1 muscarinic acetylcholine receptor subtype in the regulation of basal ganglia function and implications for the treatment of Parkinson’s disease. J Pharmacol Exp Ther 340:595–603PubMedPubMedCentralCrossRef
go back to reference Xiao C, Nashmi R, McKinney S, Cai H, McIntosh JM, Lester HA (2009) Chronic nicotine selectively enhances alpha4beta2* nicotinic acetylcholine receptors in the nigrostriatal dopamine pathway. J Neurosci 29:12428–12439PubMedPubMedCentralCrossRef Xiao C, Nashmi R, McKinney S, Cai H, McIntosh JM, Lester HA (2009) Chronic nicotine selectively enhances alpha4beta2* nicotinic acetylcholine receptors in the nigrostriatal dopamine pathway. J Neurosci 29:12428–12439PubMedPubMedCentralCrossRef
go back to reference Yan Z, Surmeier DJ (1996) Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway. J Neurosci 16:2592–2604PubMedCrossRef Yan Z, Surmeier DJ (1996) Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway. J Neurosci 16:2592–2604PubMedCrossRef
go back to reference Zhang H, Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7:581–582PubMedCrossRef Zhang H, Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7:581–582PubMedCrossRef
go back to reference Zhang W, Yamada M, Gomeza J, Basile AS, Wess J (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1–M5 muscarinic receptor knock-out mice. J Neurosci 22:6347–6352PubMedCrossRef Zhang W, Yamada M, Gomeza J, Basile AS, Wess J (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1–M5 muscarinic receptor knock-out mice. J Neurosci 22:6347–6352PubMedCrossRef
go back to reference Zhang L, Doyon WM, Clark JJ, Phillips PE, Dani JA (2009) Controls of tonic and phasic dopamine transmission in the dorsal and ventral striatum. Mol Pharmacol 76:396–404PubMedPubMedCentralCrossRef Zhang L, Doyon WM, Clark JJ, Phillips PE, Dani JA (2009) Controls of tonic and phasic dopamine transmission in the dorsal and ventral striatum. Mol Pharmacol 76:396–404PubMedPubMedCentralCrossRef
go back to reference Zhang L, Dong Y, Doyon WM, Dani JA (2012) Withdrawal from chronic nicotine exposure alters dopamine signaling dynamics in the nucleus accumbens. Biol Psychiat 71:184–191PubMedCrossRef Zhang L, Dong Y, Doyon WM, Dani JA (2012) Withdrawal from chronic nicotine exposure alters dopamine signaling dynamics in the nucleus accumbens. Biol Psychiat 71:184–191PubMedCrossRef
go back to reference Zhang D, Mallela A, Sohn D, Carroll FI, Bencherif M, Letchworth S, Quik M (2013) Nicotinic receptor agonists reduce l-DOPA-induced dyskinesias in a monkey model of Parkinson’s disease. J Pharmacol Exp Ther 347:225–234PubMedPubMedCentralCrossRef Zhang D, Mallela A, Sohn D, Carroll FI, Bencherif M, Letchworth S, Quik M (2013) Nicotinic receptor agonists reduce l-DOPA-induced dyskinesias in a monkey model of Parkinson’s disease. J Pharmacol Exp Ther 347:225–234PubMedPubMedCentralCrossRef
go back to reference Zhang D, Bordia T, McGregor M, McIntosh JM, Decker MW, Quik M (2014a) ABT-089 and ABT-894 reduce levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord 29:508–517PubMedPubMedCentralCrossRef Zhang D, Bordia T, McGregor M, McIntosh JM, Decker MW, Quik M (2014a) ABT-089 and ABT-894 reduce levodopa-induced dyskinesias in a monkey model of Parkinson’s disease. Mov Disord 29:508–517PubMedPubMedCentralCrossRef
go back to reference Zhang D, McGregor M, Decker MW, Quik M (2014b) The alpha7 nicotinic receptor agonist ABT-107 decreases l-Dopa-induced dyskinesias in parkinsonian monkeys. J Pharmacol Exp Ther 351:25–32PubMedPubMedCentralCrossRef Zhang D, McGregor M, Decker MW, Quik M (2014b) The alpha7 nicotinic receptor agonist ABT-107 decreases l-Dopa-induced dyskinesias in parkinsonian monkeys. J Pharmacol Exp Ther 351:25–32PubMedPubMedCentralCrossRef
go back to reference Zhang D, McGregor M, Bordia T, Perez XA, McIntosh JM, Decker MW, Quik M (2015) alpha7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage. Mov Disord 30:1901–1911PubMedPubMedCentralCrossRef Zhang D, McGregor M, Bordia T, Perez XA, McIntosh JM, Decker MW, Quik M (2015) alpha7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage. Mov Disord 30:1901–1911PubMedPubMedCentralCrossRef
go back to reference Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4:1224–1229PubMedCrossRef Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4:1224–1229PubMedCrossRef
go back to reference Zhou FM, Wilson CJ, Dani JA (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53:590–605PubMedCrossRef Zhou FM, Wilson CJ, Dani JA (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53:590–605PubMedCrossRef
go back to reference Ztaou S, Maurice N, Camon J, Guiraudie-Capraz G, Kerkerian-Le Goff L, Beurrier C, Liberge M, Amalric M (2016) Involvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of Parkinson’s disease. J Neurosci 36:9161–9172PubMedCrossRef Ztaou S, Maurice N, Camon J, Guiraudie-Capraz G, Kerkerian-Le Goff L, Beurrier C, Liberge M, Amalric M (2016) Involvement of striatal cholinergic interneurons and M1 and M4 muscarinic receptors in motor symptoms of Parkinson’s disease. J Neurosci 36:9161–9172PubMedCrossRef
Metadata
Title
The striatal cholinergic system in l-dopa-induced dyskinesias
Authors
X. A. Perez
T. Bordia
M. Quik
Publication date
01-08-2018
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 8/2018
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-018-1845-9

Other articles of this Issue 8/2018

Journal of Neural Transmission 8/2018 Go to the issue

Neurology and Preclinical Neurological Studies - Review Article

Dopamine receptors: homomeric and heteromeric complexes in l-DOPA-induced dyskinesia

Neurology and Preclinical Neurological Studies - Review Article

Neuroinflammation in l-DOPA-induced dyskinesia: beyond the immune function

Neurology and Preclinical Neurological Studies - Review Article

Animal models of l-DOPA-induced dyskinesia: the 6-OHDA-lesioned rat and mouse