Skip to main content
Top
Published in: Journal of Neural Transmission 2/2018

01-02-2018 | High Impact Review in Neuroscience, Neurology or Psychiatry - Review Article

Amyloid β oligomers (AβOs) in Alzheimer’s disease

Authors: Barbara Mroczko, Magdalena Groblewska, Ala Litman-Zawadzka, Johannes Kornhuber, Piotr Lewczuk

Published in: Journal of Neural Transmission | Issue 2/2018

Login to get access

Abstract

The causative role of amyloid β 1–42 (Aβ42) aggregation in the pathogenesis of Alzheimer’s disease (AD) has been under debate for over 25 years. Primarily, scientific efforts have focused on the dyshomeostasis between production and clearance of Aβ42. This imbalance may result from mutations either in genes for the substrate, i.e., amyloid precursor protein or in genes encoding presenilin, the enzyme of the reaction that generates Aβ42. Currently, it is supposed that soluble oligomers of amyloid beta (AβOs) and not fibrillar Aβ42 within neuritic plaques may be the toxic factors acting on a very early stage of AD, perhaps even initiating pathological cascade. For example, soluble AβOs isolated from AD patients’ brains reduced number of synapses, inhibited long-term potentiation, and enhanced long-term synaptic depression in brain regions responsible for memory in animal models of AD. Concentrations of AβOs in the cerebrospinal fluid (CSF) of AD patients are often reported higher than in non-demented controls, and show a negative correlation with mini-mental state examination scores. Furthermore, increased Aβ42/oligomer ratio in the CSF of AD/MCI patients indicated that the presence of soluble AβOs in CSF may be linked to lowering of natively measured monomeric Aβ42 by epitopes masking, and hence, concentrations of AβOs in the CSF are postulated to as useful AD biomarkers.
Literature
go back to reference Alzheimer A (1907) Uber eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift fur Psychiatrie und psychisch-gerichtliche Medizin 64:146–148 Alzheimer A (1907) Uber eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift fur Psychiatrie und psychisch-gerichtliche Medizin 64:146–148
go back to reference Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639PubMedCrossRef Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639PubMedCrossRef
go back to reference Barghorn S, Nimmrich V, Striebinger A et al (2005) Globular amyloid beta-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 95:834–847PubMedCrossRef Barghorn S, Nimmrich V, Striebinger A et al (2005) Globular amyloid beta-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 95:834–847PubMedCrossRef
go back to reference Beason-Held LL, Goh JO, An Y, Kraut MA, O’Brien RJ, Ferrucci L, Resnick SM (2013) Changes in brain function occur years before the onset of cognitive impairment. J Neurosci 33:18008–18014PubMedPubMedCentralCrossRef Beason-Held LL, Goh JO, An Y, Kraut MA, O’Brien RJ, Ferrucci L, Resnick SM (2013) Changes in brain function occur years before the onset of cognitive impairment. J Neurosci 33:18008–18014PubMedPubMedCentralCrossRef
go back to reference Beraldo FH, Ostapchenko VG, Caetano FA et al (2016) Regulation of amyloid β oligomer binding to neurons and neurotoxicity by the prion protein-mGluR5 complex. J Biol Chem 291:21945–21955PubMedPubMedCentralCrossRef Beraldo FH, Ostapchenko VG, Caetano FA et al (2016) Regulation of amyloid β oligomer binding to neurons and neurotoxicity by the prion protein-mGluR5 complex. J Biol Chem 291:21945–21955PubMedPubMedCentralCrossRef
go back to reference Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl 165:3–12PubMedCrossRef Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl 165:3–12PubMedCrossRef
go back to reference Cairns NJ, Ikonomovic MD, Benzinger T (2009) Absence of Pittsburgh compound B detection of cerebral amyloid β in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. Arch Neurol 66:1557–1562PubMedPubMedCentralCrossRef Cairns NJ, Ikonomovic MD, Benzinger T (2009) Absence of Pittsburgh compound B detection of cerebral amyloid β in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. Arch Neurol 66:1557–1562PubMedPubMedCentralCrossRef
go back to reference Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role OF N-terminal residues. J Biol Chem 285:26377–26383PubMedPubMedCentralCrossRef Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role OF N-terminal residues. J Biol Chem 285:26377–26383PubMedPubMedCentralCrossRef
go back to reference Costantini C, Rossi F, Formaggio E, Bernardoni R, Cecconi D, Della-Bianca V (2005) Characterization of the signalling pathway downstream p75 neurotrophin receptor involved in beta-amyloid peptide-dependent cell death. J Mol Neurosci 25:141–156PubMedCrossRef Costantini C, Rossi F, Formaggio E, Bernardoni R, Cecconi D, Della-Bianca V (2005) Characterization of the signalling pathway downstream p75 neurotrophin receptor involved in beta-amyloid peptide-dependent cell death. J Mol Neurosci 25:141–156PubMedCrossRef
go back to reference de Leon MJ, Golomb J, George AE et al (1993) The radiologic prediction of Alzheimer disease: the atrophic hippocampal formation. AJNR Am J Neuroradiol 14:897–906PubMed de Leon MJ, Golomb J, George AE et al (1993) The radiologic prediction of Alzheimer disease: the atrophic hippocampal formation. AJNR Am J Neuroradiol 14:897–906PubMed
go back to reference Englund H, Sehlin D, Johansson AS et al (2007) Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. J Neurochem 103:334–345PubMed Englund H, Sehlin D, Johansson AS et al (2007) Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. J Neurochem 103:334–345PubMed
go back to reference Esparza TJ, Zhao H, Cirrito JR et al (2013) Amyloid-beta oligomerization in Alzheimer dementia versus highpathology controls. Ann Neurol 73:104–119PubMedCrossRef Esparza TJ, Zhao H, Cirrito JR et al (2013) Amyloid-beta oligomerization in Alzheimer dementia versus highpathology controls. Ann Neurol 73:104–119PubMedCrossRef
go back to reference Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519PubMedCrossRef Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519PubMedCrossRef
go back to reference Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G et al (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29:1456–1465PubMedCrossRef Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G et al (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29:1456–1465PubMedCrossRef
go back to reference Gaspar RC, Villarreal SA, Bowles N, Hepler RW, Joyce JG, Shughrue PJ (2010) Oligomers of beta-amyloid are sequestered into and seed new plaques in the brains of an AD mouse model. Exp Neurol 223:394–400PubMedCrossRef Gaspar RC, Villarreal SA, Bowles N, Hepler RW, Joyce JG, Shughrue PJ (2010) Oligomers of beta-amyloid are sequestered into and seed new plaques in the brains of an AD mouse model. Exp Neurol 223:394–400PubMedCrossRef
go back to reference GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602. https://doi.org/10.1016/S0140-6736(16)31678-6 CrossRef GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602. https://​doi.​org/​10.​1016/​S0140-6736(16)31678-6 CrossRef
go back to reference GBD 2015 Mortality and Causes of Death Collaborators (2016) (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1 CrossRef GBD 2015 Mortality and Causes of Death Collaborators (2016) (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1459–1544. https://​doi.​org/​10.​1016/​S0140-6736(16)31012-1 CrossRef
go back to reference Gilman S, Koller M, Black RS et al (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562PubMedCrossRef Gilman S, Koller M, Black RS et al (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562PubMedCrossRef
go back to reference Gómez-Isla T, Hollister R, West H et al (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24PubMedCrossRef Gómez-Isla T, Hollister R, West H et al (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24PubMedCrossRef
go back to reference Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM (2016) Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease. Brain 139:526–546PubMedCrossRef Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM (2016) Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease. Brain 139:526–546PubMedCrossRef
go back to reference Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079PubMedCrossRef Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079PubMedCrossRef
go back to reference Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223PubMedCrossRef Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223PubMedCrossRef
go back to reference Hong S, Ostaszewski BL, Yang T et al (2014) Soluble Abeta oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 82:308–319PubMedPubMedCentralCrossRef Hong S, Ostaszewski BL, Yang T et al (2014) Soluble Abeta oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 82:308–319PubMedPubMedCentralCrossRef
go back to reference Jack CR, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216PubMedPubMedCentralCrossRef Jack CR, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216PubMedPubMedCentralCrossRef
go back to reference Joiner ML, Lise MF, Yuen EY et al (2010) Assembly of a beta2-adrenergic receptor-GluR1 signalling complex for localized cAMP signalling. EMBO J 29:482–495PubMedCrossRef Joiner ML, Lise MF, Yuen EY et al (2010) Assembly of a beta2-adrenergic receptor-GluR1 signalling complex for localized cAMP signalling. EMBO J 29:482–495PubMedCrossRef
go back to reference Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224PubMedCrossRef Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224PubMedCrossRef
go back to reference Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319PubMedCrossRef Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319PubMedCrossRef
go back to reference Koffie RM, Meyer-Luehmann M, Hashimoto T et al (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA 106:4012–4017PubMedPubMedCentralCrossRef Koffie RM, Meyer-Luehmann M, Hashimoto T et al (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA 106:4012–4017PubMedPubMedCentralCrossRef
go back to reference Lacor PN, Buniel MC, Chang L et al (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200PubMedCrossRef Lacor PN, Buniel MC, Chang L et al (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200PubMedCrossRef
go back to reference Lacor PN, Buniel MC, Furlow PW et al (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807PubMedCrossRef Lacor PN, Buniel MC, Furlow PW et al (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807PubMedCrossRef
go back to reference Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453PubMedPubMedCentralCrossRef Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453PubMedPubMedCentralCrossRef
go back to reference Lewczuk P, Kornhuber J (2011) Neurochemical dementia diagnostics in Alzheimer’s disease: where are we now and where are we going? Expert Rev Proteom 8:447–458CrossRef Lewczuk P, Kornhuber J (2011) Neurochemical dementia diagnostics in Alzheimer’s disease: where are we now and where are we going? Expert Rev Proteom 8:447–458CrossRef
go back to reference Lewczuk P, Esselmann H, Meyer M et al (2003) The amyloid-b (Ab) peptide pattern in cerebrospinal fluid in Alzheimer’s disease: evidence of a novel carboxyterminally elongated Ab peptide. Rapid Commun Mass Spectrom 17:1291–1296PubMedCrossRef Lewczuk P, Esselmann H, Meyer M et al (2003) The amyloid-b (Ab) peptide pattern in cerebrospinal fluid in Alzheimer’s disease: evidence of a novel carboxyterminally elongated Ab peptide. Rapid Commun Mass Spectrom 17:1291–1296PubMedCrossRef
go back to reference Lewczuk P, Matzen A, Blennow K et al (2017a) Cerebrospinal fluid Abeta42/40 corresponds better than Abeta42 to amyloid PET in Alzheimer’s disease. J Alzheimers Dis 55:813–822PubMedCrossRef Lewczuk P, Matzen A, Blennow K et al (2017a) Cerebrospinal fluid Abeta42/40 corresponds better than Abeta42 to amyloid PET in Alzheimer’s disease. J Alzheimers Dis 55:813–822PubMedCrossRef
go back to reference Lewczuk P, Riederer P, O’Bryant S et al (2017) Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: an update of the consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry (in press) Lewczuk P, Riederer P, O’Bryant S et al (2017) Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: an update of the consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry (in press)
go back to reference Lewis J, Dickson DW, Lin WL et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491PubMedCrossRef Lewis J, Dickson DW, Lin WL et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491PubMedCrossRef
go back to reference Martins IC, Kuperstein I, Wilkinson H et al (2008) Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27:224–233PubMedCrossRef Martins IC, Kuperstein I, Wilkinson H et al (2008) Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27:224–233PubMedCrossRef
go back to reference Orgogozo JM, Gilman S, Dartigues JF et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61:46–54PubMedCrossRef Orgogozo JM, Gilman S, Dartigues JF et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61:46–54PubMedCrossRef
go back to reference Sehlin D, Söllvander S, Paulie S et al (2010) Interference from heterophilic antibodies in amyloid-b oligomer ELISAs. J Alzheimers Dis 21:1295–1301PubMedCrossRef Sehlin D, Söllvander S, Paulie S et al (2010) Interference from heterophilic antibodies in amyloid-b oligomer ELISAs. J Alzheimers Dis 21:1295–1301PubMedCrossRef
go back to reference Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptordependent signaling pathway. J Neurosci 27:2866–2875PubMedCrossRef Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptordependent signaling pathway. J Neurosci 27:2866–2875PubMedCrossRef
go back to reference Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842PubMedPubMedCentralCrossRef Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842PubMedPubMedCentralCrossRef
go back to reference Sivanesan S, Tan A, Rajadas J (2013) Pathogenesis of Abeta oligomers in synaptic failure. Curr Alzheimer Res 10:316–323PubMedCrossRef Sivanesan S, Tan A, Rajadas J (2013) Pathogenesis of Abeta oligomers in synaptic failure. Curr Alzheimer Res 10:316–323PubMedCrossRef
go back to reference Townsend M, Mehta T, Selkoe DJ (2007) Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282:33305–33312PubMedCrossRef Townsend M, Mehta T, Selkoe DJ (2007) Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282:33305–33312PubMedCrossRef
go back to reference Valera E, Spencer B, Masliah E (2016) Immunotherapeutic approaches targeting amyloid-β, α-synuclein, and tau for the treatment of neurodegenerative disorders. Neurotherapeutics 13:179–189PubMedCrossRef Valera E, Spencer B, Masliah E (2016) Immunotherapeutic approaches targeting amyloid-β, α-synuclein, and tau for the treatment of neurodegenerative disorders. Neurotherapeutics 13:179–189PubMedCrossRef
go back to reference Wang YJ, Zhou HD, Zhou XF (2010) Modified immunotherapies against Alzheimer’s disease: toward safer and effective amyloid-β clearance. J Alzheimers Dis 21:1065–1075PubMedCrossRef Wang YJ, Zhou HD, Zhou XF (2010) Modified immunotherapies against Alzheimer’s disease: toward safer and effective amyloid-β clearance. J Alzheimers Dis 21:1065–1075PubMedCrossRef
go back to reference Wirths O, Multhaup G, Czech C et al (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 doubletransgenic mice. Neurosci Lett 306:116–120PubMedCrossRef Wirths O, Multhaup G, Czech C et al (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 doubletransgenic mice. Neurosci Lett 306:116–120PubMedCrossRef
go back to reference Yamamoto N, Matsubara E, Maeda S et al (2007) A ganglioside-induced toxic soluble Abeta assembly. Its enhanced formation from Abeta bearing the Arctic mutation. J Biol Chem 282:2646–2655PubMedCrossRef Yamamoto N, Matsubara E, Maeda S et al (2007) A ganglioside-induced toxic soluble Abeta assembly. Its enhanced formation from Abeta bearing the Arctic mutation. J Biol Chem 282:2646–2655PubMedCrossRef
go back to reference You H, Tsutsui S, Hameed S et al (2012) Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-d-aspartate receptors. Proc Natl Acad Sci USA 109:1737–1742PubMedPubMedCentralCrossRef You H, Tsutsui S, Hameed S et al (2012) Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-d-aspartate receptors. Proc Natl Acad Sci USA 109:1737–1742PubMedPubMedCentralCrossRef
go back to reference Zhang Y, Hong Y, Bounhar Y et al (2003) p75 neurotrophin receptor protects primary cultures of human neurons against extracellular amyloid beta peptide cytotoxicity. J Neurosci 23:7385–7394PubMed Zhang Y, Hong Y, Bounhar Y et al (2003) p75 neurotrophin receptor protects primary cultures of human neurons against extracellular amyloid beta peptide cytotoxicity. J Neurosci 23:7385–7394PubMed
go back to reference Zhang J, Peng M, Jia J (2014) Plasma amyloid-beta oligomers and soluble tumor necrosis factor receptors as potential bio-markers of AD. Curr Alzheimer Res 11:325–331PubMedCrossRef Zhang J, Peng M, Jia J (2014) Plasma amyloid-beta oligomers and soluble tumor necrosis factor receptors as potential bio-markers of AD. Curr Alzheimer Res 11:325–331PubMedCrossRef
go back to reference Zhao D, Watson JB, Xie CW (2004) Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol 92:2853–2858PubMedCrossRef Zhao D, Watson JB, Xie CW (2004) Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol 92:2853–2858PubMedCrossRef
Metadata
Title
Amyloid β oligomers (AβOs) in Alzheimer’s disease
Authors
Barbara Mroczko
Magdalena Groblewska
Ala Litman-Zawadzka
Johannes Kornhuber
Piotr Lewczuk
Publication date
01-02-2018
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 2/2018
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-017-1820-x

Other articles of this Issue 2/2018

Journal of Neural Transmission 2/2018 Go to the issue