Skip to main content
Top
Published in: Journal of Neural Transmission 3/2018

01-03-2018 | Neurology and Preclinical Neurological Studies - Review Article

Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates

Authors: Adriana Galvan, Michael J. Caiola, Daniel L. Albaugh

Published in: Journal of Neural Transmission | Issue 3/2018

Login to get access

Abstract

Over the last 10 years, the use of opto- and chemogenetics to modulate neuronal activity in research applications has increased exponentially. Both techniques involve the genetic delivery of artificial proteins (opsins or engineered receptors) that are expressed on a selective population of neurons. The firing of these neurons can then be manipulated using light sources (for opsins) or by systemic administration of exogenous compounds (for chemogenetic receptors). Opto- and chemogenetic tools have enabled many important advances in basal ganglia research in rodent models, yet these techniques have faced a slow progress in non-human primate (NHP) research. In this review, we present a summary of the current state of these techniques in NHP research and outline some of the main challenges associated with the use of these genetic-based approaches in monkeys. We also explore cutting-edge developments that will facilitate the use of opto- and chemogenetics in NHPs, and help advance our understanding of basal ganglia circuits in normal and pathological conditions.
Literature
go back to reference Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedCrossRef Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedCrossRef
go back to reference Alvarez L, Macias R, Pavon N, Lopez G, Rodriguez-Oroz MC, Rodriguez R et al (2009) Therapeutic efficacy of unilateral subthalamotomy in Parkinson’s disease: results in 89 patients followed for up to 36 months. J Neurol Neurosurg Psychiatry 80:979–985. doi:10.1136/jnnp.2008.154948 PubMedCrossRef Alvarez L, Macias R, Pavon N, Lopez G, Rodriguez-Oroz MC, Rodriguez R et al (2009) Therapeutic efficacy of unilateral subthalamotomy in Parkinson’s disease: results in 89 patients followed for up to 36 months. J Neurol Neurosurg Psychiatry 80:979–985. doi:10.​1136/​jnnp.​2008.​154948 PubMedCrossRef
go back to reference Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14. doi:10.1006/exnr.2000.7408 PubMedCrossRef Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14. doi:10.​1006/​exnr.​2000.​7408 PubMedCrossRef
go back to reference Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27PubMedCrossRef Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27PubMedCrossRef
go back to reference Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438PubMedCrossRef Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438PubMedCrossRef
go back to reference Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91:2076–2080PubMedPubMedCentralCrossRef Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91:2076–2080PubMedPubMedCentralCrossRef
go back to reference Boyden ES (2011) A history of optogenetics: the development of tools for controlling brain circuits with light F1000. Biol Rep. doi:10.3410/B3-11 Boyden ES (2011) A history of optogenetics: the development of tools for controlling brain circuits with light F1000. Biol Rep. doi:10.​3410/​B3-11
go back to reference Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. doi:10.1038/nn1525 PubMedCrossRef Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. doi:10.​1038/​nn1525 PubMedCrossRef
go back to reference Chang WH, Lin SK, Lane HY, Wei FC, Hu WH, Lam YW et al (1998) Reversible metabolism of clozapine and clozapine N-oxide in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 22:723–739PubMedCrossRef Chang WH, Lin SK, Lane HY, Wei FC, Hu WH, Lam YW et al (1998) Reversible metabolism of clozapine and clozapine N-oxide in schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 22:723–739PubMedCrossRef
go back to reference de Leeuw CN, Dyka FM, Boye SL, Laprise S, Zhou M, Chou AY et al (2014) Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors. Mol Ther. doi:10.1038/mtm.2013.5 de Leeuw CN, Dyka FM, Boye SL, Laprise S, Zhou M, Chou AY et al (2014) Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors. Mol Ther. doi:10.​1038/​mtm.​2013.​5
go back to reference Dodiya HB, Bjorklund T, Stansell J 3rd, Mandel RJ, Kirik D, Kordower JH (2010) Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol Ther 18:579–587. doi:10.1038/mt.2009.216 PubMedCrossRef Dodiya HB, Bjorklund T, Stansell J 3rd, Mandel RJ, Kirik D, Kordower JH (2010) Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol Ther 18:579–587. doi:10.​1038/​mt.​2009.​216 PubMedCrossRef
go back to reference Eldridge MA, Lerchner W, Saunders RC, Kaneko H, Krausz KW, Gonzalez FJ et al (2016) Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nat Neurosci 19:37–39. doi:10.1038/nn.4192 PubMedCrossRef Eldridge MA, Lerchner W, Saunders RC, Kaneko H, Krausz KW, Gonzalez FJ et al (2016) Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nat Neurosci 19:37–39. doi:10.​1038/​nn.​4192 PubMedCrossRef
go back to reference Enquist LW, Husak PJ, Banfield BW, Smith GA (1998) Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res 51:237–347PubMedCrossRef Enquist LW, Husak PJ, Banfield BW, Smith GA (1998) Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res 51:237–347PubMedCrossRef
go back to reference Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D et al (2015) Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science. doi:10.1126/science.aac9698 PubMed Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D et al (2015) Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science. doi:10.​1126/​science.​aac9698 PubMed
go back to reference Gompf HS, Budygin EA, Fuller PM, Bass CE (2015) Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals Front. Behav Neurosci 9:152. doi:10.3389/fnbeh.2015.00152 Gompf HS, Budygin EA, Fuller PM, Bass CE (2015) Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals Front. Behav Neurosci 9:152. doi:10.​3389/​fnbeh.​2015.​00152
go back to reference Hadaczek P, Kohutnicka M, Krauze MT, Bringas J, Pivirotto P, Cunningham J et al (2006) Convection-enhanced delivery of adeno-associated virus type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain. Hum Gene Ther 17:291–302. doi:10.1089/hum.2006.17.291 PubMedCrossRef Hadaczek P, Kohutnicka M, Krauze MT, Bringas J, Pivirotto P, Cunningham J et al (2006) Convection-enhanced delivery of adeno-associated virus type 2 (AAV2) into the striatum and transport of AAV2 within monkey brain. Hum Gene Ther 17:291–302. doi:10.​1089/​hum.​2006.​17.​291 PubMedCrossRef
go back to reference Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445:238–255. doi:10.1002/cne.10165 PubMedCrossRef Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445:238–255. doi:10.​1002/​cne.​10165 PubMedCrossRef
go back to reference Jann MW, Lam YW, Chang WH (1994) Rapid formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Arch Int Pharmacodyn Ther 328:243–250PubMed Jann MW, Lam YW, Chang WH (1994) Rapid formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Arch Int Pharmacodyn Ther 328:243–250PubMed
go back to reference Jin X, Tecuapetla F, Costa RM (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci. doi:10.1038/nn.3632 Jin X, Tecuapetla F, Costa RM (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci. doi:10.​1038/​nn.​3632
go back to reference Kato S, Kobayashi K, Inoue K, Kuramochi M, Okada T, Yaginuma H et al (2011a) A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 22:197–206. doi:10.1089/hum.2009.179 PubMedCrossRef Kato S, Kobayashi K, Inoue K, Kuramochi M, Okada T, Yaginuma H et al (2011a) A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 22:197–206. doi:10.​1089/​hum.​2009.​179 PubMedCrossRef
go back to reference Kato S, Kuramochi M, Takasumi K, Kobayashi K, Inoue K, Takahara D et al (2011c) Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 22:1511–1523. doi:10.1089/hum.2011.111 PubMedCrossRef Kato S, Kuramochi M, Takasumi K, Kobayashi K, Inoue K, Takahara D et al (2011c) Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 22:1511–1523. doi:10.​1089/​hum.​2011.​111 PubMedCrossRef
go back to reference Kotterman MA, Yin L, Strazzeri JM, Flannery JG, Merigan WH, Schaffer DV (2015) Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther 22:116–126. doi:10.1038/gt.2014.115 PubMedCrossRef Kotterman MA, Yin L, Strazzeri JM, Flannery JG, Merigan WH, Schaffer DV (2015) Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther 22:116–126. doi:10.​1038/​gt.​2014.​115 PubMedCrossRef
go back to reference Lerchner W, Corgiat B, Der Minassian V, Saunders RC, Richmond BJ (2014) Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain. Gene Ther 21:233–241. doi:10.1038/gt.2013.75 PubMedCrossRef Lerchner W, Corgiat B, Der Minassian V, Saunders RC, Richmond BJ (2014) Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain. Gene Ther 21:233–241. doi:10.​1038/​gt.​2013.​75 PubMedCrossRef
go back to reference Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D (2007) Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol 98:3525–3537. doi:10.1152/jn.00808.2007 PubMedCrossRef Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D (2007) Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol 98:3525–3537. doi:10.​1152/​jn.​00808.​2007 PubMedCrossRef
go back to reference MacLaren DA, Browne RW, Shaw JK, Krishnan Radhakrishnan S, Khare P, Espana RA et al. (2016) Clozapine N-oxide administration produces behavioral effects in long-evans rats: implications for designing DREADD experiments. eNeuro 3. doi:10.1523/ENEURO.0219-16.2016 MacLaren DA, Browne RW, Shaw JK, Krishnan Radhakrishnan S, Khare P, Espana RA et al. (2016) Clozapine N-oxide administration produces behavioral effects in long-evans rats: implications for designing DREADD experiments. eNeuro 3. doi:10.​1523/​ENEURO.​0219-16.​2016
go back to reference Markakis EA, Vives KP, Bober J, Leichtle S, Leranth C, Beecham J et al (2010) Comparative transduction efficiency of AAV vector serotypes 1–6 in the substantia nigra and striatum of the primate brain. Mol Ther 18:588–593. doi:10.1038/mt.2009.286 PubMedCrossRef Markakis EA, Vives KP, Bober J, Leichtle S, Leranth C, Beecham J et al (2010) Comparative transduction efficiency of AAV vector serotypes 1–6 in the substantia nigra and striatum of the primate brain. Mol Ther 18:588–593. doi:10.​1038/​mt.​2009.​286 PubMedCrossRef
go back to reference Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172. doi:10.1038/nmeth.1808 CrossRef Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R et al (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172. doi:10.​1038/​nmeth.​1808 CrossRef
go back to reference Richfield EK, Young AB, Penney JB (1987) Comparative distribution of dopamine D-1 and D-2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys. J Comp Neurol 262:446–463. doi:10.1002/cne.902620308 PubMedCrossRef Richfield EK, Young AB, Penney JB (1987) Comparative distribution of dopamine D-1 and D-2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys. J Comp Neurol 262:446–463. doi:10.​1002/​cne.​902620308 PubMedCrossRef
go back to reference Samaranch L, San Sebastian W, Kells AP, Salegio EA, Heller G, Bringas JR et al (2014) AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther 22:329–337. doi:10.1038/mt.2013.266 PubMedPubMedCentralCrossRef Samaranch L, San Sebastian W, Kells AP, Salegio EA, Heller G, Bringas JR et al (2014) AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther 22:329–337. doi:10.​1038/​mt.​2013.​266 PubMedPubMedCentralCrossRef
go back to reference San Sebastian W, Samaranch L, Heller G, Kells AP, Bringas J, Pivirotto P et al (2013) Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. Gene Ther 20:1178–1183. doi:10.1038/gt.2013.48 PubMedCrossRef San Sebastian W, Samaranch L, Heller G, Kells AP, Bringas J, Pivirotto P et al (2013) Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. Gene Ther 20:1178–1183. doi:10.​1038/​gt.​2013.​48 PubMedCrossRef
go back to reference Schultz W (1986) Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J Neurophysiol 56:1439–1461PubMedCrossRef Schultz W (1986) Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J Neurophysiol 56:1439–1461PubMedCrossRef
go back to reference Wang J, Ozden I, Diagne M, Wagner F, Borton D, Brush B et al (2011) Approaches to optical neuromodulation from rodents to non-human primates by integrated optoelectronic devices. Conf Proc IEEE Eng Med Biol Soc 2011:7525–7528. doi:10.1109/IEMBS.2011.6091855 PubMed Wang J, Ozden I, Diagne M, Wagner F, Borton D, Brush B et al (2011) Approaches to optical neuromodulation from rodents to non-human primates by integrated optoelectronic devices. Conf Proc IEEE Eng Med Biol Soc 2011:7525–7528. doi:10.​1109/​IEMBS.​2011.​6091855 PubMed
go back to reference Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H et al (2014) Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res. doi:10.1016/j.neures.2014.09.002 PubMed Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H et al (2014) Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res. doi:10.​1016/​j.​neures.​2014.​09.​002 PubMed
go back to reference White E, Bienemann A, Megraw L, Bunnun C, Wyatt M, Taylor H et al (2012) Distribution properties of lentiviral vectors administered into the striatum by convection-enhanced delivery. Hum Gene Ther 23:115–127. doi:10.1089/hum.2010.185 PubMedCrossRef White E, Bienemann A, Megraw L, Bunnun C, Wyatt M, Taylor H et al (2012) Distribution properties of lentiviral vectors administered into the striatum by convection-enhanced delivery. Hum Gene Ther 23:115–127. doi:10.​1089/​hum.​2010.​185 PubMedCrossRef
go back to reference Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530PubMedCrossRef Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530PubMedCrossRef
Metadata
Title
Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates
Authors
Adriana Galvan
Michael J. Caiola
Daniel L. Albaugh
Publication date
01-03-2018
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 3/2018
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-017-1697-8

Other articles of this Issue 3/2018

Journal of Neural Transmission 3/2018 Go to the issue

Neurology and Preclinical Neurological Studies - Review Article

Dysregulation of striatal projection neurons in Parkinson’s disease

Translational Neurosciences - Review Article

The role of the basal ganglia in the control of seizure

Translational Neurosciences - Review Article

Primate beta oscillations and rhythmic behaviors