Skip to main content
Top
Published in: Journal of Neural Transmission 3/2018

01-03-2018 | Neurology and Preclinical Neurological Studies - Review Article

The calretinin interneurons of the striatum: comparisons between rodents and primates under normal and pathological conditions

Authors: S. Petryszyn, A. Parent, Martin Parent

Published in: Journal of Neural Transmission | Issue 3/2018

Login to get access

Abstract

This paper reviews the major organizational features of calretinin interneurons in the dorsal striatum of rodents and primates, with some insights on the state of these neurons in Parkinson’s disease and Huntington’s chorea. The rat striatum harbors medium-sized calretinin-immunoreactive (CR+) interneurons, whereas the mouse striatum is pervaded by medium-sized CR+ interneurons together with numerous small and highly immunoreactive CR+ cells. The CR interneuronal network is even more elaborated in monkey and human striatum where, in addition to the small- and medium-sized CR+ interneurons, a set of large CR+ interneurons occurs. The majority of these giant CR+ interneurons, which are unique to the primate striatum, also display immunoreactivity for choline acetyltransferase (ChAT), a faithful marker of cholinergic neurons. The expression of CR and/or ChAT by the large striatal interneurons appears to be seriously compromised in Parkinson’s disease and Huntington’s chorea. The species differences noted above have to be considered to better understand the role of CR interneurons in striatal organization in both normal and pathological conditions.
Literature
go back to reference Albin RL, Tagle DA (1995) Genetics and molecular biology of Huntington’s disease. Trends Neurosci 18:11–14CrossRefPubMed Albin RL, Tagle DA (1995) Genetics and molecular biology of Huntington’s disease. Trends Neurosci 18:11–14CrossRefPubMed
go back to reference Beighton P, Hayden MR (1981) Huntington’s chorea. S Afr Med J 59:250PubMed Beighton P, Hayden MR (1981) Huntington’s chorea. S Afr Med J 59:250PubMed
go back to reference Bennett BD, Bolam JP (1993) Characterization of calretinin-immunoreactive structures in the striatum of the rat. Brain Res 609:137–148CrossRefPubMed Bennett BD, Bolam JP (1993) Characterization of calretinin-immunoreactive structures in the striatum of the rat. Brain Res 609:137–148CrossRefPubMed
go back to reference Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15:7821–7836PubMed Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15:7821–7836PubMed
go back to reference Betarbet R et al (1997) Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 17:6761–6768PubMed Betarbet R et al (1997) Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 17:6761–6768PubMed
go back to reference Blumcke I et al (1996) Preservation of calretinin-immunoreactive neurons in the hippocampus of epilepsy patients with Ammon’s horn sclerosis. J Neuropathol Exp Neurol 55:329–341CrossRefPubMed Blumcke I et al (1996) Preservation of calretinin-immunoreactive neurons in the hippocampus of epilepsy patients with Ammon’s horn sclerosis. J Neuropathol Exp Neurol 55:329–341CrossRefPubMed
go back to reference Cicchetti F, Gould PV, Parent A (1996) Sparing of striatal neurons coexpressing calretinin and substance P (NK1) receptor in Huntington’s disease. Brain Res 730:232–237CrossRefPubMed Cicchetti F, Gould PV, Parent A (1996) Sparing of striatal neurons coexpressing calretinin and substance P (NK1) receptor in Huntington’s disease. Brain Res 730:232–237CrossRefPubMed
go back to reference Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Brain Res Rev 34:80–101CrossRefPubMed Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Brain Res Rev 34:80–101CrossRefPubMed
go back to reference Daviss SR, Lewis DA (1995) Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res 59:81–96CrossRefPubMed Daviss SR, Lewis DA (1995) Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res 59:81–96CrossRefPubMed
go back to reference Dawbarn D, De Quidt ME, Emson PC (1985) Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease. Brain Res 340:251–260CrossRefPubMed Dawbarn D, De Quidt ME, Emson PC (1985) Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease. Brain Res 340:251–260CrossRefPubMed
go back to reference Dawson VL, Dawson TM, Filloux FM, Wamsley JK (1988) Evidence for dopamine D-2 receptors on cholinergic interneurons in the rat caudate-putamen. Life Sci 42:1933–1939CrossRefPubMed Dawson VL, Dawson TM, Filloux FM, Wamsley JK (1988) Evidence for dopamine D-2 receptors on cholinergic interneurons in the rat caudate-putamen. Life Sci 42:1933–1939CrossRefPubMed
go back to reference DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res 114:245–256CrossRefPubMed DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res 114:245–256CrossRefPubMed
go back to reference Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP Jr (1987) Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 46:12–27CrossRefPubMed Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP Jr (1987) Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 46:12–27CrossRefPubMed
go back to reference Figueredo-Cardenas G, Medina L, Reiner A (1996) Calretinin is largely localized to a unique population of striatal interneurons in rats. Brain Res 709:145–150CrossRefPubMed Figueredo-Cardenas G, Medina L, Reiner A (1996) Calretinin is largely localized to a unique population of striatal interneurons in rats. Brain Res 709:145–150CrossRefPubMed
go back to reference Fortin M, Parent A (1994) Patches in the striatum of squirrel monkeys are enriched with calretinin fibers but devoid of calretinin cell bodies. Neurosci Lett 182:51–54CrossRefPubMed Fortin M, Parent A (1994) Patches in the striatum of squirrel monkeys are enriched with calretinin fibers but devoid of calretinin cell bodies. Neurosci Lett 182:51–54CrossRefPubMed
go back to reference Gerfen C, Bolam J (2010) The neuroanatomical organization of the basal ganglia. Handb Basal Ganglia Struct Funct 20:3–28CrossRef Gerfen C, Bolam J (2010) The neuroanatomical organization of the basal ganglia. Handb Basal Ganglia Struct Funct 20:3–28CrossRef
go back to reference Gerfen C, Bolam JP (2017) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier (Academic Press), Amsterdam, pp 3–32CrossRef Gerfen C, Bolam JP (2017) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier (Academic Press), Amsterdam, pp 3–32CrossRef
go back to reference Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327:307–311CrossRefPubMed Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327:307–311CrossRefPubMed
go back to reference Hack NJ, Wride MC, Charters KM, Kater SB, Parks TN (2000) Developmental changes in the subcellular localization of calretinin. J Neurosci 20:RC67PubMed Hack NJ, Wride MC, Charters KM, Kater SB, Parks TN (2000) Developmental changes in the subcellular localization of calretinin. J Neurosci 20:RC67PubMed
go back to reference Hiroi N (1995) Compartmental organization of calretinin in the rat striatum. Neurosci Lett 197:223–226CrossRefPubMed Hiroi N (1995) Compartmental organization of calretinin in the rat striatum. Neurosci Lett 197:223–226CrossRefPubMed
go back to reference Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci Lett 152:145–148CrossRefPubMed Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci Lett 152:145–148CrossRefPubMed
go back to reference Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735. doi:10.1038/nn1265 CrossRefPubMed Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735. doi:10.​1038/​nn1265 CrossRefPubMed
go back to reference Holt DJ et al (1999) Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience 94:21–31CrossRefPubMed Holt DJ et al (1999) Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience 94:21–31CrossRefPubMed
go back to reference Hussain Z, Johnson LR, Totterdell S (1996) A light and electron microscopic study of NADPH-diaphorase-, calretinin- and parvalbumin-containing neurons in the rat nucleus accumbens. J Chem Neuroanat 10:19–39CrossRefPubMed Hussain Z, Johnson LR, Totterdell S (1996) A light and electron microscopic study of NADPH-diaphorase-, calretinin- and parvalbumin-containing neurons in the rat nucleus accumbens. J Chem Neuroanat 10:19–39CrossRefPubMed
go back to reference Kataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF, Vaccarino FM (2010) Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol 518:277–291. doi:10.1002/cne.22206 CrossRefPubMedPubMedCentral Kataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF, Vaccarino FM (2010) Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol 518:277–291. doi:10.​1002/​cne.​22206 CrossRefPubMedPubMedCentral
go back to reference Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535CrossRefPubMed Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535CrossRefPubMed
go back to reference Kubota Y, Mikawa S, Kawaguchi Y (1993) Neostriatal GABAergic interneurones contain NOS, calretinin or parvalbumin. NeuroReport 5:205–208CrossRefPubMed Kubota Y, Mikawa S, Kawaguchi Y (1993) Neostriatal GABAergic interneurones contain NOS, calretinin or parvalbumin. NeuroReport 5:205–208CrossRefPubMed
go back to reference Kuznicki J, Strauss KI, Jacobowitz DM (1995) Conformational changes and calcium binding by calretinin and its recombinant fragments containing different sets of EF hand motifs. Biochemistry 34:15389–15394CrossRefPubMed Kuznicki J, Strauss KI, Jacobowitz DM (1995) Conformational changes and calcium binding by calretinin and its recombinant fragments containing different sets of EF hand motifs. Biochemistry 34:15389–15394CrossRefPubMed
go back to reference Oorschot DE (2017) Cell type in the different nucleis of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier (Academic Press), Amsdterdam, pp 99–155CrossRef Oorschot DE (2017) Cell type in the different nucleis of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Elsevier (Academic Press), Amsdterdam, pp 99–155CrossRef
go back to reference Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127CrossRefPubMed Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127CrossRefPubMed
go back to reference Parent A, Cicchetti F, Beach TG (1995) Calretinin-immunoreactive neurons in the human striatum. Brain Res 674:347–351CrossRefPubMed Parent A, Cicchetti F, Beach TG (1995) Calretinin-immunoreactive neurons in the human striatum. Brain Res 674:347–351CrossRefPubMed
go back to reference Parent M, Bedard C, Pourcher E (2013) Dopaminergic innervation of the human subventricular zone: a comparison between Huntington’s chorea and Parkinson’s disease. Am J Neurodegener Dis 2:221–227PubMedPubMedCentral Parent M, Bedard C, Pourcher E (2013) Dopaminergic innervation of the human subventricular zone: a comparison between Huntington’s chorea and Parkinson’s disease. Am J Neurodegener Dis 2:221–227PubMedPubMedCentral
go back to reference Persechini A, Moncrief ND, Kretsinger RH (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci 12:462–467CrossRefPubMed Persechini A, Moncrief ND, Kretsinger RH (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci 12:462–467CrossRefPubMed
go back to reference Pochet R, Parmentier M, Lawson DE, Pasteels JL (1985) Rat brain synthesizes two ‘vitamin D-dependent’ calcium-binding proteins. Brain Res 345:251–256CrossRefPubMed Pochet R, Parmentier M, Lawson DE, Pasteels JL (1985) Rat brain synthesizes two ‘vitamin D-dependent’ calcium-binding proteins. Brain Res 345:251–256CrossRefPubMed
go back to reference Prensa L, Giménez-Amaya JM, Parent A (1998) Morphological features of neurons containing calcium-binding proteins in the human striatum. J Comp Neurol 390:552–563CrossRefPubMed Prensa L, Giménez-Amaya JM, Parent A (1998) Morphological features of neurons containing calcium-binding proteins in the human striatum. J Comp Neurol 390:552–563CrossRefPubMed
go back to reference Ramón y Cajal S (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés (transl. by L. Azoulay) Maloine. Paris 2:504–518 Ramón y Cajal S (1911) Histologie du Système Nerveux de l’Homme et des Vertébrés (transl. by L. Azoulay) Maloine. Paris 2:504–518
go back to reference Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46:101–134CrossRefPubMed Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46:101–134CrossRefPubMed
go back to reference Revishchin AV, Okhotin VE, Korochkin LI, Pavlova GV (2010a) A new population of calretinin-positive cells, presumptively neurons, with polymorphous spines in the mouse forebrain. Neurosci Behav Physiol 40:541–552. doi:10.1007/s11055-010-9295-3 CrossRefPubMed Revishchin AV, Okhotin VE, Korochkin LI, Pavlova GV (2010a) A new population of calretinin-positive cells, presumptively neurons, with polymorphous spines in the mouse forebrain. Neurosci Behav Physiol 40:541–552. doi:10.​1007/​s11055-010-9295-3 CrossRefPubMed
go back to reference Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–1353CrossRefPubMed Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–1353CrossRefPubMed
go back to reference Rymar VV, Sasseville R, Luk KC, Sadikot AF (2004) Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum. J Comp Neurol 469:325–339. doi:10.1002/cne.11008 CrossRefPubMed Rymar VV, Sasseville R, Luk KC, Sadikot AF (2004) Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum. J Comp Neurol 469:325–339. doi:10.​1002/​cne.​11008 CrossRefPubMed
go back to reference Schwaller B, Durussel I, Jermann D, Herrmann B, Cox JA (1997) Comparison of the Ca2+-binding properties of human recombinant calretinin-22k and calretinin. J Biol Chem 272:29663–29671CrossRefPubMed Schwaller B, Durussel I, Jermann D, Herrmann B, Cox JA (1997) Comparison of the Ca2+-binding properties of human recombinant calretinin-22k and calretinin. J Biol Chem 272:29663–29671CrossRefPubMed
go back to reference Tandé D, Höglinger G, Debeir T, Freundlieb N, Hirsch EC, François C (2006) New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain 129:1194–1200. doi:10.1093/brain/awl041 CrossRefPubMed Tandé D, Höglinger G, Debeir T, Freundlieb N, Hirsch EC, François C (2006) New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain 129:1194–1200. doi:10.​1093/​brain/​awl041 CrossRefPubMed
go back to reference Tepper JM, Koós T (2017) GABAergic interneurons of the striatum. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function, 2nd edn. Elsevier (Academic Press), Amsdterdam, pp 157–178CrossRef Tepper JM, Koós T (2017) GABAergic interneurons of the striatum. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function, 2nd edn. Elsevier (Academic Press), Amsdterdam, pp 157–178CrossRef
go back to reference Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMed Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMed
go back to reference Wu Y, Parent A (2000) Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Brain Res 863:182–191CrossRefPubMed Wu Y, Parent A (2000) Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Brain Res 863:182–191CrossRefPubMed
go back to reference Yan Z, Song WJ, Surmeier J (1997) D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol 77:1003–1015CrossRefPubMed Yan Z, Song WJ, Surmeier J (1997) D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol 77:1003–1015CrossRefPubMed
Metadata
Title
The calretinin interneurons of the striatum: comparisons between rodents and primates under normal and pathological conditions
Authors
S. Petryszyn
A. Parent
Martin Parent
Publication date
01-03-2018
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 3/2018
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-017-1687-x

Other articles of this Issue 3/2018

Journal of Neural Transmission 3/2018 Go to the issue

Neurology and Preclinical Neurological Studies - Review Article

Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates

Neurology and Preclinical Neurological Studies - Review Article

Reward and value coding by dopamine neurons in non-human primates

Neurology and Preclinical Neurological Studies - Review Article

Dysregulation of striatal projection neurons in Parkinson’s disease