Skip to main content
Top
Published in: Journal of Neural Transmission 8/2015

01-08-2015 | Psychiatry and Preclinical Psychiatric Studies - Original Article

Effect of transcranial direct current stimulation (tDCS) on MMN-indexed auditory discrimination: a pilot study

Authors: Danielle Impey, Verner Knott

Published in: Journal of Neural Transmission | Issue 8/2015

Login to get access

Abstract

Membrane potentials and brain plasticity are basic modes of cerebral information processing. Both can be externally (non-invasively) modulated by weak transcranial direct current stimulation (tDCS). Polarity-dependent tDCS-induced reversible circumscribed increases and decreases in cortical excitability and functional changes have been observed following stimulation of motor and visual cortices but relatively little research has been conducted with respect to the auditory cortex. The aim of this pilot study was to examine the effects of tDCS on auditory sensory discrimination in healthy participants (N = 12) assessed with the mismatch negativity (MMN) brain event-related potential (ERP). In a randomized, double-blind, sham-controlled design, participants received anodal tDCS over the primary auditory cortex (2 mA for 20 min) in one session and ‘sham’ stimulation (i.e., no stimulation except initial ramp-up for 30 s) in the other session. MMN elicited by changes in auditory pitch was found to be enhanced after receiving anodal tDCS compared to ‘sham’ stimulation, with the effects being evidenced in individuals with relatively reduced (vs. increased) baseline amplitudes and with relatively small (vs. large) pitch deviants. Additional studies are needed to further explore relationships between tDCS-related parameters, auditory stimulus features and individual differences prior to assessing the utility of this tool for treating auditory processing deficits in psychiatric and/or neurological disorders.
Literature
go back to reference Boggio PS, Khoury LP, Martins DC, Martins OE, Macedo EC, Fregni F (2008) Temporal cortex DC stimulation enhances performance on a visual recognition memory task in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 80:444–447CrossRefPubMed Boggio PS, Khoury LP, Martins DC, Martins OE, Macedo EC, Fregni F (2008) Temporal cortex DC stimulation enhances performance on a visual recognition memory task in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 80:444–447CrossRefPubMed
go back to reference Braff DL, Light GA (2004) Preattentional and attentional cognitive as targets for treating schizophrenia. Psychopharmacology 174:75–85CrossRefPubMed Braff DL, Light GA (2004) Preattentional and attentional cognitive as targets for treating schizophrenia. Psychopharmacology 174:75–85CrossRefPubMed
go back to reference Chen JC, Hämmerer D, Strigaro G, Liou LM, Tsai CH, Rothwell JC, Edwards MJ (2014) Domain-specific suppression of auditory mismatch negativity with transcranial direct current stimulation. Clin Neurophysiol 125(3):585–592CrossRefPubMed Chen JC, Hämmerer D, Strigaro G, Liou LM, Tsai CH, Rothwell JC, Edwards MJ (2014) Domain-specific suppression of auditory mismatch negativity with transcranial direct current stimulation. Clin Neurophysiol 125(3):585–592CrossRefPubMed
go back to reference Deouell LY (2007) The frontal generator of the mismatch negativity revisited. J Psychophysiol 21(3):188–203CrossRef Deouell LY (2007) The frontal generator of the mismatch negativity revisited. J Psychophysiol 21(3):188–203CrossRef
go back to reference Engeland C, Mahoney C, Mohr E, Ilivitsky V, Knott VJ (2002) Acute nicotine effects on auditory sensory memory in tacrine-treated and nontreated patients with Alzheimer’s disease: an event-related potential study. Pharmacol Biochem Behav 72(1):457–464CrossRefPubMed Engeland C, Mahoney C, Mohr E, Ilivitsky V, Knott VJ (2002) Acute nicotine effects on auditory sensory memory in tacrine-treated and nontreated patients with Alzheimer’s disease: an event-related potential study. Pharmacol Biochem Behav 72(1):457–464CrossRefPubMed
go back to reference Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S et al (2008) Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71:493–498CrossRefPubMed Ferrucci R, Mameli F, Guidi I, Mrakic-Sposta S, Vergari M, Marceglia S et al (2008) Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71:493–498CrossRefPubMed
go back to reference First M, Spitzer R, Williams J, Gibbon M. (1995). Structured Clinical Interview for DSM-IV—Non-Patient Edition (SCID-NP, Version 1.0). New York, NY : New York State Psychiatric Institute First M, Spitzer R, Williams J, Gibbon M. (1995). Structured Clinical Interview for DSM-IV—Non-Patient Edition (SCID-NP, Version 1.0). New York, NY : New York State Psychiatric Institute
go back to reference Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E et al (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166:23–30CrossRefPubMed Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E et al (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166:23–30CrossRefPubMed
go back to reference Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, Pascual-Leone A (2006a) Treatment of major depression with transcranial direct current stimulation. Bipolar Disord 8:203–204CrossRefPubMed Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, Pascual-Leone A (2006a) Treatment of major depression with transcranial direct current stimulation. Bipolar Disord 8:203–204CrossRefPubMed
go back to reference Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP et al (2006b) A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122:197–209CrossRefPubMed Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP et al (2006b) A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122:197–209CrossRefPubMed
go back to reference Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 177:845–850CrossRef Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 177:845–850CrossRef
go back to reference Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27(6):627–640CrossRefPubMed Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27(6):627–640CrossRefPubMed
go back to reference Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64:872–875CrossRefPubMed Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64:872–875CrossRefPubMed
go back to reference Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996) Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. PNAS 93:11962–11967PubMedCentralCrossRefPubMed Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996) Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. PNAS 93:11962–11967PubMedCentralCrossRefPubMed
go back to reference Jo JM, Kim Y, Ko M, Ohn S, Joen B, Lee KH (2009) Enhancing the working memory of stroke patients using tdcs. Am J Phys Med Rehabil 88:404–409CrossRefPubMed Jo JM, Kim Y, Ko M, Ohn S, Joen B, Lee KH (2009) Enhancing the working memory of stroke patients using tdcs. Am J Phys Med Rehabil 88:404–409CrossRefPubMed
go back to reference Knott V, de la Salle S, Smith D, Phillipe T, Dort H, Choueiry J, Impey D (2013) Baseline dependency of nicotine’s sensory gating actions: similarities and differences in low, medium and high P50 suppressors. J Psychopharmacol 27(9):790–800CrossRefPubMed Knott V, de la Salle S, Smith D, Phillipe T, Dort H, Choueiry J, Impey D (2013) Baseline dependency of nicotine’s sensory gating actions: similarities and differences in low, medium and high P50 suppressors. J Psychopharmacol 27(9):790–800CrossRefPubMed
go back to reference Knott V, Choueiry J, Dort H, Smith D, Impey D, de la Salle S, Philippe T (2014a) Baseline-dependent modulating effects of nicotine on voluntary and involuntary attention measured with brain event-related P3 potentials. Pharmacol Biochem Behav 122:107–117CrossRefPubMed Knott V, Choueiry J, Dort H, Smith D, Impey D, de la Salle S, Philippe T (2014a) Baseline-dependent modulating effects of nicotine on voluntary and involuntary attention measured with brain event-related P3 potentials. Pharmacol Biochem Behav 122:107–117CrossRefPubMed
go back to reference Knott V, Impey D, Philippe T, Smith D, Choueiry J, Salle S, Dort H (2014b) Modulation of auditory deviance detection by acute nicotine is baseline and deviant dependent in healthy nonsmokers: a mismatch negativity study. Hum Psychopharmacol Clin Exp 29(5):446–458 Knott V, Impey D, Philippe T, Smith D, Choueiry J, Salle S, Dort H (2014b) Modulation of auditory deviance detection by acute nicotine is baseline and deviant dependent in healthy nonsmokers: a mismatch negativity study. Hum Psychopharmacol Clin Exp 29(5):446–458
go back to reference Kuo M-F, Grosh J, Fregni F, Faulus W, Mitsche M (2007) Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. J Neurosci 27:1442–1447 Kuo M-F, Grosh J, Fregni F, Faulus W, Mitsche M (2007) Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. J Neurosci 27:1442–1447
go back to reference Kuo H-I,Bikson M, Datta A, Minhas P, Paulus W, Kuo M-F et al.(2013) Comparing cortical plasticity induced by conventional and high-definition 4×1ring tDCS: a neurophysiological study. Brain Stimul 6:644–648 doi: 10.1016/j.brs.2012.09.010 Kuo H-I,Bikson M, Datta A, Minhas P, Paulus W, Kuo M-F et al.(2013) Comparing cortical plasticity induced by conventional and high-definition 4×1ring tDCS: a neurophysiological study. Brain Stimul 6:644–648 doi: 10.​1016/​j.​brs.​2012.​09.​010
go back to reference Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125:2238–2247CrossRefPubMed Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125:2238–2247CrossRefPubMed
go back to reference Light GA, Braff DL (2005) Stability of mismatch negativity deficits and their relationship to functional impairments in chronic schizophrenia. Am J Psychiatry 162:1741–1743CrossRefPubMed Light GA, Braff DL (2005) Stability of mismatch negativity deficits and their relationship to functional impairments in chronic schizophrenia. Am J Psychiatry 162:1741–1743CrossRefPubMed
go back to reference Mathys C, Loui P, Zheng X, Schlaug G (2010) Non-invasive brain stimulation applied to Heschl’s gyrus modulates pitch discrimination. Front Psychology 1(193):1–7 Mathys C, Loui P, Zheng X, Schlaug G (2010) Non-invasive brain stimulation applied to Heschl’s gyrus modulates pitch discrimination. Front Psychology 1(193):1–7
go back to reference Maxwell ME (1992) Family Interview for Genetic Studies (FIGS): a manual for FIGS. Bethesda, Md, NIMH Maxwell ME (1992) Family Interview for Genetic Studies (FIGS): a manual for FIGS. Bethesda, Md, NIMH
go back to reference Näätänen R, Paavilainen P, Alho K, Reinikainen K (1989) Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain. Neurosci Lett 98:217–221CrossRefPubMed Näätänen R, Paavilainen P, Alho K, Reinikainen K (1989) Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain. Neurosci Lett 98:217–221CrossRefPubMed
go back to reference Näätänen R, Pakarinen S, Rinne T, Takegata R (2004) The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol 115:140–144CrossRefPubMed Näätänen R, Pakarinen S, Rinne T, Takegata R (2004) The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol 115:140–144CrossRefPubMed
go back to reference Näätänen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Int J Psychophysiol 42:25–32CrossRef Näätänen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Int J Psychophysiol 42:25–32CrossRef
go back to reference Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118(12):2544–2590CrossRefPubMed Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118(12):2544–2590CrossRefPubMed
go back to reference Näätänen R, Kujula T, Winkler I (2011) Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48:4–22CrossRefPubMed Näätänen R, Kujula T, Winkler I (2011) Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48:4–22CrossRefPubMed
go back to reference Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 123(3):424–458CrossRefPubMed Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 123(3):424–458CrossRefPubMed
go back to reference Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 57:1899–1901 Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 57:1899–1901
go back to reference Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003a) Modulation of cortical excitability by weak direct current stimulation—technical, safety and functional aspects. Suppl Clin Neurophysiol 56:255–276CrossRefPubMed Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003a) Modulation of cortical excitability by weak direct current stimulation—technical, safety and functional aspects. Suppl Clin Neurophysiol 56:255–276CrossRefPubMed
go back to reference Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N et al (2003b) Pharmacological modulation of cortical excitability shirts induced by transcranial direct current stimulation in humans. J Physiol 553:293–301PubMedCentralCrossRefPubMed Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N et al (2003b) Pharmacological modulation of cortical excitability shirts induced by transcranial direct current stimulation in humans. J Physiol 553:293–301PubMedCentralCrossRefPubMed
go back to reference Nitsche MA, Doemkes S, Karakoese T, Antal A, Liebetanz D, Lang N, Paulus W (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97(4):3109–3117CrossRefPubMed Nitsche MA, Doemkes S, Karakoese T, Antal A, Liebetanz D, Lang N, Paulus W (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97(4):3109–3117CrossRefPubMed
go back to reference Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A et al (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimulation 1(3):206–223CrossRefPubMed Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A et al (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimulation 1(3):206–223CrossRefPubMed
go back to reference Opitz B, Rinne T, Mecklinger A, Von Cramon DY, Schröger E (2002) Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. Neuroimage 15(1):167–174CrossRefPubMed Opitz B, Rinne T, Mecklinger A, Von Cramon DY, Schröger E (2002) Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. Neuroimage 15(1):167–174CrossRefPubMed
go back to reference Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation 2(4):215–228PubMedCentralCrossRefPubMed Radman T, Ramos RL, Brumberg JC, Bikson M (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation 2(4):215–228PubMedCentralCrossRefPubMed
go back to reference Shalgi S, Deouell LY (2007) Direct evidence for differential roles of temporal and frontal components of auditory change detection. Neuropsychologia 45(8):1878–1888CrossRefPubMed Shalgi S, Deouell LY (2007) Direct evidence for differential roles of temporal and frontal components of auditory change detection. Neuropsychologia 45(8):1878–1888CrossRefPubMed
go back to reference Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. The Neuroscientist 17(1):37–53CrossRefPubMed Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. The Neuroscientist 17(1):37–53CrossRefPubMed
go back to reference Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57(12):1139–1147CrossRefPubMed Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57(12):1139–1147CrossRefPubMed
go back to reference Vines BW, Schnider NM, Schlaug G (2006) Testing for causality with transcranial direct current stimulation: pitch memory and the left supramarginal gyrus. NeuroReport 17:1047–1050PubMedCentralCrossRefPubMed Vines BW, Schnider NM, Schlaug G (2006) Testing for causality with transcranial direct current stimulation: pitch memory and the left supramarginal gyrus. NeuroReport 17:1047–1050PubMedCentralCrossRefPubMed
go back to reference Zaehle T, Beretta M, Jancke L, Herrmann CS, Sandmann P (2001) Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res 215:135–140CrossRef Zaehle T, Beretta M, Jancke L, Herrmann CS, Sandmann P (2001) Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res 215:135–140CrossRef
Metadata
Title
Effect of transcranial direct current stimulation (tDCS) on MMN-indexed auditory discrimination: a pilot study
Authors
Danielle Impey
Verner Knott
Publication date
01-08-2015
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 8/2015
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-015-1365-9

Other articles of this Issue 8/2015

Journal of Neural Transmission 8/2015 Go to the issue

Translational Neurosciences - Original Article

Stretch-sensitive paresis and effort perception in hemiparesis