Skip to main content
Top
Published in: Acta Neurochirurgica 5/2020

Open Access 01-05-2020 | Magnetic Resonance Imaging | Original Article - Functional Neurosurgery - Movement disorders

The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series

Authors: Volker Arnd Coenen, Bastian Sajonz, Thomas Prokop, Marco Reisert, Tobias Piroth, Horst Urbach, Carolin Jenkner, Peter Christoph Reinacher

Published in: Acta Neurochirurgica | Issue 5/2020

Login to get access

Abstract

Introduction

Deep brain stimulation alleviates tremor of various origins. The dentato-rubro-thalamic tract (DRT) has been suspected as a common tremor-reducing structure. Statistical evidence has not been obtained. We here report the results of an uncontrolled case series of patients with refractory tremor who underwent deep brain stimulation under tractographic assistance.

Methods

A total of 36 patients were enrolled (essential tremor (17), Parkinson’s tremor (8), multiple sclerosis (7), dystonic head tremor (3), tardive dystonia (1)) and received 62 DBS electrodes (26 bilateral; 10 unilateral). Preoperatively, diffusion tensor magnetic resonance imaging sequences were acquired together with high-resolution anatomical T1W and T2W sequences. The DRT was individually tracked and used as a direct thalamic or subthalamic target. Intraoperative tremor reduction was graded on a 4-point scale (0 = no tremor reduction to 3 = full tremor control) and recorded together with the current amplitude, respectively. Stimulation point coordinates were recorded and compared to DRT. The relation of the current amplitude needed to reduce tremor was expressed as TiCR (tremor improvement per current ratio).

Results

Stimulation points of 241 were available for analysis. A total of 68 trajectories were tested (62 dB leads, 1.1 trajectories tested per implanted lead). Tremor improvement was significantly decreasing (p < 0.01) if the distance to both the border and the center of the DRT was increasing. On the initial trajectory, 56 leads (90.3%) were finally placed. Long-term outcomes were not part of this analysis.

Discussion

Tremor of various origins was acutely alleviated at different points along the DRT fiber tract (above and below the MCP plane) despite different tremor diseases. DRT is potentially a common tremor-reducing structure. Individual targeting helps to reduce brain penetrating tracts. TiCR characterizes stimulation efficacy and might help to identify an optimal stimulation point.
Literature
1.
go back to reference Akram H, Dayal V, Mahlknecht P et al (2018) Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin 18:130–142PubMedPubMedCentralCrossRef Akram H, Dayal V, Mahlknecht P et al (2018) Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin 18:130–142PubMedPubMedCentralCrossRef
3.
go back to reference Anthofer J, Steib K, Lange M, Rothenfusser E, Fellner C, Brawanski A, Schlaier J (2017) Distance between active electrode contacts and dentatorubrothalamic tract in patients with habituation of stimulation effect of deep brain stimulation in essential tremor. J Neurol Surg A Cent Eur Neurosurg 78(04):350–357PubMedCrossRef Anthofer J, Steib K, Lange M, Rothenfusser E, Fellner C, Brawanski A, Schlaier J (2017) Distance between active electrode contacts and dentatorubrothalamic tract in patients with habituation of stimulation effect of deep brain stimulation in essential tremor. J Neurol Surg A Cent Eur Neurosurg 78(04):350–357PubMedCrossRef
4.
go back to reference Avecillas-Chasin JM, Alonso-Frech F, Parras O, del Prado N, Barcia JA (2015) Assessment of a method to determine deep brain stimulation targets using deterministic tractography in a navigation system. Neurosurg Rev 38(4):739–750 discussion 751PubMedCrossRef Avecillas-Chasin JM, Alonso-Frech F, Parras O, del Prado N, Barcia JA (2015) Assessment of a method to determine deep brain stimulation targets using deterministic tractography in a navigation system. Neurosurg Rev 38(4):739–750 discussion 751PubMedCrossRef
5.
go back to reference Jeurissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J (2014) Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103(C):411–426PubMedCrossRef Jeurissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J (2014) Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103(C):411–426PubMedCrossRef
6.
go back to reference Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, Payen I, Benazzouz A (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84(2):203–214PubMedCrossRef Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, Payen I, Benazzouz A (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84(2):203–214PubMedCrossRef
7.
go back to reference Blomstedt P, Hariz G-M, Hariz MI, Koskinen L-OD (2007) Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up. Br J Neurosurg 21(5):504–509PubMedCrossRef Blomstedt P, Hariz G-M, Hariz MI, Koskinen L-OD (2007) Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up. Br J Neurosurg 21(5):504–509PubMedCrossRef
8.
go back to reference Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34(2):661–670PubMedCrossRef Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34(2):661–670PubMedCrossRef
9.
go back to reference Calabrese E (2016) Diffusion tractography in deep brain stimulation surgery: a review. Front Neuroanat 10:1497–1411CrossRef Calabrese E (2016) Diffusion tractography in deep brain stimulation surgery: a review. Front Neuroanat 10:1497–1411CrossRef
10.
go back to reference Campbell JSW, Pike GB (2014) Potential and limitations of diffusion MRI tractography for the study of language. Brain Lang 131(C):65–73PubMedCrossRef Campbell JSW, Pike GB (2014) Potential and limitations of diffusion MRI tractography for the study of language. Brain Lang 131(C):65–73PubMedCrossRef
11.
go back to reference Chazen JL, Sarva H, Stieg PE, Min RJ, Ballon DJ, Pryor KO, Riegelhaupt PM, Kaplitt MG (2018) Clinical improvement associated with targeted interruption of the cerebellothalamic tract following MR-guided focused ultrasound for essential tremor. J Neurosurg 129(2):315–323PubMedCrossRef Chazen JL, Sarva H, Stieg PE, Min RJ, Ballon DJ, Pryor KO, Riegelhaupt PM, Kaplitt MG (2018) Clinical improvement associated with targeted interruption of the cerebellothalamic tract following MR-guided focused ultrasound for essential tremor. J Neurosurg 129(2):315–323PubMedCrossRef
13.
14.
go back to reference Coenen VA, Allert N, Paus S, Kronenbürger M, Urbach H, Mädler B (2014) Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor. Neurosurgery 75(6):657–670PubMedCrossRef Coenen VA, Allert N, Paus S, Kronenbürger M, Urbach H, Mädler B (2014) Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor. Neurosurgery 75(6):657–670PubMedCrossRef
15.
go back to reference Coenen VA, Mädler B, Schiffbauer H, Urbach H, Allert N (2011) Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery 68(4):1069–1075 discussion 1075–6PubMedCrossRef Coenen VA, Mädler B, Schiffbauer H, Urbach H, Allert N (2011) Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery 68(4):1069–1075 discussion 1075–6PubMedCrossRef
16.
go back to reference Coenen VA, Rijntjes M, Prokop T, Piroth T, Amtage F, Urbach H, Reinacher PC (2016) One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson’s disease. Acta Neurochir 158(4):773–781. https://doi.org/10.1007/s00701-016-2725-4 Coenen VA, Rijntjes M, Prokop T, Piroth T, Amtage F, Urbach H, Reinacher PC (2016) One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson’s disease. Acta Neurochir 158(4):773–781. https://​doi.​org/​10.​1007/​s00701-016-2725-4
17.
go back to reference Coenen VA, Schlaepfer TE, Allert N, Mdler B (2012) Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation, 1st ed. Emerging Horizons in Neuromodulation:New Frontiers in Brain and Spine Stimulation 107:207–234CrossRef Coenen VA, Schlaepfer TE, Allert N, Mdler B (2012) Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation, 1st ed. Emerging Horizons in Neuromodulation:New Frontiers in Brain and Spine Stimulation 107:207–234CrossRef
18.
go back to reference Coenen VA, Schumacher LV, Kaller C, Schlaepfer TE, Reinacher PC, Egger K, Urbach H, Reisert M (2018) The anatomy of the human medial forebrain bundle_ ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. Neuroimage Clin 18:770–783PubMedPubMedCentralCrossRef Coenen VA, Schumacher LV, Kaller C, Schlaepfer TE, Reinacher PC, Egger K, Urbach H, Reisert M (2018) The anatomy of the human medial forebrain bundle_ ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. Neuroimage Clin 18:770–783PubMedPubMedCentralCrossRef
19.
go back to reference Coenen VA, Varkuti B, Parpaley Y, Skodda S, Prokop T, Urbach H, Li M, Reinacher PC (2017) Postoperative neuroimaging analysis of DRT deep brain stimulation revision surgery for complicated essential tremor. Acta Neurochir 70(Suppl 3):27–29 Coenen VA, Varkuti B, Parpaley Y, Skodda S, Prokop T, Urbach H, Li M, Reinacher PC (2017) Postoperative neuroimaging analysis of DRT deep brain stimulation revision surgery for complicated essential tremor. Acta Neurochir 70(Suppl 3):27–29
20.
go back to reference Contarino MF, van Coller R, Mosch A, van der Gaag NA, Hoffmann CF (2017) Clinical approach to delayed-onset cerebellar impairment following deep brain stimulation for tremor. Brain 140(5):e27–e27PubMedCrossRef Contarino MF, van Coller R, Mosch A, van der Gaag NA, Hoffmann CF (2017) Clinical approach to delayed-onset cerebellar impairment following deep brain stimulation for tremor. Brain 140(5):e27–e27PubMedCrossRef
21.
go back to reference Fenoy AJ, Schiess MC (2017) Deep brain stimulation of the dentato-rubro-thalamic tract: outcomes of direct targeting for tremor. Neuromodulation 20(5):429–436PubMedCrossRef Fenoy AJ, Schiess MC (2017) Deep brain stimulation of the dentato-rubro-thalamic tract: outcomes of direct targeting for tremor. Neuromodulation 20(5):429–436PubMedCrossRef
22.
go back to reference Fenoy AJ, McHenry MA, Schiess MC (2017) Speech changes induced by deep brain stimulation of the subthalamic nucleus in Parkinson disease: involvement of the dentatorubrothalamic tract. J Neurosurg 126(6):2017–2027PubMedCrossRef Fenoy AJ, McHenry MA, Schiess MC (2017) Speech changes induced by deep brain stimulation of the subthalamic nucleus in Parkinson disease: involvement of the dentatorubrothalamic tract. J Neurosurg 126(6):2017–2027PubMedCrossRef
23.
go back to reference Fiechter M, Nowacki A, Oertel MF et al (2017) Deep brain stimulation for tremor: is there a common structure? Stereotact Funct Neurosurg 95(4):243–250PubMedCrossRef Fiechter M, Nowacki A, Oertel MF et al (2017) Deep brain stimulation for tremor: is there a common structure? Stereotact Funct Neurosurg 95(4):243–250PubMedCrossRef
24.
go back to reference Gallay MN, Jeanmonod D, Liu J, Morel A (2008) Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct 212(6):443–463PubMedPubMedCentralCrossRef Gallay MN, Jeanmonod D, Liu J, Morel A (2008) Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct 212(6):443–463PubMedPubMedCentralCrossRef
25.
go back to reference Gunalan K, Howell B, McIntyre CC (2018) Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation. Neuroimage 172:263–277PubMedCrossRef Gunalan K, Howell B, McIntyre CC (2018) Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation. Neuroimage 172:263–277PubMedCrossRef
26.
go back to reference Hamani C, Dostrovsky JO, Lozano AM (2006) The motor thalamus in neurosurgery. Neurosurgery 58(1):146–158 discussion 146–58PubMedCrossRef Hamani C, Dostrovsky JO, Lozano AM (2006) The motor thalamus in neurosurgery. Neurosurgery 58(1):146–158 discussion 146–58PubMedCrossRef
27.
go back to reference Hamel W, Herzog J, Kopper F, Pinsker M, Weinert D, Müller D, Krack P, Deuschl G, Mehdorn HM (2007) Deep brain stimulation in the subthalamic area is more effective than nucleus ventralis intermedius stimulation for bilateral intention tremor. Acta Neurochir 149(8):749–758PubMedCrossRef Hamel W, Herzog J, Kopper F, Pinsker M, Weinert D, Müller D, Krack P, Deuschl G, Mehdorn HM (2007) Deep brain stimulation in the subthalamic area is more effective than nucleus ventralis intermedius stimulation for bilateral intention tremor. Acta Neurochir 149(8):749–758PubMedCrossRef
28.
29.
go back to reference King NKK, Krishna V, Basha D, Elias G, Sammartino F, Hodaie M, Lozano AM, Hutchison WD (2017) Microelectrode recording findings within the tractography-defined ventral intermediate nucleus. J Neurosurg 126(5):1669–1675PubMedCrossRef King NKK, Krishna V, Basha D, Elias G, Sammartino F, Hodaie M, Lozano AM, Hutchison WD (2017) Microelectrode recording findings within the tractography-defined ventral intermediate nucleus. J Neurosurg 126(5):1669–1675PubMedCrossRef
30.
go back to reference Koller W, Pahwa R, Busenbark K et al (1997) High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 42(3):292–299PubMedCrossRef Koller W, Pahwa R, Busenbark K et al (1997) High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 42(3):292–299PubMedCrossRef
31.
go back to reference Kumar R, Lozano AM, Sime E, Lang AE (2003) Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology 61(11):1601–1604PubMedCrossRef Kumar R, Lozano AM, Sime E, Lang AE (2003) Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology 61(11):1601–1604PubMedCrossRef
33.
go back to reference Lind G, Schechtmann G, Lind C, Winter J, Meyerson BA, Linderoth B (2008) Subthalamic stimulation for essential tremor. Short- and long-term results and critical target area. Stereotact Funct Neurosurg 86(4):253–258PubMedCrossRef Lind G, Schechtmann G, Lind C, Winter J, Meyerson BA, Linderoth B (2008) Subthalamic stimulation for essential tremor. Short- and long-term results and critical target area. Stereotact Funct Neurosurg 86(4):253–258PubMedCrossRef
34.
go back to reference Mahlknecht P, Akram H, Georgiev D et al (2017) Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease. Mov Disord 32(8):1174–1182PubMedCrossRef Mahlknecht P, Akram H, Georgiev D et al (2017) Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease. Mov Disord 32(8):1174–1182PubMedCrossRef
35.
go back to reference Mai JK, Paxinos G, Voss T (2007) Atlas of the human brain, 3rd edn. Academic Press, Elsevier, Amsterdam Mai JK, Paxinos G, Voss T (2007) Atlas of the human brain, 3rd edn. Academic Press, Elsevier, Amsterdam
36.
go back to reference Marek M, Paus S, Allert N, Mädler B, Klockgether T, Urbach H, Coenen VA (2014) Ataxia and tremor due to lesions involving cerebellar projection pathways: a DTI tractographic study in six patients. J Neurol 262(1):54–58PubMedCrossRef Marek M, Paus S, Allert N, Mädler B, Klockgether T, Urbach H, Coenen VA (2014) Ataxia and tremor due to lesions involving cerebellar projection pathways: a DTI tractographic study in six patients. J Neurol 262(1):54–58PubMedCrossRef
37.
go back to reference Mädler B, Coenen VA (2012) Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue. AJNR Am J Neuroradiol 33(6):1072–1080PubMedPubMedCentralCrossRef Mädler B, Coenen VA (2012) Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue. AJNR Am J Neuroradiol 33(6):1072–1080PubMedPubMedCentralCrossRef
38.
go back to reference McIntyre ACTJFCC, Foutz TJ, McIntyre CC (2012) Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region. Brain Stimul 5(3):369–377PubMedCrossRef McIntyre ACTJFCC, Foutz TJ, McIntyre CC (2012) Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region. Brain Stimul 5(3):369–377PubMedCrossRef
39.
go back to reference Meola A, Comert A, Yeh F-C, Sivakanthan S, Fernández-Miranda JC (2016) The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosurg 124(5):1406–1412PubMedCrossRef Meola A, Comert A, Yeh F-C, Sivakanthan S, Fernández-Miranda JC (2016) The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosurg 124(5):1406–1412PubMedCrossRef
40.
go back to reference Milosevic L, Kalia SK, Hodaie M, Lozano AM, Popovic MR, Hutchison WD (2018) Physiological mechanisms of thalamic ventral intermediate nucleus stimulation for tremor suppression. Brain 141(7):2142–2155PubMedPubMedCentralCrossRef Milosevic L, Kalia SK, Hodaie M, Lozano AM, Popovic MR, Hutchison WD (2018) Physiological mechanisms of thalamic ventral intermediate nucleus stimulation for tremor suppression. Brain 141(7):2142–2155PubMedPubMedCentralCrossRef
41.
go back to reference Mollink J, van Baarsen KM, Dederen PJWC, Foxley S, Miller KL, Jbabdi S, Slump CH, Grotenhuis JA, Kleinnijenhuis M, van Cappellen van Walsum AM (2016) Dentatorubrothalamic tract localization with postmortem MR diffusion tractography compared to histological 3D reconstruction. Brain Struct Funct 221(7):3487–3501PubMedCrossRef Mollink J, van Baarsen KM, Dederen PJWC, Foxley S, Miller KL, Jbabdi S, Slump CH, Grotenhuis JA, Kleinnijenhuis M, van Cappellen van Walsum AM (2016) Dentatorubrothalamic tract localization with postmortem MR diffusion tractography compared to histological 3D reconstruction. Brain Struct Funct 221(7):3487–3501PubMedCrossRef
42.
go back to reference Rudolf Nieuwenhuys, Jan Voogd, Christiaan van Huijzen (2008) The Human Central Nervous System, 966 Rudolf Nieuwenhuys, Jan Voogd, Christiaan van Huijzen (2008) The Human Central Nervous System, 966
44.
go back to reference Petersen KJ, Reid JA, Chakravorti S, Juttukonda MR, Franco G, Trujillo P, Stark AJ, Dawant BM, Donahue MJ, Claassen DO (2018) Structural and functional connectivity of the nondecussating dentato-rubro-thalamic tract. Neuroimage 176:364–371PubMedCrossRef Petersen KJ, Reid JA, Chakravorti S, Juttukonda MR, Franco G, Trujillo P, Stark AJ, Dawant BM, Donahue MJ, Claassen DO (2018) Structural and functional connectivity of the nondecussating dentato-rubro-thalamic tract. Neuroimage 176:364–371PubMedCrossRef
45.
go back to reference Petersen MV, Lund TE, Sunde N, Frandsen J, Rosendal F, Juul N, Østergaard K (2016) Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation. J Neurosurg 126(5):1657–1668. https://doi.org/10.3171/2016.4.JNS1624 Petersen MV, Lund TE, Sunde N, Frandsen J, Rosendal F, Juul N, Østergaard K (2016) Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation. J Neurosurg 126(5):1657–1668. https://​doi.​org/​10.​3171/​2016.​4.​JNS1624
46.
go back to reference Plaha P (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 129(7):1732–1747PubMedCrossRef Plaha P (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 129(7):1732–1747PubMedCrossRef
47.
go back to reference Plaha P, Khan S, Gill SS (2008) Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatry 79(5):504–513PubMedCrossRef Plaha P, Khan S, Gill SS (2008) Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatry 79(5):504–513PubMedCrossRef
48.
go back to reference Plaha P, Patel NK, Gill SS (2004) Stimulation of the subthalamic region for essential tremor. J Neurosurg 101(1):48–54PubMedCrossRef Plaha P, Patel NK, Gill SS (2004) Stimulation of the subthalamic region for essential tremor. J Neurosurg 101(1):48–54PubMedCrossRef
49.
go back to reference Ranck JB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98(3):417–440PubMedCrossRef Ranck JB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98(3):417–440PubMedCrossRef
50.
go back to reference Reich MM, Brumberg J, Pozzi NG et al (2016) Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy? Brain 139(11):2948–2956PubMedCrossRef Reich MM, Brumberg J, Pozzi NG et al (2016) Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy? Brain 139(11):2948–2956PubMedCrossRef
51.
go back to reference Reinacher PC, Amtage F, Rijntjes M, Piroth T, Prokop T, Jenkner C, Kätzler J, Coenen VA (2018) One pass thalamic and subthalamic stimulation for patients with tremor-dominant idiopathic Parkinson syndrome (OPINION): protocol for a randomized, active-controlled, double-blinded pilot trial. JMIR Res Protoc 7(1):e36PubMedPubMedCentralCrossRef Reinacher PC, Amtage F, Rijntjes M, Piroth T, Prokop T, Jenkner C, Kätzler J, Coenen VA (2018) One pass thalamic and subthalamic stimulation for patients with tremor-dominant idiopathic Parkinson syndrome (OPINION): protocol for a randomized, active-controlled, double-blinded pilot trial. JMIR Res Protoc 7(1):e36PubMedPubMedCentralCrossRef
52.
go back to reference Reisert M, Mader I, Anastasopoulos C, Weigel M, Schnell S, Kiselev V (2011) Global fiber reconstruction becomes practical. Neuroimage 54(2):955–962PubMedCrossRef Reisert M, Mader I, Anastasopoulos C, Weigel M, Schnell S, Kiselev V (2011) Global fiber reconstruction becomes practical. Neuroimage 54(2):955–962PubMedCrossRef
53.
go back to reference Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, McIntyre CC, Gross RE, Mayberg HS (2017) A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry 62:10 Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, McIntyre CC, Gross RE, Mayberg HS (2017) A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry 62:10
54.
go back to reference Rodrigues NB, Mithani K, Meng Y, Lipsman N, Hamani C (2018) The emerging role of tractography in deep brain stimulation: basic principles and current applications. Brain Sci 8(2):23PubMedCentralCrossRef Rodrigues NB, Mithani K, Meng Y, Lipsman N, Hamani C (2018) The emerging role of tractography in deep brain stimulation: basic principles and current applications. Brain Sci 8(2):23PubMedCentralCrossRef
55.
go back to reference Said N, Elias WJ, Raghavan P, Cupino A, Tustison N, Frysinger R, Patrie J, Xin W, Wintermark M (2014) Correlation of diffusion tensor tractography and intraoperative macrostimulation during deep brain stimulation for Parkinson disease. J Neurosurg:1–7 Said N, Elias WJ, Raghavan P, Cupino A, Tustison N, Frysinger R, Patrie J, Xin W, Wintermark M (2014) Correlation of diffusion tensor tractography and intraoperative macrostimulation during deep brain stimulation for Parkinson disease. J Neurosurg:1–7
56.
go back to reference Sajonz BEA, Amtage F, Reinacher PC, Jenkner C, Piroth T, Kätzler J, Urbach H, Coenen VA (2016) Deep brain stimulation for tremor tractographic versus traditional (DISTINCT): study protocol of a randomized controlled feasibility trial. JMIR Res Protoc 5(4):e244–e248PubMedPubMedCentralCrossRef Sajonz BEA, Amtage F, Reinacher PC, Jenkner C, Piroth T, Kätzler J, Urbach H, Coenen VA (2016) Deep brain stimulation for tremor tractographic versus traditional (DISTINCT): study protocol of a randomized controlled feasibility trial. JMIR Res Protoc 5(4):e244–e248PubMedPubMedCentralCrossRef
57.
59.
go back to reference Schlaepfer TE, Bewernick BH, Kayser S, Mädler B, Coenen VA (2013) Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry 73(12):1204–1212PubMedCrossRef Schlaepfer TE, Bewernick BH, Kayser S, Mädler B, Coenen VA (2013) Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry 73(12):1204–1212PubMedCrossRef
60.
go back to reference Schlaier J, Anthofer J, Steib K, Fellner C, Rothenfusser E, Brawanski A, Lange M (2015) Deep brain stimulation for essential tremor: targeting the dentato-rubro-thalamic tract? Neuromodulation 18(2):105–112PubMedCrossRef Schlaier J, Anthofer J, Steib K, Fellner C, Rothenfusser E, Brawanski A, Lange M (2015) Deep brain stimulation for essential tremor: targeting the dentato-rubro-thalamic tract? Neuromodulation 18(2):105–112PubMedCrossRef
61.
go back to reference Sydow O, Thobois S, Alesch F, Speelman JD (2003) Multicentre European study of thalamic stimulation in essential tremor: a six year follow up. J Neurol Neurosurg Psychiatry 74(10):1387–1391PubMedPubMedCentralCrossRef Sydow O, Thobois S, Alesch F, Speelman JD (2003) Multicentre European study of thalamic stimulation in essential tremor: a six year follow up. J Neurol Neurosurg Psychiatry 74(10):1387–1391PubMedPubMedCentralCrossRef
62.
go back to reference Velasco F, Jiménez F, Pérez ML, Carrillo-Ruiz JD, Velasco AL, Ceballos J, Velasco M (2001) Electrical stimulation of the prelemniscal radiation in the treatment of Parkinson's disease: an old target revised with new techniques. Neurosurgery 49(2):293–306 discussion 306–8PubMed Velasco F, Jiménez F, Pérez ML, Carrillo-Ruiz JD, Velasco AL, Ceballos J, Velasco M (2001) Electrical stimulation of the prelemniscal radiation in the treatment of Parkinson's disease: an old target revised with new techniques. Neurosurgery 49(2):293–306 discussion 306–8PubMed
63.
go back to reference Zaitsev M, Hennig J, Speck O (2004) Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52(5):1156–1166PubMedCrossRef Zaitsev M, Hennig J, Speck O (2004) Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52(5):1156–1166PubMedCrossRef
Metadata
Title
The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series
Authors
Volker Arnd Coenen
Bastian Sajonz
Thomas Prokop
Marco Reisert
Tobias Piroth
Horst Urbach
Carolin Jenkner
Peter Christoph Reinacher
Publication date
01-05-2020
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 5/2020
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-020-04248-2

Other articles of this Issue 5/2020

Acta Neurochirurgica 5/2020 Go to the issue

Review Article - Vascular Neurosurgery - Other

Brain capillary telangiectasias: from normal variants to disease