Skip to main content
Top
Published in: Acta Neurochirurgica 3/2018

01-03-2018 | Original Article - Neurosurgical Techniques

Mathematical model of perineural tumor spread: a pilot study

Authors: Joshua J. Jacobs, Stepan Capek, Robert J. Spinner, Kristin R. Swanson

Published in: Acta Neurochirurgica | Issue 3/2018

Login to get access

Abstract

Background

Perineural spread (PNS) of pelvic cancer along the lumbosacral plexus is an emerging explanation for neoplastic lumbosacral plexopathy (nLSP) and an underestimated source of patient morbidity and mortality. Despite the increased incidence of PNS, these patients are often times a clinical conundrum—to diagnose and to treat. Building on previous results in modeling glioblastoma multiforme (GBM), we present a mathematical model for predicting the course and extent of the PNS of recurrent tumors.

Methods

We created three-dimensional models of perineurally spreading tumor along the lumbosacral plexus from consecutive magnetic resonance imaging scans of two patients (one each with prostate cancer and cervical cancer). We adapted and applied a previously reported mathematical model of GBM to progression of tumor growth along the nerves on an anatomical model obtained from a healthy subject.

Results

We were able to successfully model and visualize perineurally spreading pelvic cancer in two patients; average growth rates were 60.7 mm/year for subject 1 and 129 mm/year for subject 2. The model correlated well with extent of PNS on MRI scans at given time points.

Conclusions

This is the first attempt to model perineural tumor spread and we believe that it provides a glimpse into the future of disease progression monitoring. Every tumor and every patient are different, and the possibility to report treatment response using a unified scale—as “days gained”—will be a necessity in the era of individualized medicine. We hope our work will serve as a springboard for future connections between mathematics and medicine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aghion DM, Capek S, Howe BM, Hepel JT, Sambandam S, Oyelese AA, Spinner RJ (2014) Perineural tumor spread of bladder cancer causing lumbosacral plexopathy: an anatomic explanation. Acta Neurochir 156:2331–2336CrossRefPubMed Aghion DM, Capek S, Howe BM, Hepel JT, Sambandam S, Oyelese AA, Spinner RJ (2014) Perineural tumor spread of bladder cancer causing lumbosacral plexopathy: an anatomic explanation. Acta Neurochir 156:2331–2336CrossRefPubMed
2.
go back to reference Ayati B, Graham J, Holstein S (2012) Using a level set to model multiple myeloma induced bone loss. Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering, University of Vienna, 10-14 September 2012 Ayati B, Graham J, Holstein S (2012) Using a level set to model multiple myeloma induced bone loss. Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering, University of Vienna, 10-14 September 2012
3.
go back to reference Baldock AL, Rockne RC, Boone AD, Neal ML, Hawkins-Daarud A, Corwin DM, Bridge CA, Guyman LA, Trister AD, Mrugala MM, Rockhill JK, Swanson KR (2013) From patient-specific mathematical neuro-oncology to precision medicine. Front Oncol 3:62CrossRefPubMedPubMedCentral Baldock AL, Rockne RC, Boone AD, Neal ML, Hawkins-Daarud A, Corwin DM, Bridge CA, Guyman LA, Trister AD, Mrugala MM, Rockhill JK, Swanson KR (2013) From patient-specific mathematical neuro-oncology to precision medicine. Front Oncol 3:62CrossRefPubMedPubMedCentral
4.
go back to reference Belfatto A, Riboldi M, Ciardo D, Cattani F, Cecconi A, Lazzari R, Jereczek-Fossa BA, Orecchia R, Baroni G, Cerveri P (2016) Kinetic models for predicting cervical cancer response to radiation therapy on individual basis using tumor regression measured in vivo with volumetric imaging. Technol Cancer Res Treat 15:146–158CrossRefPubMed Belfatto A, Riboldi M, Ciardo D, Cattani F, Cecconi A, Lazzari R, Jereczek-Fossa BA, Orecchia R, Baroni G, Cerveri P (2016) Kinetic models for predicting cervical cancer response to radiation therapy on individual basis using tumor regression measured in vivo with volumetric imaging. Technol Cancer Res Treat 15:146–158CrossRefPubMed
5.
go back to reference Capek S, Howe BM, Amrami KK, Spinner RJ (2015) Perineural spread of pelvic malignancies to the lumbosacral plexus and beyond: clinical and imaging patterns. Neurosurg Focus 39:E14CrossRefPubMed Capek S, Howe BM, Amrami KK, Spinner RJ (2015) Perineural spread of pelvic malignancies to the lumbosacral plexus and beyond: clinical and imaging patterns. Neurosurg Focus 39:E14CrossRefPubMed
6.
go back to reference Capek S, Howe BM, Tracy JA, Garcia JJ, Amrami KK, Spinner RJ (2015) Prostate cancer with perineural spread and dural extension causing bilateral lumbosacral plexopathy: case report. J Neurosurg 122:778–783CrossRefPubMed Capek S, Howe BM, Tracy JA, Garcia JJ, Amrami KK, Spinner RJ (2015) Prostate cancer with perineural spread and dural extension causing bilateral lumbosacral plexopathy: case report. J Neurosurg 122:778–783CrossRefPubMed
7.
go back to reference Capek S, Sullivan PS, Howe BM, Smyrk TC, Amrami KK, Spinner RJ, Dozois EJ (2015) Recurrent rectal cancer causing lumbosacral plexopathy with perineural spread to the spinal nerves and the sciatic nerve: an anatomic explanation. Clin Anat 28:136–143CrossRefPubMed Capek S, Sullivan PS, Howe BM, Smyrk TC, Amrami KK, Spinner RJ, Dozois EJ (2015) Recurrent rectal cancer causing lumbosacral plexopathy with perineural spread to the spinal nerves and the sciatic nerve: an anatomic explanation. Clin Anat 28:136–143CrossRefPubMed
9.
go back to reference Fisher RA (1937) The wave of advance of advantageous genes. Ann Hum Genet 7:355–369 Fisher RA (1937) The wave of advance of advantageous genes. Ann Hum Genet 7:355–369
10.
go back to reference Gerin C, Pallud J, Deroulers C, Varlet P, Oppenheim C, Roux FX, Chretien F, Thomas SR, Grammaticos B, Badoual M (2013) Quantitative characterization of the imaging limits of diffuse low-grade oligodendrogliomas. Neuro-Oncology 15:1379–1388CrossRefPubMedPubMedCentral Gerin C, Pallud J, Deroulers C, Varlet P, Oppenheim C, Roux FX, Chretien F, Thomas SR, Grammaticos B, Badoual M (2013) Quantitative characterization of the imaging limits of diffuse low-grade oligodendrogliomas. Neuro-Oncology 15:1379–1388CrossRefPubMedPubMedCentral
11.
go back to reference Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31:1426–1438CrossRefPubMed Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31:1426–1438CrossRefPubMed
12.
go back to reference Howe BM, Amrami KK, Nathan MA, Garcia JJ, Spinner RJ (2013) Perineural spread of cervical cancer to the sciatic nerve. Skelet Radiol 42:1627–1631CrossRef Howe BM, Amrami KK, Nathan MA, Garcia JJ, Spinner RJ (2013) Perineural spread of cervical cancer to the sciatic nerve. Skelet Radiol 42:1627–1631CrossRef
14.
go back to reference Konukoglu E (2009) Modeling glioma growth and personalizing growth models in medical images. Thesis, University of Nice Konukoglu E (2009) Modeling glioma growth and personalizing growth models in medical images. Thesis, University of Nice
15.
go back to reference Konukoglu E, Clatz O, Delingette H, Ayache N (2010) Personalization of reaction-diffusion tumor growth models in MR images: application to brain gliomas characterization and radiotherapy planning. In: Deisboeck T, Stamatakos GS (eds) Multiscale cancer modeling. CRC Press, Boca Raton, pp 385–405 Konukoglu E, Clatz O, Delingette H, Ayache N (2010) Personalization of reaction-diffusion tumor growth models in MR images: application to brain gliomas characterization and radiotherapy planning. In: Deisboeck T, Stamatakos GS (eds) Multiscale cancer modeling. CRC Press, Boca Raton, pp 385–405
16.
go back to reference Konukoglu E, Clatz O, Menze BH, Stieltjes B, Weber MA, Mandonnet E, Delingette H, Ayache N (2010) Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29:77–95CrossRefPubMed Konukoglu E, Clatz O, Menze BH, Stieltjes B, Weber MA, Mandonnet E, Delingette H, Ayache N (2010) Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29:77–95CrossRefPubMed
17.
go back to reference Ladha SS, Spinner RJ, Suarez GA, Amrami KK, Dyck PJ (2006) Neoplastic lumbosacral radiculoplexopathy in prostate cancer by direct perineural spread: an unusual entity. Muscle Nerve 34:659–665CrossRefPubMed Ladha SS, Spinner RJ, Suarez GA, Amrami KK, Dyck PJ (2006) Neoplastic lumbosacral radiculoplexopathy in prostate cancer by direct perineural spread: an unusual entity. Muscle Nerve 34:659–665CrossRefPubMed
18.
go back to reference Malek A (2013) Experimental metastasis: modeling and analysis. Springer, DordrechtCrossRef Malek A (2013) Experimental metastasis: modeling and analysis. Springer, DordrechtCrossRef
19.
go back to reference Neal ML, Trister AD, Ahn S, Baldock A, Bridge CA, Guyman L, Lange J, Sodt R, Cloke T, Lai A, Cloughesy TF, Mrugala MM, Rockhill JK, Rockne RC, Swanson KR (2013) Response classification based on a minimal model of glioblastoma growth is prognostic for clinical outcomes and distinguishes progression from pseudoprogression. Cancer Res 73:2976–2986CrossRefPubMedPubMedCentral Neal ML, Trister AD, Ahn S, Baldock A, Bridge CA, Guyman L, Lange J, Sodt R, Cloke T, Lai A, Cloughesy TF, Mrugala MM, Rockhill JK, Rockne RC, Swanson KR (2013) Response classification based on a minimal model of glioblastoma growth is prognostic for clinical outcomes and distinguishes progression from pseudoprogression. Cancer Res 73:2976–2986CrossRefPubMedPubMedCentral
20.
go back to reference Neal ML, Trister AD, Cloke T, Sodt R, Ahn S, Baldock AL, Bridge CA, Lai A, Cloughesy TF, Mrugala MM, Rockhill JK, Rockne RC, Swanson KR (2013) Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric. PLoS One 8:e51951CrossRefPubMedPubMedCentral Neal ML, Trister AD, Cloke T, Sodt R, Ahn S, Baldock AL, Bridge CA, Lai A, Cloughesy TF, Mrugala MM, Rockhill JK, Rockne RC, Swanson KR (2013) Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric. PLoS One 8:e51951CrossRefPubMedPubMedCentral
21.
go back to reference Neal RE 2nd, Millar JL, Kavnoudias H, Royce P, Rosenfeldt F, Pham A, Smith R, Davalos RV, Thomson KR (2014) In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation. Prostate 74:458–468CrossRefPubMed Neal RE 2nd, Millar JL, Kavnoudias H, Royce P, Rosenfeldt F, Pham A, Smith R, Davalos RV, Thomson KR (2014) In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation. Prostate 74:458–468CrossRefPubMed
22.
go back to reference Rockne R, Alvord EC Jr, Reed P, Swanson KR (2008) Modeling the growth and invasion of gliomas, from simple to complex: the goldie locks paradigm. Biophys Rev Lett 3:111–123CrossRef Rockne R, Alvord EC Jr, Reed P, Swanson KR (2008) Modeling the growth and invasion of gliomas, from simple to complex: the goldie locks paradigm. Biophys Rev Lett 3:111–123CrossRef
23.
go back to reference Scott JG, Basanta D, Anderson AR, Gerlee P (2013) A mathematical model of tumour self-seeding reveals secondary metastatic deposits as drivers of primary tumour growth. J R Soc Interface 10:20130011CrossRefPubMedPubMedCentral Scott JG, Basanta D, Anderson AR, Gerlee P (2013) A mathematical model of tumour self-seeding reveals secondary metastatic deposits as drivers of primary tumour growth. J R Soc Interface 10:20130011CrossRefPubMedPubMedCentral
24.
go back to reference Scott JG, Gerlee P, Basanta D, Fletcher AG, Maini PK, Anderson AR (2013) Mathematical modeling of the metastatic process. In: Malek A (ed) Experimental metastasis: modeling and analysis. Springer, Dordrecht, pp 189–208 Scott JG, Gerlee P, Basanta D, Fletcher AG, Maini PK, Anderson AR (2013) Mathematical modeling of the metastatic process. In: Malek A (ed) Experimental metastasis: modeling and analysis. Springer, Dordrecht, pp 189–208
25.
go back to reference Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, Cambridge Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, Cambridge
26.
go back to reference Sun X, Bao J, Nelson KC, Li KC, Kulik G, Zhou X (2013) Systems modeling of anti-apoptotic pathways in prostate cancer: psychological stress triggers a synergism pattern switch in drug combination therapy. PLoS Comput Biol 9:e1003358CrossRefPubMedPubMedCentral Sun X, Bao J, Nelson KC, Li KC, Kulik G, Zhou X (2013) Systems modeling of anti-apoptotic pathways in prostate cancer: psychological stress triggers a synergism pattern switch in drug combination therapy. PLoS Comput Biol 9:e1003358CrossRefPubMedPubMedCentral
27.
go back to reference Swanson KR (1999) Mathematical modeling of the growth and control of tumors. University of Washington, Seattle Swanson KR (1999) Mathematical modeling of the growth and control of tumors. University of Washington, Seattle
28.
go back to reference Swanson KR, Bridge C, Murray JD, Alvord EC Jr (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216:1–10CrossRefPubMed Swanson KR, Bridge C, Murray JD, Alvord EC Jr (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216:1–10CrossRefPubMed
29.
go back to reference Swanson KR, Harpold HL, Peacock DL, Rockne R, Pennington C, Kilbride L, Grant R, Wardlaw JM, Alvord EC Jr (2008) Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle. Clin Oncol (R Coll Radiol) 20:301–308CrossRef Swanson KR, Harpold HL, Peacock DL, Rockne R, Pennington C, Kilbride L, Grant R, Wardlaw JM, Alvord EC Jr (2008) Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle. Clin Oncol (R Coll Radiol) 20:301–308CrossRef
30.
go back to reference Unkelbach J, Menze BH, Konukoglu E, Dittmann F, Le M, Ayache N, Shih HA (2014) Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation. Phys Med Biol 59:747–770CrossRefPubMed Unkelbach J, Menze BH, Konukoglu E, Dittmann F, Le M, Ayache N, Shih HA (2014) Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation. Phys Med Biol 59:747–770CrossRefPubMed
31.
go back to reference Xie K, Yang J, Zhang ZG, Zhu YM (2005) Semi-automated brain tumor and edema segmentation using MRI. Eur J Radiol 56:12–19CrossRefPubMed Xie K, Yang J, Zhang ZG, Zhu YM (2005) Semi-automated brain tumor and edema segmentation using MRI. Eur J Radiol 56:12–19CrossRefPubMed
32.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31:1116–1128CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31:1116–1128CrossRefPubMed
Metadata
Title
Mathematical model of perineural tumor spread: a pilot study
Authors
Joshua J. Jacobs
Stepan Capek
Robert J. Spinner
Kristin R. Swanson
Publication date
01-03-2018
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 3/2018
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-017-3423-6

Other articles of this Issue 3/2018

Acta Neurochirurgica 3/2018 Go to the issue