Skip to main content
Top
Published in: Acta Neurochirurgica 2/2014

01-02-2014 | Clinical Article - Spine

Denervation and atrophy of paraspinal muscles after open lumbar interbody fusion is associated with clinical outcome—electromyographic and CT-volumetric investigation of 30 patients

Authors: Albrecht Waschke, Christin Hartmann, Jan Walter, Pedro Dünisch, Falko Wahnschaff, Rolf Kalff, Christian Ewald

Published in: Acta Neurochirurgica | Issue 2/2014

Login to get access

Abstract

Background

Different studies have shown that atrophy of paraspinal muscles arises after open dorsal lumbar fusion, and the reasons for this atrophy are still not yet fully clarified. This prospective study investigates the extent of atrophy of the lumbar paraspinal muscles after open lumbar interbody fusion, its possible causes, and their association with clinical outcome measures.

Methods

Thirty consecutive patients were prospectively included (13 male, 17 female, median age 60.5 years, range 33–80 years). Mono or bisegmental, posterior lumbar interbody fusion and instrumentation was performed applying a conventional, open lumbar midline approach. Clinical outcome was assessed by the Short Form (36) Health Survey (SF-36) questionnaire and visual analogue scale. Needle electromyography of paraspinal muscles was performed preoperatively, at 6 and 12 months. Serum values of creatine kinase, lactate dehydrogenase and myoglobin were determined preoperatively, at day 2 after surgery and at discharge. Paraspinal muscle volume was determined by volumetric analysis of thin-slice computed tomography scans preoperatively and 1 year after surgery.

Results

There was a significant increase of electromyographic denervation activity (p =0.024) and reduced recruitment of motor units (p = 0.001) after 1 year. Laboratory studies showed a significant increase of CK (p < 0.001) and myoglobin (p < 0.001) serum levels at day 2 after surgery. The paraspinal muscle volume decreased from 67.8 to 60.4 % (p < 0.001) after 1 year. Correlation analyses revealed a significant negative correlation between denervation and muscle volume (K = -0.219, p = 0.002). Paraspinal muscle volume is significantly correlated with physical outcome (K = 0.169, p = 0.020), mental outcome (K = 0.214, p = 0.003), and pain (K = 0.382, p < 0.001) after 1 year.

Conclusions

Atrophy of paraspinal muscles after open, posterior lumbar interbody fusion seems to be associated with denervation, as well as direct muscle trauma during surgery. While muscle atrophy is also correlated with a worse clinical outcome, it seems to be a determining factor for successful lumbar spine surgery.
Literature
1.
go back to reference Kim DY, Lee SH, Chung SK, Lee HY (2005) Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine 30:123–129PubMedCrossRef Kim DY, Lee SH, Chung SK, Lee HY (2005) Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine 30:123–129PubMedCrossRef
2.
go back to reference Kim K, Isu T, Sugawara A, Matsumoto R, Isobe M (2008) Comparison of the effect of 3 different approaches to the lumbar spinal canal on postoperative paraspinal muscle damage. Surg Neurol 69:109–113, discussion 113PubMedCrossRef Kim K, Isu T, Sugawara A, Matsumoto R, Isobe M (2008) Comparison of the effect of 3 different approaches to the lumbar spinal canal on postoperative paraspinal muscle damage. Surg Neurol 69:109–113, discussion 113PubMedCrossRef
3.
go back to reference Stevens KJ, Spenciner DB, Griffiths KL, Kim KD, Zwienenberg-Lee M, Alamin T, Bammer R (2006) Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech 19:77–86PubMedCrossRef Stevens KJ, Spenciner DB, Griffiths KL, Kim KD, Zwienenberg-Lee M, Alamin T, Bammer R (2006) Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech 19:77–86PubMedCrossRef
4.
go back to reference Hodges P, Holm AK, Hansson T, Holm S (2006) Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine 31:2926–2933PubMedCrossRef Hodges P, Holm AK, Hansson T, Holm S (2006) Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine 31:2926–2933PubMedCrossRef
5.
go back to reference Kumbhare D, Parkinson W, Dunlop B (2008) Validity of serum creatine kinase as a measure of muscle injury produced by lumbar surgery. J Spinal Disord Tech 21:49–54PubMedCrossRef Kumbhare D, Parkinson W, Dunlop B (2008) Validity of serum creatine kinase as a measure of muscle injury produced by lumbar surgery. J Spinal Disord Tech 21:49–54PubMedCrossRef
6.
go back to reference Haig AJ, Moffroid M, Henry S, Haugh L, Pope M (1991) A technique for needle localization in paraspinal muscles with cadaveric confirmation. Muscle Nerve 14:521–526PubMedCrossRef Haig AJ, Moffroid M, Henry S, Haugh L, Pope M (1991) A technique for needle localization in paraspinal muscles with cadaveric confirmation. Muscle Nerve 14:521–526PubMedCrossRef
7.
go back to reference Bogduk N, Wilson AS, Tynan W (1982) The human lumbar dorsal rami. J Anat 134:383–397PubMed Bogduk N, Wilson AS, Tynan W (1982) The human lumbar dorsal rami. J Anat 134:383–397PubMed
8.
go back to reference Haig AJ, LeBreck DB, Powley SG (1995) Paraspinal mapping. Quantified needle electromyography of the paraspinal muscles in persons without low back pain. Spine 20:715–721PubMedCrossRef Haig AJ, LeBreck DB, Powley SG (1995) Paraspinal mapping. Quantified needle electromyography of the paraspinal muscles in persons without low back pain. Spine 20:715–721PubMedCrossRef
9.
go back to reference Haig AJ, Talley C, Grobler LJ, LeBreck DB (1993) Paraspinal mapping: quantified needle electromyography in lumbar radiculopathy. Muscle Nerve 16:477–484PubMedCrossRef Haig AJ, Talley C, Grobler LJ, LeBreck DB (1993) Paraspinal mapping: quantified needle electromyography in lumbar radiculopathy. Muscle Nerve 16:477–484PubMedCrossRef
10.
go back to reference Gille O, Jolivet E, Dousset V, Degrise C, Obeid I, Vital JM, Skalli W (2007) Erector spinae muscle changes on magnetic resonance imaging following lumbar surgery through a posterior approach. Spine 32:1236–1241PubMedCrossRef Gille O, Jolivet E, Dousset V, Degrise C, Obeid I, Vital JM, Skalli W (2007) Erector spinae muscle changes on magnetic resonance imaging following lumbar surgery through a posterior approach. Spine 32:1236–1241PubMedCrossRef
11.
go back to reference Lu WW, Hu Y, Luk KD, Cheung KM, Leong JC (2002) Paraspinal muscle activities of patients with scoliosis after spine fusion: an electromyographic study. Spine 27:1180–1185PubMedCrossRef Lu WW, Hu Y, Luk KD, Cheung KM, Leong JC (2002) Paraspinal muscle activities of patients with scoliosis after spine fusion: an electromyographic study. Spine 27:1180–1185PubMedCrossRef
12.
go back to reference Kawaguchi Y, Matsui H, Tsuji H (1994) Back muscle injury after posterior lumbar spine surgery. Part 1: Histologic and histochemical analyses in rats. Spine 19:2590–2597PubMedCrossRef Kawaguchi Y, Matsui H, Tsuji H (1994) Back muscle injury after posterior lumbar spine surgery. Part 1: Histologic and histochemical analyses in rats. Spine 19:2590–2597PubMedCrossRef
13.
go back to reference Kawaguchi Y, Matsui H, Tsuji H (1994) Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. Spine 19:2598–2602PubMedCrossRef Kawaguchi Y, Matsui H, Tsuji H (1994) Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. Spine 19:2598–2602PubMedCrossRef
14.
go back to reference Gejo R, Matsui H, Kawaguchi Y, Ishihara H, Tsuji H (1999) Serial changes in trunk muscle performance after posterior lumbar surgery. Spine 24:1023–1028PubMedCrossRef Gejo R, Matsui H, Kawaguchi Y, Ishihara H, Tsuji H (1999) Serial changes in trunk muscle performance after posterior lumbar surgery. Spine 24:1023–1028PubMedCrossRef
15.
go back to reference Kawaguchi Y, Yabuki S, Styf J, Olmarker K, Rydevik B, Matsui H, Tsuji H (1996) Back muscle injury after posterior lumbar spine surgery. Topographic evaluation of intramuscular pressure and blood flow in the porcine back muscle during surgery. Spine 21:2683–2688PubMedCrossRef Kawaguchi Y, Yabuki S, Styf J, Olmarker K, Rydevik B, Matsui H, Tsuji H (1996) Back muscle injury after posterior lumbar spine surgery. Topographic evaluation of intramuscular pressure and blood flow in the porcine back muscle during surgery. Spine 21:2683–2688PubMedCrossRef
16.
go back to reference Kim KT, Lee SH, Suk KS, Bae SC (2006) The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine 31:712–716PubMedCrossRef Kim KT, Lee SH, Suk KS, Bae SC (2006) The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine 31:712–716PubMedCrossRef
17.
go back to reference Lenke LG, Bridwell KH, Jaffe AS (1994) Increase in creatine kinase MB isoenzyme levels after spinal surgery. J Spinal Disord 7:70–76PubMedCrossRef Lenke LG, Bridwell KH, Jaffe AS (1994) Increase in creatine kinase MB isoenzyme levels after spinal surgery. J Spinal Disord 7:70–76PubMedCrossRef
18.
go back to reference Liu X, Wang Y, Wu X, Zheng Y, Jia L, Li J, Zhang K, Wei B (2010) Impact of surgical approaches on the lumbar multifidus muscle: an experimental study using sheep as models. J Neurosurg Spine 12:570–576PubMedCrossRef Liu X, Wang Y, Wu X, Zheng Y, Jia L, Li J, Zhang K, Wei B (2010) Impact of surgical approaches on the lumbar multifidus muscle: an experimental study using sheep as models. J Neurosurg Spine 12:570–576PubMedCrossRef
19.
go back to reference Hartwig T, Streitparth F, Gross C, Muller M, Perka C, Putzier M, Strube P (2011) Digital 3-dimensional analysis of the paravertebral lumbar muscles after circumferential single-level fusion. J Spinal Disord Tech 24:451–454PubMedCrossRef Hartwig T, Streitparth F, Gross C, Muller M, Perka C, Putzier M, Strube P (2011) Digital 3-dimensional analysis of the paravertebral lumbar muscles after circumferential single-level fusion. J Spinal Disord Tech 24:451–454PubMedCrossRef
20.
go back to reference Hayashi N, Tamaki T, Yamada H (1992) Experimental study of denervated muscle atrophy following severance of posterior rami of the lumbar spinal nerves. Spine 17:1361–1367PubMedCrossRef Hayashi N, Tamaki T, Yamada H (1992) Experimental study of denervated muscle atrophy following severance of posterior rami of the lumbar spinal nerves. Spine 17:1361–1367PubMedCrossRef
21.
go back to reference Hyun SJ, Kim YB, Kim YS, Park SW, Nam TK, Hong HJ, Kwon JT (2007) Postoperative changes in paraspinal muscle volume: comparison between paramedian interfascial and midline approaches for lumbar fusion. J Korean Med Sci 22:646–651PubMedCentralPubMedCrossRef Hyun SJ, Kim YB, Kim YS, Park SW, Nam TK, Hong HJ, Kwon JT (2007) Postoperative changes in paraspinal muscle volume: comparison between paramedian interfascial and midline approaches for lumbar fusion. J Korean Med Sci 22:646–651PubMedCentralPubMedCrossRef
22.
go back to reference Ren G, Eiskjaer S, Kaspersen J, Christensen FB, Rasmussen S (2009) Microdialysis of paraspinal muscle in healthy volunteers and patients underwent posterior lumbar fusion surgery. Eur Spine J 18:1604–1609PubMedCentralPubMedCrossRef Ren G, Eiskjaer S, Kaspersen J, Christensen FB, Rasmussen S (2009) Microdialysis of paraspinal muscle in healthy volunteers and patients underwent posterior lumbar fusion surgery. Eur Spine J 18:1604–1609PubMedCentralPubMedCrossRef
23.
go back to reference Sihvonen T, Herno A, Paljarvi L, Airaksinen O, Partanen J, Tapaninaho A (1993) Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine 18:575–581PubMedCrossRef Sihvonen T, Herno A, Paljarvi L, Airaksinen O, Partanen J, Tapaninaho A (1993) Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine 18:575–581PubMedCrossRef
24.
go back to reference Tsutsumimoto T, Shimogata M, Ohta H, Misawa H (2009) Mini-open versus conventional open posterior lumbar interbody fusion for the treatment of lumbar degenerative spondylolisthesis: comparison of paraspinal muscle damage and slip reduction. Spine 34:1923–1928PubMedCrossRef Tsutsumimoto T, Shimogata M, Ohta H, Misawa H (2009) Mini-open versus conventional open posterior lumbar interbody fusion for the treatment of lumbar degenerative spondylolisthesis: comparison of paraspinal muscle damage and slip reduction. Spine 34:1923–1928PubMedCrossRef
25.
go back to reference Watanabe K, Hosoya T, Shiraishi T, Matsumoto M, Chiba K, Toyama Y (2005) Lumbar spinous process-splitting laminectomy for lumbar canal stenosis. Technical note. J Neurosurg Spine 3:405–408PubMedCrossRef Watanabe K, Hosoya T, Shiraishi T, Matsumoto M, Chiba K, Toyama Y (2005) Lumbar spinous process-splitting laminectomy for lumbar canal stenosis. Technical note. J Neurosurg Spine 3:405–408PubMedCrossRef
26.
go back to reference Fan S, Hu Z, Zhao F, Zhao X, Huang Y, Fang X (2010) Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion: minimally invasive procedure versus conventional open approach. Eur Spine J 19:316–324PubMedCentralPubMedCrossRef Fan S, Hu Z, Zhao F, Zhao X, Huang Y, Fang X (2010) Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion: minimally invasive procedure versus conventional open approach. Eur Spine J 19:316–324PubMedCentralPubMedCrossRef
Metadata
Title
Denervation and atrophy of paraspinal muscles after open lumbar interbody fusion is associated with clinical outcome—electromyographic and CT-volumetric investigation of 30 patients
Authors
Albrecht Waschke
Christin Hartmann
Jan Walter
Pedro Dünisch
Falko Wahnschaff
Rolf Kalff
Christian Ewald
Publication date
01-02-2014
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 2/2014
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-013-1981-9

Other articles of this Issue 2/2014

Acta Neurochirurgica 2/2014 Go to the issue

Letter to the editor - Neurosurgical Techniques

Endoscopic approaches to the craniovertebral junction