Skip to main content
Top
Published in: Acta Neurochirurgica 8/2010

Open Access 01-08-2010 | Clinical Article

The influence of transcutaneous electrical neurostimulation (TENS) on human cerebral blood flow velocities

Authors: Mark ter Laan, J. Marc C. van Dijk, Jan-Willem J. Elting, Vaclav Fidler, Michiel J. Staal

Published in: Acta Neurochirurgica | Issue 8/2010

Login to get access

Abstract

Background

It has been shown that transcutaneous electrical neurostimulation (TENS) reduces sympathetic tone. Spinal cord stimulation (SCS) has proven qualities to improve coronary, peripheral, and cerebral blood circulation. Therefore, we postulate that TENS and SCS affect the autonomic nervous system in analogous ways. In this line of thought, cervical application of TENS might be a useful and simple adjunct in the treatment of cerebrovascular disease by improving cerebral blood flow. Experiments were performed in order to assess whether cervical TENS is safe and whether an effect on cerebral blood flow velocity (CBFV) can be shown in healthy subjects.

Method

A controlled, non-randomized, phase 1 study was performed with 20 healthy volunteers. Cervical TENS was applied in several frequencies, with and without hyperventilation. Continuous registration of blood pressure, pulse, CBFV (estimated by transcranial Doppler sonography) and end-tidal carbon dioxide concentration was performed.

Findings

Cervical TENS was well-tolerated by all subjects. Despite small effects on heart rate (HR) and mean arterial blood pressure (MAP), a significant effect on middle cerebral artery (MCA) blood flow velocity was not demonstrated. No effect of age, gender, current or session order on MCA, HR, or MAP was found. TENS did not influence the effect of hyperventilation.

Conclusions

In these experiments, application of cervical TENS is proven to be a safe procedure. However, no effects on cerebral blood flow velocity could be detected, perhaps due to the intact cerebral autoregulation in the healthy volunteers.
Literature
1.
go back to reference Burton C (1974) Instrumentation for dorsal column stimulator implantation. Surg Neurol 2(1):39–40PubMed Burton C (1974) Instrumentation for dorsal column stimulator implantation. Surg Neurol 2(1):39–40PubMed
2.
go back to reference Clavo B, Robaina F, Catala L, Perez JL, Lloret M, Carames MA, Morera J, Lopez L, Suarez G, Macias D, Rivero J, Hernandez MA (2004) Effect of cervical spinal cord stimulation on regional blood flow and oxygenation in advanced head and neck tumours. Ann Oncol 15(5):802–807PubMedCrossRef Clavo B, Robaina F, Catala L, Perez JL, Lloret M, Carames MA, Morera J, Lopez L, Suarez G, Macias D, Rivero J, Hernandez MA (2004) Effect of cervical spinal cord stimulation on regional blood flow and oxygenation in advanced head and neck tumours. Ann Oncol 15(5):802–807PubMedCrossRef
3.
go back to reference Clavo B, Robaina F, Catala L, Valcarcel B, Morera J, Carames MA, Ruiz-Egea E, Panero F, Lloret M, Hernandez MA (2003) Increased locoregional blood flow in brain tumors after cervical spinal cord stimulation. J Neurosurg 98(6):1263–1270PubMedCrossRef Clavo B, Robaina F, Catala L, Valcarcel B, Morera J, Carames MA, Ruiz-Egea E, Panero F, Lloret M, Hernandez MA (2003) Increased locoregional blood flow in brain tumors after cervical spinal cord stimulation. J Neurosurg 98(6):1263–1270PubMedCrossRef
4.
go back to reference Cook AW, Oygar A, Baggenstos P, Pacheco S, Kleriga E (1976) Vascular disease of extremities. Electric stimulation of spinal cord and posterior roots. N Y State J Med 76(3):366–368PubMed Cook AW, Oygar A, Baggenstos P, Pacheco S, Kleriga E (1976) Vascular disease of extremities. Electric stimulation of spinal cord and posterior roots. N Y State J Med 76(3):366–368PubMed
5.
go back to reference De Vries J, Anthonio RL, DeJongste MJ, Jessurun GA, Tan ES, de Smet BJ, van den Heuvel AF, Staal MJ, Zijlstra F (2007) The effect of electrical neurostimulation on collateral perfusion during acute coronary occlusion. BMC Cardiovasc Disord 7:18PubMedCrossRef De Vries J, Anthonio RL, DeJongste MJ, Jessurun GA, Tan ES, de Smet BJ, van den Heuvel AF, Staal MJ, Zijlstra F (2007) The effect of electrical neurostimulation on collateral perfusion during acute coronary occlusion. BMC Cardiovasc Disord 7:18PubMedCrossRef
6.
go back to reference Hautvast RW, Ter Horst GJ, DeJong BM, DeJongste MJ, Blanksma PK, Paans AM, Korf J (1997) Relative changes in regional cerebral blood flow during spinal cord stimulation in patients with refractory angina pectoris. Eur J Neurosci 9(6):1178–1183PubMedCrossRef Hautvast RW, Ter Horst GJ, DeJong BM, DeJongste MJ, Blanksma PK, Paans AM, Korf J (1997) Relative changes in regional cerebral blood flow during spinal cord stimulation in patients with refractory angina pectoris. Eur J Neurosci 9(6):1178–1183PubMedCrossRef
7.
go back to reference Jordan J, Shannon JR, Black BK, Paranjape SY, Barwise J, Robertson D (1998) Raised cerebrovascular resistance in idiopathic orthostatic intolerance: evidence for sympathetic vasoconstriction. Hypertension 32(4):699–704PubMed Jordan J, Shannon JR, Black BK, Paranjape SY, Barwise J, Robertson D (1998) Raised cerebrovascular resistance in idiopathic orthostatic intolerance: evidence for sympathetic vasoconstriction. Hypertension 32(4):699–704PubMed
8.
go back to reference Jordan J, Shannon JR, Diedrich A, Black B, Costa F, Robertson D, Biaggioni I (2000) Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension 36(3):383–388PubMed Jordan J, Shannon JR, Diedrich A, Black B, Costa F, Robertson D, Biaggioni I (2000) Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension 36(3):383–388PubMed
9.
go back to reference Karadag O (2005) Cervical spinal cord stimulation increases cerebral cortical blood flow in an experimental cerebral vasospasm model. Acta Neurochir (Wien ) 147(1):79–84CrossRef Karadag O (2005) Cervical spinal cord stimulation increases cerebral cortical blood flow in an experimental cerebral vasospasm model. Acta Neurochir (Wien ) 147(1):79–84CrossRef
10.
go back to reference Lee JY, Huang DL, Keep R, Sagher O (2008) Effect of electrical stimulation of the cervical spinal cord on blood flow following subarachnoid hemorrhage. J Neurosurg 109(6):1148–1154PubMedCrossRef Lee JY, Huang DL, Keep R, Sagher O (2008) Effect of electrical stimulation of the cervical spinal cord on blood flow following subarachnoid hemorrhage. J Neurosurg 109(6):1148–1154PubMedCrossRef
11.
go back to reference Linderoth B, Fedorcsak I, Meyerson BA (1991) Peripheral vasodilatation after spinal cord stimulation: animal studies of putative effector mechanisms. Neurosurgery 28(2):187–195PubMedCrossRef Linderoth B, Fedorcsak I, Meyerson BA (1991) Peripheral vasodilatation after spinal cord stimulation: animal studies of putative effector mechanisms. Neurosurgery 28(2):187–195PubMedCrossRef
12.
go back to reference Mannheimer C, Carlsson CA, Emanuelsson H, Vedin A, Waagstein F, Wilhelmsson C (1985) The effects of transcutaneous electrical nerve stimulation in patients with severe angina pectoris. Circulation 71(2):308–316PubMed Mannheimer C, Carlsson CA, Emanuelsson H, Vedin A, Waagstein F, Wilhelmsson C (1985) The effects of transcutaneous electrical nerve stimulation in patients with severe angina pectoris. Circulation 71(2):308–316PubMed
13.
go back to reference Oakley JC, Prager JP (2002) Spinal cord stimulation: mechanisms of action. Spine 27(22):2574–2583PubMedCrossRef Oakley JC, Prager JP (2002) Spinal cord stimulation: mechanisms of action. Spine 27(22):2574–2583PubMedCrossRef
14.
go back to reference Padayachee TS, Kirkham FJ, Lewis RR, Gillard J, Hutchinson MCE, Gosling RG (1986) Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: a method of assessing the Circle of Willis. Ultrasound Med Biol 12(1):5–14PubMedCrossRef Padayachee TS, Kirkham FJ, Lewis RR, Gillard J, Hutchinson MCE, Gosling RG (1986) Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: a method of assessing the Circle of Willis. Ultrasound Med Biol 12(1):5–14PubMedCrossRef
15.
go back to reference Patel S (2004) Evidence for a central pathway in the cerebrovascular effects of spinal cord stimulation. Neurosurgery 55(1):201–206PubMedCrossRef Patel S (2004) Evidence for a central pathway in the cerebrovascular effects of spinal cord stimulation. Neurosurgery 55(1):201–206PubMedCrossRef
16.
go back to reference Pinheiro JC, Bates JM (2000) Mixed-effects models in S and S-PLUS. Illustrated ed. Springer, New York Pinheiro JC, Bates JM (2000) Mixed-effects models in S and S-PLUS. Illustrated ed. Springer, New York
17.
go back to reference Sanderson JE, Tomlinson B, Lau MS, So KW, Cheung AH, Critchley JA, Woo KS (1995) The effect of transcutaneous electrical nerve stimulation (TENS) on autonomic cardiovascular reflexes. Clin Auton Res 5(2):81–84PubMedCrossRef Sanderson JE, Tomlinson B, Lau MS, So KW, Cheung AH, Critchley JA, Woo KS (1995) The effect of transcutaneous electrical nerve stimulation (TENS) on autonomic cardiovascular reflexes. Clin Auton Res 5(2):81–84PubMedCrossRef
18.
19.
go back to reference Van Lieshout JJ, Secher NH (2008) Point:counterpoint: sympathetic activity does/does not influence cerebral blood flow. Point: sympathetic activity does influence cerebral blood flow. J Appl Physiol 105(4):1364–1366PubMedCrossRef Van Lieshout JJ, Secher NH (2008) Point:counterpoint: sympathetic activity does/does not influence cerebral blood flow. Point: sympathetic activity does influence cerebral blood flow. J Appl Physiol 105(4):1364–1366PubMedCrossRef
20.
go back to reference Van Lieshout JJ, Secher NH (2008) Last word on point:counterpoint: sympathetic activity does/does not influence cerebral blood flow. J Appl Physiol 105(4):1374PubMedCrossRef Van Lieshout JJ, Secher NH (2008) Last word on point:counterpoint: sympathetic activity does/does not influence cerebral blood flow. J Appl Physiol 105(4):1374PubMedCrossRef
21.
go back to reference Vriens EM (1989) Transcranial pulsed Doppler measurements of blood velocity in the middle cerebral artery: reference values at rest and during hyperventilation in healthy volunteers in relation to age and sex. Ultrasound Med Biol 15(1):1–8PubMedCrossRef Vriens EM (1989) Transcranial pulsed Doppler measurements of blood velocity in the middle cerebral artery: reference values at rest and during hyperventilation in healthy volunteers in relation to age and sex. Ultrasound Med Biol 15(1):1–8PubMedCrossRef
Metadata
Title
The influence of transcutaneous electrical neurostimulation (TENS) on human cerebral blood flow velocities
Authors
Mark ter Laan
J. Marc C. van Dijk
Jan-Willem J. Elting
Vaclav Fidler
Michiel J. Staal
Publication date
01-08-2010
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 8/2010
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-010-0678-6

Other articles of this Issue 8/2010

Acta Neurochirurgica 8/2010 Go to the issue