Skip to main content
Top
Published in: European Journal of Orthopaedic Surgery & Traumatology 3/2020

01-04-2020 | Scoliosis | Original Article • SPINE - SCOLIOSIS

Defining criteria for optimal lumbar curve correction following the selective thoracic fusion surgery in Lenke 1 adolescent idiopathic scoliosis: developing a decision tree

Authors: Saba Pasha, Jean-Marc Mac-Thiong

Published in: European Journal of Orthopaedic Surgery & Traumatology | Issue 3/2020

Login to get access

Abstract

Objective

The aim of this study was to identify the range of optimal versus suboptimal rates of spontaneous lumbar Cobb correction (SLCC%) and the factors predicting such outcomes in a cohort of Lenke 1 adolescent idiopathic scoliosis (AIS) after posterior spinal fusion surgery.

Methods

Seventy-one consecutive Lenke1 B and C AIS patients with a fusion level to L1 and higher with two-year follow-up were included. Thoracic kyphosis (T1–T4 and T4–T12 TK), lumbar lordosis (L1-S1 LL), thoracic and lumbar Cobb angles, thoracic and lumbar apical vertebral rotations and translations (AVR and AVT), pelvic incidence, sacral slope, and sagittal and frontal balances were measured at preoperative, early postoperative, and two-year follow-up. The SLCC% was calculated between preoperative and two-year follow-up. A clustering analysis determined the subgroups of patients with significantly higher and lower (optimal versus suboptimal) rate of SLCC% in the cohort at two-year follow-up. The cutoff values of the preoperative and early postoperative radiographic parameters that significantly predicted the optimal and suboptimal SLCC% were determined using a decision tree.

Results

The averages of the optimal versus suboptimal range of SLCC% in the cohort were 72% [55%, 105%] versus 39% [− 7%, 42%]. Preoperative and early postoperative spinal parameters predicted the optimal versus suboptimal SLCC% with an accuracy of 82%, 95%CI [0.73–0.94]. Preoperative AVTLumbar < 10 mm was a predictor of optimal SLCC%. In patients with a preoperative AVTLumbar > 10 mm, early postoperative T4–T12 TK < 24° (but not less than 17°) accompanied by − 5° < AVRThoracic < 5° were the main predictors of optimal SLCC% in our cohort.

Conclusion

Quantitative clustering of the SLCC% into optimal and suboptimal groups allowed identifying the cutoff values of preoperative (AVTLumbar) and early postoperative (T4–T12 TK and AVRThoracic) spinal parameters that can predict the optimal range of SLCC% at two-year postoperative in our cohort of Lenke 1 AIS.

Level of evidence

IV
Literature
2.
go back to reference Skaggs DL, Seehausen DA, Yamaguchi KT Jr, Hah RJ, Wright ML, Bumpass DB, Kim HJ, Andras LM, Vitale MG, Lenke LG (2016) Assessment of lowest instrumented vertebra tilt on radiographic measurements in Lenke "C" modifier curves undergoing selective thoracic fusion in adolescent idiopathic scoliosis. Spine Deform 4(2):125–130. https://doi.org/10.1016/j.jspd.2015.08.006 CrossRefPubMed Skaggs DL, Seehausen DA, Yamaguchi KT Jr, Hah RJ, Wright ML, Bumpass DB, Kim HJ, Andras LM, Vitale MG, Lenke LG (2016) Assessment of lowest instrumented vertebra tilt on radiographic measurements in Lenke "C" modifier curves undergoing selective thoracic fusion in adolescent idiopathic scoliosis. Spine Deform 4(2):125–130. https://​doi.​org/​10.​1016/​j.​jspd.​2015.​08.​006 CrossRefPubMed
3.
go back to reference Pasha S, Cahill PJ, Flynn JM, Sponseller P, Newton PO, Harms Study Group (2018) Relationships between the axial derotation of the lower instrumented vertebra and uninstrumented lumbar curve correction: radiographic outcome in Lenke 1 adolescent idiopathic scoliosis with a minimum 2-year follow-up. J Pediatr Orthop. https://doi.org/10.1097/BPO.0000000000001136 CrossRefPubMed Pasha S, Cahill PJ, Flynn JM, Sponseller P, Newton PO, Harms Study Group (2018) Relationships between the axial derotation of the lower instrumented vertebra and uninstrumented lumbar curve correction: radiographic outcome in Lenke 1 adolescent idiopathic scoliosis with a minimum 2-year follow-up. J Pediatr Orthop. https://​doi.​org/​10.​1097/​BPO.​0000000000001136​ CrossRefPubMed
7.
go back to reference Arlet V, Marchesi D, Papin P, Aebi M (2000) Decompensation following scoliosis surgery: treatment by decreasing the correction of the main thoracic curve or "letting the spine go". Eur Spine J 9(2):156–160CrossRef Arlet V, Marchesi D, Papin P, Aebi M (2000) Decompensation following scoliosis surgery: treatment by decreasing the correction of the main thoracic curve or "letting the spine go". Eur Spine J 9(2):156–160CrossRef
8.
go back to reference Frez R, Cheng JC, Wong EM (2000) Longitudinal changes in trunkal balance after selective fusion of King II curves in adolescent idiopathic scoliosis. Spine 25(11):1352–1359CrossRef Frez R, Cheng JC, Wong EM (2000) Longitudinal changes in trunkal balance after selective fusion of King II curves in adolescent idiopathic scoliosis. Spine 25(11):1352–1359CrossRef
13.
go back to reference Schulz J, Asghar J, Bastrom T, Shufflebarger H, Newton PO, Sturm P, Betz RR, Samdani AF, Yaszay B, Harms Study G (2014) Optimal radiographical criteria after selective thoracic fusion for patients with adolescent idiopathic scoliosis with a C lumbar modifier: does adherence to current guidelines predict success? Spine (Phila Pa 1976) 39(23):E1368–E1373. https://doi.org/10.1097/BRS.0000000000000580 CrossRef Schulz J, Asghar J, Bastrom T, Shufflebarger H, Newton PO, Sturm P, Betz RR, Samdani AF, Yaszay B, Harms Study G (2014) Optimal radiographical criteria after selective thoracic fusion for patients with adolescent idiopathic scoliosis with a C lumbar modifier: does adherence to current guidelines predict success? Spine (Phila Pa 1976) 39(23):E1368–E1373. https://​doi.​org/​10.​1097/​BRS.​0000000000000580​ CrossRef
18.
go back to reference DeFrancesco, CJ, Pasha S, Miller DJ, Betz RR, Clements DH, Fletcher ND, Glotzbecker, MG, Hwang SW, Kelly MP, Lehman RA, Lonner, BS, Newton PO, Roye, BD, Sponseller, PD, Upasani, VV, Cahill PJ, Group HS (2018) Agreement between manual and computerized designation of neutral vertebra in idiopathic scoliosis. Spine Deform 6(6):644–650. https://doi.org/10.1016/j.jspd.2018.03.001 CrossRefPubMed DeFrancesco, CJ, Pasha S, Miller DJ, Betz RR, Clements DH, Fletcher ND, Glotzbecker, MG, Hwang SW, Kelly MP, Lehman RA, Lonner, BS, Newton PO, Roye, BD, Sponseller, PD, Upasani, VV, Cahill PJ, Group HS (2018) Agreement between manual and computerized designation of neutral vertebra in idiopathic scoliosis. Spine Deform 6(6):644–650. https://​doi.​org/​10.​1016/​j.​jspd.​2018.​03.​001 CrossRefPubMed
20.
go back to reference Stokes IA (1994) Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine (Phila Pa 1976) 19(2):236–248CrossRef Stokes IA (1994) Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine (Phila Pa 1976) 19(2):236–248CrossRef
22.
go back to reference Qiu G, Zhang J, Wang Y, Xu H, Zhang J, Weng X, Lin J, Zhao Y, Shen J, Yang X, Luk KD, Lu D, Lu WW (2005) A new operative classification of idiopathic scoliosis: a peking union medical college method. Spine (Phila Pa 1976) 30(12):1419–1426CrossRef Qiu G, Zhang J, Wang Y, Xu H, Zhang J, Weng X, Lin J, Zhao Y, Shen J, Yang X, Luk KD, Lu D, Lu WW (2005) A new operative classification of idiopathic scoliosis: a peking union medical college method. Spine (Phila Pa 1976) 30(12):1419–1426CrossRef
24.
go back to reference Homans JF, Kruyt MC, Schlosser TPC, Colo D, Rogers K, Shah SA, Flynn JM, Castelein RM, Pasha S (2019) Changes in the position of the junctional vertebrae after posterior spinal fusion in adolescent idiopathic scoliosis: implication in risk assessment of proximal junctional kyphosis development. J Pediatr Orthop. https://doi.org/10.1097/BPO.0000000000001400 CrossRef Homans JF, Kruyt MC, Schlosser TPC, Colo D, Rogers K, Shah SA, Flynn JM, Castelein RM, Pasha S (2019) Changes in the position of the junctional vertebrae after posterior spinal fusion in adolescent idiopathic scoliosis: implication in risk assessment of proximal junctional kyphosis development. J Pediatr Orthop. https://​doi.​org/​10.​1097/​BPO.​0000000000001400​ CrossRef
Metadata
Title
Defining criteria for optimal lumbar curve correction following the selective thoracic fusion surgery in Lenke 1 adolescent idiopathic scoliosis: developing a decision tree
Authors
Saba Pasha
Jean-Marc Mac-Thiong
Publication date
01-04-2020
Publisher
Springer Paris
Published in
European Journal of Orthopaedic Surgery & Traumatology / Issue 3/2020
Print ISSN: 1633-8065
Electronic ISSN: 1432-1068
DOI
https://doi.org/10.1007/s00590-019-02596-z

Other articles of this Issue 3/2020

European Journal of Orthopaedic Surgery & Traumatology 3/2020 Go to the issue