Skip to main content
Top
Published in: European Spine Journal 5/2019

Open Access 01-05-2019 | Original Article

ISSLS PRIZE IN BIOENGINEERING SCIENCE 2019: biomechanical changes in dynamic sagittal balance and lower limb compensatory strategies following realignment surgery in adult spinal deformity patients

Authors: Jeannie F. Bailey, Robert P. Matthew, Sarah Seko, Patrick Curran, Leslie Chu, Sigurd H. Berven, Vedat Deviren, Shane Burch, Jeffrey C. Lotz

Published in: European Spine Journal | Issue 5/2019

Login to get access

Abstract

Study design

A longitudinal cohort study.

Objective

To define a set of objective biomechanical metrics that are representative of adult spinal deformity (ASD) post-surgical outcomes and that may forecast post-surgical mechanical complications.

Summary of background data

Current outcomes for ASD surgical planning and post-surgical assessment are limited to static radiographic alignment and patient-reported questionnaires. Little is known about the compensatory biomechanical strategies for stabilizing sagittal balance during functional movements in ASD patients.

Methods

We collected in-clinic motion data from 15 ASD patients and 10 controls during an unassisted sit-to-stand (STS) functional maneuver. Joint motions were measured using noninvasive 3D depth mapping sensor technology. Mathematical methods were used to attain high-fidelity joint-position tracking for biomechanical modeling. This approach provided reliable measurements for biomechanical behaviors at the spine, hip, and knee. These included peak sagittal vertical axis (SVA) over the course of the STS, as well as forces and muscular moments at various joints. We compared changes in dynamic sagittal balance (DSB) metrics between pre- and post-surgery and then separately compared pre- and post-surgical data to controls.

Results

Standard radiographic and patient-reported outcomes significantly improved following realignment surgery. From the DSB biomechanical metrics, peak SVA and biomechanical loads and muscular forces on the lower lumbar spine significantly reduced following surgery (− 19 to − 30%, all p < 0.05). In addition, as SVA improved, hip moments decreased (− 28 to − 65%, all p < 0.05) and knee moments increased (+ 7 to + 28%, p < 0.05), indicating changes in lower limb compensatory strategies. After surgery, DSB data approached values from the controls, with some post-surgical metrics becoming statistically equivalent to controls.

Conclusions

Longitudinal changes in DSB following successful multi-level spinal realignment indicate reduced forces on the lower lumbar spine along with altered lower limb dynamics matching that of controls. Inadequate improvement in DSB may indicate increased risk of post-surgical mechanical failure.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ames CP, Scheer JK, Lafage V et al (2016) Adult spinal deformity: epidemiology, health impact, evaluation, and management. Spine Deform 4:310–322CrossRefPubMed Ames CP, Scheer JK, Lafage V et al (2016) Adult spinal deformity: epidemiology, health impact, evaluation, and management. Spine Deform 4:310–322CrossRefPubMed
2.
go back to reference Schwab F, Lafage V, Boyce R et al (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 31:E959–E967CrossRefPubMed Schwab F, Lafage V, Boyce R et al (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 31:E959–E967CrossRefPubMed
3.
go back to reference Glassman SD, Bridwell K, Dimar JR et al (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30:2024–2029CrossRefPubMed Glassman SD, Bridwell K, Dimar JR et al (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30:2024–2029CrossRefPubMed
4.
go back to reference Arima H, Yamato Y, Hasegawa T et al (2017) Discrepancy between standing posture and sagittal balance during walking in adult spinal deformity patients. Spine 42:E25–E30CrossRefPubMed Arima H, Yamato Y, Hasegawa T et al (2017) Discrepancy between standing posture and sagittal balance during walking in adult spinal deformity patients. Spine 42:E25–E30CrossRefPubMed
5.
go back to reference Diebo BG, Shah NV, Pivec R et al (2018) From static spinal alignment to dynamic body balance. JBJS Rev 6:e3CrossRefPubMed Diebo BG, Shah NV, Pivec R et al (2018) From static spinal alignment to dynamic body balance. JBJS Rev 6:e3CrossRefPubMed
6.
go back to reference Bae J, Theologis AA, Jang J-S et al (2017) Impact of fatigue on maintenance of upright posture: dynamic assessment of sagittal spinal deformity parameters after walking 10 min. Spine 42:733–739CrossRefPubMed Bae J, Theologis AA, Jang J-S et al (2017) Impact of fatigue on maintenance of upright posture: dynamic assessment of sagittal spinal deformity parameters after walking 10 min. Spine 42:733–739CrossRefPubMed
7.
go back to reference Glassman SD, Coseo MP, Carreon LY (2016) Sagittal balance is more than just alignment: why PJK remains an unresolved problem. Scoliosis Spinal Disord 11:1CrossRefPubMedPubMedCentral Glassman SD, Coseo MP, Carreon LY (2016) Sagittal balance is more than just alignment: why PJK remains an unresolved problem. Scoliosis Spinal Disord 11:1CrossRefPubMedPubMedCentral
8.
go back to reference Nguyen N-LM, Kong CY, Hart RA (2016) Proximal junctional kyphosis and failure-diagnosis, prevention, and treatment. Curr Rev Musculoskelet Med 9:299–308CrossRefPubMedPubMedCentral Nguyen N-LM, Kong CY, Hart RA (2016) Proximal junctional kyphosis and failure-diagnosis, prevention, and treatment. Curr Rev Musculoskelet Med 9:299–308CrossRefPubMedPubMedCentral
9.
go back to reference Julier SJ, Uhlmann JK (1997) New extension of the Kalman filter to nonlinear systems. In: Kadar I (ed) Proc of SPIE, vol 3068, pp 182–193 Julier SJ, Uhlmann JK (1997) New extension of the Kalman filter to nonlinear systems. In: Kadar I (ed) Proc of SPIE, vol 3068, pp 182–193
10.
go back to reference Dumas R, Cheze L, Verriest JP (2007) Adjustments to McConville et al. and Young et al. body segment inertial parameters. J Biomech 40:543–553CrossRefPubMed Dumas R, Cheze L, Verriest JP (2007) Adjustments to McConville et al. and Young et al. body segment inertial parameters. J Biomech 40:543–553CrossRefPubMed
11.
go back to reference Zhao F, Pollintine P, Hole BD et al (2005) Discogenic origins of spinal instability. Spine 30:2621–2630CrossRefPubMed Zhao F, Pollintine P, Hole BD et al (2005) Discogenic origins of spinal instability. Spine 30:2621–2630CrossRefPubMed
12.
go back to reference Matthew RP, Seko S, Bajcsy R et al (2018) Kinematic and kinetic validation of an improved depth camera motion assessment system using rigid bodies. IEEE J Biomed Health Inform [Epub ahead of print] Matthew RP, Seko S, Bajcsy R et al (2018) Kinematic and kinetic validation of an improved depth camera motion assessment system using rigid bodies. IEEE J Biomed Health Inform [Epub ahead of print]
13.
go back to reference Matthew RP, Seko S, Bailey JF, Bajcsy R, Lotz J. (2019) Estimating sit-to-stand dynamics using a single depth camera. IEEE J Biomed Health Inform [Epub ahead of print] Matthew RP, Seko S, Bailey JF, Bajcsy R, Lotz J. (2019) Estimating sit-to-stand dynamics using a single depth camera. IEEE J Biomed Health Inform [Epub ahead of print]
14.
go back to reference Lafage V, Schwab F, Skalli W et al (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine 33:1572–1578CrossRefPubMed Lafage V, Schwab F, Skalli W et al (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine 33:1572–1578CrossRefPubMed
15.
go back to reference Brech GC, Alonso AC, Luna NMS, Greve JM (2013) Correlation of postural balance and knee muscle strength in the sit-to-stand test among women with and without postmenopausal osteoporosis. Osteoporos Int 24:2007–2013CrossRef Brech GC, Alonso AC, Luna NMS, Greve JM (2013) Correlation of postural balance and knee muscle strength in the sit-to-stand test among women with and without postmenopausal osteoporosis. Osteoporos Int 24:2007–2013CrossRef
16.
go back to reference Engsberg JR, Bridwell KH, Wagner JM et al (2003) Gait changes as the result of deformity reconstruction surgery in a group of adults with lumbar scoliosis. Spine 28:1836–1843CrossRefPubMed Engsberg JR, Bridwell KH, Wagner JM et al (2003) Gait changes as the result of deformity reconstruction surgery in a group of adults with lumbar scoliosis. Spine 28:1836–1843CrossRefPubMed
17.
go back to reference Shum GLK, Crosbie J, Lee RYW (2007) Three-dimensional kinetics of the lumbar spine and hips in low back pain patients during sit-to-stand and stand-to-sit. Spine 32:E211–E219CrossRefPubMed Shum GLK, Crosbie J, Lee RYW (2007) Three-dimensional kinetics of the lumbar spine and hips in low back pain patients during sit-to-stand and stand-to-sit. Spine 32:E211–E219CrossRefPubMed
18.
go back to reference Fotoohabadi MR, Tully EA, Galea MP (2010) Kinematics of rising from a chair: image-based analysis of the sagittal hip-spine movement pattern in elderly people who are healthy. Phys Ther 90:561–571CrossRefPubMed Fotoohabadi MR, Tully EA, Galea MP (2010) Kinematics of rising from a chair: image-based analysis of the sagittal hip-spine movement pattern in elderly people who are healthy. Phys Ther 90:561–571CrossRefPubMed
19.
go back to reference Sanchez-Zuriaga D, Lopez-Pascual J, Garrido-Jaen D et al (2011) Reliability and validity of a new objective tool for low back pain functional assessment. Spine 36:1279–1288CrossRefPubMed Sanchez-Zuriaga D, Lopez-Pascual J, Garrido-Jaen D et al (2011) Reliability and validity of a new objective tool for low back pain functional assessment. Spine 36:1279–1288CrossRefPubMed
20.
go back to reference Christe G, Redhead L, Legrand T et al (2016) Multi-segment analysis of spinal kinematics during sit-to-stand in patients with chronic low back pain. J Biomech 49:2060–2067CrossRefPubMed Christe G, Redhead L, Legrand T et al (2016) Multi-segment analysis of spinal kinematics during sit-to-stand in patients with chronic low back pain. J Biomech 49:2060–2067CrossRefPubMed
21.
go back to reference Hemming R, Sheeran L, van Deursen R, Sparkes V (2017) Non-specific chronic low back pain: differences in spinal kinematics in subgroups during functional tasks. Eur Spine J 379:482–488 Hemming R, Sheeran L, van Deursen R, Sparkes V (2017) Non-specific chronic low back pain: differences in spinal kinematics in subgroups during functional tasks. Eur Spine J 379:482–488
23.
go back to reference Staartjes VE, Schroeder ML (2018) The five-repetition sit-to-stand test: evaluation of a simple and objective tool for the assessment of degenerative pathologies of the lumbar spine. J Neurosurg Spine 29:380–387CrossRefPubMed Staartjes VE, Schroeder ML (2018) The five-repetition sit-to-stand test: evaluation of a simple and objective tool for the assessment of degenerative pathologies of the lumbar spine. J Neurosurg Spine 29:380–387CrossRefPubMed
24.
go back to reference Actis JA, Nolasco LA, Gates DH, Silverman AK (2018) Lumbar loads and trunk kinematics in people with a transtibial amputation during sit-to-stand. J Biomech 69:1–9CrossRefPubMed Actis JA, Nolasco LA, Gates DH, Silverman AK (2018) Lumbar loads and trunk kinematics in people with a transtibial amputation during sit-to-stand. J Biomech 69:1–9CrossRefPubMed
25.
go back to reference Riley PO, Krebs DE, Popat RA (1997) Biomechanical analysis of failed sit-to-stand. IEEE Trans Rehabil Eng 5:353–359CrossRefPubMed Riley PO, Krebs DE, Popat RA (1997) Biomechanical analysis of failed sit-to-stand. IEEE Trans Rehabil Eng 5:353–359CrossRefPubMed
26.
go back to reference Liu F-Y, Wang T, Yang S-D et al (2016) Incidence and risk factors for proximal junctional kyphosis: a meta-analysis. Eur Spine J 25:2376–2383CrossRefPubMed Liu F-Y, Wang T, Yang S-D et al (2016) Incidence and risk factors for proximal junctional kyphosis: a meta-analysis. Eur Spine J 25:2376–2383CrossRefPubMed
27.
go back to reference Hyun S-J, Kim YJ, Rhim S-C (2016) Patients with proximal junctional kyphosis after stopping at thoracolumbar junction have lower muscularity, fatty degeneration at the thoracolumbar area. Spine J 16:1095–1101CrossRefPubMed Hyun S-J, Kim YJ, Rhim S-C (2016) Patients with proximal junctional kyphosis after stopping at thoracolumbar junction have lower muscularity, fatty degeneration at the thoracolumbar area. Spine J 16:1095–1101CrossRefPubMed
28.
go back to reference Yagi M, King AB, Boachie-Adjei O (2012) Incidence, risk factors, and natural course of proximal junctional kyphosis surgical outcomes review of adult idiopathic scoliosis. Minimum 5 years of follow-up. Spine 37:1479–1489CrossRefPubMed Yagi M, King AB, Boachie-Adjei O (2012) Incidence, risk factors, and natural course of proximal junctional kyphosis surgical outcomes review of adult idiopathic scoliosis. Minimum 5 years of follow-up. Spine 37:1479–1489CrossRefPubMed
29.
go back to reference Ignasiak D, Rüeger A, Sperr R, Ferguson SJ (2018) Thoracolumbar spine loading associated with kinematics of the young and the elderly during activities of daily living. J Biomech 70:175–184CrossRefPubMed Ignasiak D, Rüeger A, Sperr R, Ferguson SJ (2018) Thoracolumbar spine loading associated with kinematics of the young and the elderly during activities of daily living. J Biomech 70:175–184CrossRefPubMed
Metadata
Title
ISSLS PRIZE IN BIOENGINEERING SCIENCE 2019: biomechanical changes in dynamic sagittal balance and lower limb compensatory strategies following realignment surgery in adult spinal deformity patients
Authors
Jeannie F. Bailey
Robert P. Matthew
Sarah Seko
Patrick Curran
Leslie Chu
Sigurd H. Berven
Vedat Deviren
Shane Burch
Jeffrey C. Lotz
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 5/2019
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-019-05925-2

Other articles of this Issue 5/2019

European Spine Journal 5/2019 Go to the issue