Skip to main content
Top
Published in: European Spine Journal 5/2017

01-05-2017 | Original Article

Reliability assessment of AOSpine thoracolumbar spine injury classification system and Thoracolumbar Injury Classification and Severity Score (TLICS) for thoracolumbar spine injuries: results of a multicentre study

Authors: Rahul Kaul, Harvinder Singh Chhabra, Alexander R. Vaccaro, Rainer Abel, Sagun Tuli, Ajoy Prasad Shetty, Kali Dutta Das, Bibhudendu Mohapatra, Ankur Nanda, Gururaj M. Sangondimath, Murari Lal Bansal, Nishit Patel

Published in: European Spine Journal | Issue 5/2017

Login to get access

Abstract

Purpose

The aim of this multicentre study was to determine whether the recently introduced AOSpine Classification and Injury Severity System has better interrater and intrarater reliability than the already existing Thoracolumbar Injury Classification and Severity Score (TLICS) for thoracolumbar spine injuries.

Methods

Clinical and radiological data of 50 consecutive patients admitted at a single centre with a diagnosis of an acute traumatic thoracolumbar spine injury were distributed to eleven attending spine surgeons from six different institutions in the form of PowerPoint presentation, who classified them according to both classifications. After time span of 6 weeks, cases were randomly rearranged and sent again to same surgeons for re-classification. Interobserver and intraobserver reliability for each component of TLICS and new AOSpine classification were evaluated using Fleiss Kappa coefficient (k value) and Spearman rank order correlation.

Results

Moderate interrater and intrarater reliability was seen for grading fracture type and integrity of posterior ligamentous complex (Fracture type: k = 0.43 ± 0.01 and 0.59 ± 0.16, respectively, PLC: k = 0.47 ± 0.01 and 0.55 ± 0.15, respectively), and fair to moderate reliability (k = 0.29 ± 0.01 interobserver and 0.44+/0.10 intraobserver, respectively) for total score according to TLICS. Moderate interrater (k = 0.59 ± 0.01) and substantial intrarater reliability (k = 0.68 ± 0.13) was seen for grading fracture type regardless of subtype according to AOSpine classification. Near perfect interrater and intrarater agreement was seen concerning neurological status for both the classification systems.

Conclusions

Recently proposed AOSpine classification has better reliability for identifying fracture morphology than the existing TLICS. Additional studies are clearly necessary concerning the application of these classification systems across multiple physicians at different level of training and trauma centers to evaluate not only their reliability and reproducibility, but also the other attributes, especially the clinical significance of a good classification system.
Appendix
Available only for authorised users
Literature
1.
go back to reference Middendorp JJV, Audige L, Hanson B et al (2010) What should an ideal spinal injury classification system consist of? A methodological review and conceptual proposal for future classifications. Eur Spine J 19:1238–1249CrossRefPubMedPubMedCentral Middendorp JJV, Audige L, Hanson B et al (2010) What should an ideal spinal injury classification system consist of? A methodological review and conceptual proposal for future classifications. Eur Spine J 19:1238–1249CrossRefPubMedPubMedCentral
2.
go back to reference Mirza SK, Mirza AJ, Chapman JR et al (2002) Classifications of thoracic and lumbar fractures: rationale and supporting data. J Am AcadOrthop Surg 10:364–377CrossRef Mirza SK, Mirza AJ, Chapman JR et al (2002) Classifications of thoracic and lumbar fractures: rationale and supporting data. J Am AcadOrthop Surg 10:364–377CrossRef
3.
go back to reference Bohler L (1930) Die techniek de knochenbruchbehandlungimgrieden und imkriege. Veralag von Wilhelm Maudrich. (in German) Bohler L (1930) Die techniek de knochenbruchbehandlungimgrieden und imkriege. Veralag von Wilhelm Maudrich. (in German)
4.
go back to reference Patel AA, Vaccaro AR (2010) Thoracolumbar spine trauma classification. J Am Acad Orthop Surg 18:63–71CrossRefPubMed Patel AA, Vaccaro AR (2010) Thoracolumbar spine trauma classification. J Am Acad Orthop Surg 18:63–71CrossRefPubMed
5.
go back to reference Bono CM, Vaccaro AR, Hurlbert RJ et al (2006) Validating a newly proposed classification system for thoracolumbar spine trauma: looking to the future of the Thoracolumbar Injury Classification and Severity Score. J Orthop Trauma 20:567–572CrossRefPubMed Bono CM, Vaccaro AR, Hurlbert RJ et al (2006) Validating a newly proposed classification system for thoracolumbar spine trauma: looking to the future of the Thoracolumbar Injury Classification and Severity Score. J Orthop Trauma 20:567–572CrossRefPubMed
6.
go back to reference Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817–831CrossRefPubMed Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817–831CrossRefPubMed
7.
go back to reference Agus H, Kayali C, Arslantas M (2004) Non-operative treatment of burst type thoracolumbar vertebral fractures: clinical and radiological results of 29 patients. Eur Spine J 14:536–540CrossRefPubMedPubMedCentral Agus H, Kayali C, Arslantas M (2004) Non-operative treatment of burst type thoracolumbar vertebral fractures: clinical and radiological results of 29 patients. Eur Spine J 14:536–540CrossRefPubMedPubMedCentral
8.
go back to reference Wood K, Buttermann G, Mehbod A et al (2003) Operative compared with non-operative treatment of thoracolumbar burst fractures without neurological deficit: a prospective randomized study. JBJS Am 85:773–781CrossRefPubMed Wood K, Buttermann G, Mehbod A et al (2003) Operative compared with non-operative treatment of thoracolumbar burst fractures without neurological deficit: a prospective randomized study. JBJS Am 85:773–781CrossRefPubMed
9.
go back to reference Magerl F, Aebi M, Gertzbein SD, Harms J et al (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201CrossRefPubMed Magerl F, Aebi M, Gertzbein SD, Harms J et al (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201CrossRefPubMed
10.
go back to reference Sethi MK, Schoenfeld AJ, Bono CM et al (2009) The evolution of thoracolumbar injury classification systems. Spine J 9:780–788CrossRefPubMed Sethi MK, Schoenfeld AJ, Bono CM et al (2009) The evolution of thoracolumbar injury classification systems. Spine J 9:780–788CrossRefPubMed
11.
go back to reference Vaccaro AR, Oner C, Kepler CK et al (2013) AOSpine thoracolumbar spine injury classification system: fracture description, neurological status and key modifiers. Spine (Phila Pa 1976) 38:2028–2037CrossRef Vaccaro AR, Oner C, Kepler CK et al (2013) AOSpine thoracolumbar spine injury classification system: fracture description, neurological status and key modifiers. Spine (Phila Pa 1976) 38:2028–2037CrossRef
12.
go back to reference Vaccaro AR, Zeiller SC, Hulbert RJ et al (2005) The thoracolumbar injury severity score: a proposed treatment algorithm. J Spinal Disord Tech 18:209–215PubMed Vaccaro AR, Zeiller SC, Hulbert RJ et al (2005) The thoracolumbar injury severity score: a proposed treatment algorithm. J Spinal Disord Tech 18:209–215PubMed
13.
go back to reference Harrop JS, Vaccaro AR, Hurlbert RJ et al (2006) Intrarater and interrater reliability and validity in the assessment of the mechanism of injury and integrity of the posterior ligamentous complex: a novel injury severity scoring system for thoracolumbar injuries. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2005. J Neurosurg Spine 4:118–122CrossRefPubMed Harrop JS, Vaccaro AR, Hurlbert RJ et al (2006) Intrarater and interrater reliability and validity in the assessment of the mechanism of injury and integrity of the posterior ligamentous complex: a novel injury severity scoring system for thoracolumbar injuries. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2005. J Neurosurg Spine 4:118–122CrossRefPubMed
14.
go back to reference Vaccaro AR, Baron EM, Sanfilippo J et al (2006) Reliability of a novel classification system for thoracolumbar injuries: the thoracolumbar injury severity score. Spine (Phila Pa 1976) 231:S62–S69CrossRef Vaccaro AR, Baron EM, Sanfilippo J et al (2006) Reliability of a novel classification system for thoracolumbar injuries: the thoracolumbar injury severity score. Spine (Phila Pa 1976) 231:S62–S69CrossRef
15.
go back to reference Rampersaud YR, Fisher C, Wilsey J et al (2006) Agreement between orthopedic surgeons and neurosurgeons regarding a new algorithm for the treatment of thoracolumbar injuries. A multicenter reliability study. J Spinal Disord Tech 19:477–482CrossRef Rampersaud YR, Fisher C, Wilsey J et al (2006) Agreement between orthopedic surgeons and neurosurgeons regarding a new algorithm for the treatment of thoracolumbar injuries. A multicenter reliability study. J Spinal Disord Tech 19:477–482CrossRef
16.
go back to reference Vaccaro AR, Lehman RA Jr, Hurlbert RJ et al (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976) 30:2325–2333CrossRef Vaccaro AR, Lehman RA Jr, Hurlbert RJ et al (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976) 30:2325–2333CrossRef
17.
go back to reference Patel AA, Dailey A, Brodke DS et al (2009) Thoracolumbar spine trauma classification: the Thoracolumbar Injury Classification and Severity Score system and case examples. J Neurosurg Spine 10:201–206CrossRefPubMed Patel AA, Dailey A, Brodke DS et al (2009) Thoracolumbar spine trauma classification: the Thoracolumbar Injury Classification and Severity Score system and case examples. J Neurosurg Spine 10:201–206CrossRefPubMed
18.
go back to reference Moore TA, Bransford RJ, France JC et al (2014) Low lumbar fractures. Does Thoracolumbar Injury Classification and Severity Score work? Spine (Phila Pa 1976) 39:E1021–E1025CrossRef Moore TA, Bransford RJ, France JC et al (2014) Low lumbar fractures. Does Thoracolumbar Injury Classification and Severity Score work? Spine (Phila Pa 1976) 39:E1021–E1025CrossRef
19.
go back to reference Joaquim AF, Bastos DCDA, Torres HHJ (2015) Thoracolumbar Injury Classification and Injury Severity Score system: a literature review of its safety. Global Spine J. (Epub ahead of print) Joaquim AF, Bastos DCDA, Torres HHJ (2015) Thoracolumbar Injury Classification and Injury Severity Score system: a literature review of its safety. Global Spine J. (Epub ahead of print)
20.
go back to reference Urrutia J, Zamora T, Yurac R et al (2014) An independent interobserver reliability and intraobserver reproducibility evaluation of the new AOSpine Thoracolumbar Spine Injury Classification System. Spine (Phila Pa 1976) 40:E54–E58CrossRef Urrutia J, Zamora T, Yurac R et al (2014) An independent interobserver reliability and intraobserver reproducibility evaluation of the new AOSpine Thoracolumbar Spine Injury Classification System. Spine (Phila Pa 1976) 40:E54–E58CrossRef
21.
go back to reference Kepler CK, Vaccaro AR, Koerner JD, et al (2015) Reliability analysis of the AOSpine Thoracolumbar Spine Injury Classification System by a worldwide group of naïve spinal surgeons. Eur Spine J. (Epub ahead of print) Kepler CK, Vaccaro AR, Koerner JD, et al (2015) Reliability analysis of the AOSpine Thoracolumbar Spine Injury Classification System by a worldwide group of naïve spinal surgeons. Eur Spine J. (Epub ahead of print)
22.
go back to reference Kirshblum SC, Burns SP, Biering-Sorenson F et al (2011) International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med 34:535–546CrossRefPubMedPubMedCentral Kirshblum SC, Burns SP, Biering-Sorenson F et al (2011) International standards for neurological classification of spinal cord injury (Revised 2011). J Spinal Cord Med 34:535–546CrossRefPubMedPubMedCentral
23.
go back to reference Landis JR, Koch GC (1977) The measurement of observer agreement for categorical data. Biometrics 36:207–216 Landis JR, Koch GC (1977) The measurement of observer agreement for categorical data. Biometrics 36:207–216
24.
go back to reference Chhabra HS, Kaul R, Kanagaraju V (2015) Do we have an ideal classification system for thoracolumbar and subaxial cervical spine injuries: what is the expert’s perspective? Spinal Cord 53:42–48CrossRefPubMed Chhabra HS, Kaul R, Kanagaraju V (2015) Do we have an ideal classification system for thoracolumbar and subaxial cervical spine injuries: what is the expert’s perspective? Spinal Cord 53:42–48CrossRefPubMed
25.
go back to reference Wood KB, Khanna G, Vaccaro AR et al (2005) Assessment of two thoracolumbar fracture classification systems as used by multiple surgeons. J Bone Joint Surg Am 87:1423–1429PubMed Wood KB, Khanna G, Vaccaro AR et al (2005) Assessment of two thoracolumbar fracture classification systems as used by multiple surgeons. J Bone Joint Surg Am 87:1423–1429PubMed
26.
go back to reference Rihn JA, Yang N, Fischer C et al (2010) Using magnetic resonance imaging to accurately assess injury to the posterior ligamentous complex of the spine: a prospective comparison of the surgeon and radiologist. J Neurosurg Spine 12:391–396CrossRefPubMed Rihn JA, Yang N, Fischer C et al (2010) Using magnetic resonance imaging to accurately assess injury to the posterior ligamentous complex of the spine: a prospective comparison of the surgeon and radiologist. J Neurosurg Spine 12:391–396CrossRefPubMed
27.
go back to reference Middendorp JJV, Patel AA, Schuetz, Joaquim AF (2013) The precision, accuracy and validity of detecting posterior complex injuries of the thoracic and lumbar spine: a critical appraisal of the literature. Eur Spin J 22:461–474CrossRef Middendorp JJV, Patel AA, Schuetz, Joaquim AF (2013) The precision, accuracy and validity of detecting posterior complex injuries of the thoracic and lumbar spine: a critical appraisal of the literature. Eur Spin J 22:461–474CrossRef
28.
go back to reference Dai LYMDP, Ding WGMDM, Wang XYMDP et al (2009) Assessment of ligamentous injury in patients with thoracolumbar burst fractures using MRI. J Trauma Injury Infect Crit Care 66:1610–1615CrossRef Dai LYMDP, Ding WGMDM, Wang XYMDP et al (2009) Assessment of ligamentous injury in patients with thoracolumbar burst fractures using MRI. J Trauma Injury Infect Crit Care 66:1610–1615CrossRef
29.
go back to reference Vaccaro AR, Schroeder GD, Kepler CK, et al (2015) The surgical algorithm for the AOSpine thoracolumbar spine injury classification system. Eur Spin J. (Epub ahead of print) Vaccaro AR, Schroeder GD, Kepler CK, et al (2015) The surgical algorithm for the AOSpine thoracolumbar spine injury classification system. Eur Spin J. (Epub ahead of print)
30.
go back to reference Whang PG, Vaccaro AR, Poelstra KA et al (2007) The influence of fracture mechanism and morphology on the reliability and validity of two novel Thoracolumbar Injury Classification Systems. Spine. 32:791–795CrossRefPubMed Whang PG, Vaccaro AR, Poelstra KA et al (2007) The influence of fracture mechanism and morphology on the reliability and validity of two novel Thoracolumbar Injury Classification Systems. Spine. 32:791–795CrossRefPubMed
31.
32.
go back to reference Kim WC, Lee KY, Kang JH et al (2012) Comparison of TLICS and McAfee classification in thoracolumbar injuries. J Korean Soc Spine Surg 19:8–15CrossRef Kim WC, Lee KY, Kang JH et al (2012) Comparison of TLICS and McAfee classification in thoracolumbar injuries. J Korean Soc Spine Surg 19:8–15CrossRef
33.
go back to reference Blauth M, Bastian L, Knop C et al (1999) Inter-observer reliability in the classification of thoracolumbar spinal injuries. Orthopade 28:662–681 (in German) Blauth M, Bastian L, Knop C et al (1999) Inter-observer reliability in the classification of thoracolumbar spinal injuries. Orthopade 28:662–681 (in German)
34.
go back to reference Oner FC, Ramos LM, Simmermacher RK et al (2002) Classification of thoracic and lumbar spine fractures: problems of reproducibility. a study of 53 patients using CT and MRI. Eur Spine J 11:235–245CrossRefPubMedPubMedCentral Oner FC, Ramos LM, Simmermacher RK et al (2002) Classification of thoracic and lumbar spine fractures: problems of reproducibility. a study of 53 patients using CT and MRI. Eur Spine J 11:235–245CrossRefPubMedPubMedCentral
35.
go back to reference Kriek JJ, Govender S (2006) AO-classification of thoracic and lumbar fractures—reproducibility utilizing radiographs and clinical information. Eur Spine J 15:1239–1246CrossRefPubMed Kriek JJ, Govender S (2006) AO-classification of thoracic and lumbar fractures—reproducibility utilizing radiographs and clinical information. Eur Spine J 15:1239–1246CrossRefPubMed
36.
go back to reference Sadiqi S, Oner FC, Dvorak MF et al (2015) The influence of spine surgeon’s experience on the classification and intraobserver reliability of the novel AOSpine thoracolumbar spine injury classification system—an international validity study. Spine (Phila Pa 1976) 40(23):E1250–E1256CrossRef Sadiqi S, Oner FC, Dvorak MF et al (2015) The influence of spine surgeon’s experience on the classification and intraobserver reliability of the novel AOSpine thoracolumbar spine injury classification system—an international validity study. Spine (Phila Pa 1976) 40(23):E1250–E1256CrossRef
Metadata
Title
Reliability assessment of AOSpine thoracolumbar spine injury classification system and Thoracolumbar Injury Classification and Severity Score (TLICS) for thoracolumbar spine injuries: results of a multicentre study
Authors
Rahul Kaul
Harvinder Singh Chhabra
Alexander R. Vaccaro
Rainer Abel
Sagun Tuli
Ajoy Prasad Shetty
Kali Dutta Das
Bibhudendu Mohapatra
Ankur Nanda
Gururaj M. Sangondimath
Murari Lal Bansal
Nishit Patel
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 5/2017
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-016-4663-5

Other articles of this Issue 5/2017

European Spine Journal 5/2017 Go to the issue