Skip to main content
Top
Published in: European Spine Journal 9/2015

01-09-2015 | Review Article

Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature

Authors: David Volkheimer, Masoud Malakoutian, Thomas R. Oxland, Hans-Joachim Wilke

Published in: European Spine Journal | Issue 9/2015

Login to get access

Abstract

Purpose

Accelerated degenerative changes at intervertebral levels adjacent to a spinal fusion, the so-called adjacent segment degeneration (ASD), have been reported in many clinical studies. Even though the pathogenesis of ASD is still widely unknown, biomechanical in vitro approaches have often been used to investigate the impact of spinal instrumentation on the adjacent segments. The goal of this review is (1) to summarize the results of these studies with respect to the applied protocol and loads and (2) to discuss if the assumptions made for the different protocols match the patients’ postoperative situation.

Methods

A systematic MEDLINE search was performed using the keywords “adjacent”, “in vitro” and “spine” in combination. This revealed a total of 247 articles of which 33 met the inclusion criteria. In addition, a mechanical model was developed to evaluate the effects of the current in vitro biomechanical test protocols on the changes in the adjacent segments resulting from different stiffnesses of the “treated” segment.

Results

The surgical treatments reported in biomechanical in vitro studies investigating ASD can be categorized into fusion procedures, total disc replacement (TDR), and dynamic implants. Three different test protocols (i.e. flexibility, stiffness, hybrid) with different loading scenarios (e.g. pure moment or eccentric load) are used in current biomechanical in vitro studies investigating ASD. According to the findings with the mechanical model, we found that the results for fusion procedures highly depend on the test protocol and method of load application, whereas for TDR and dynamic implants, most studies did not find significant changes in the adjacent segments, independent of which test protocol was used.

Conclusions

The three test protocols mainly differ in the assumption on the postoperative motion behavior of the patients, which is the main reason for the conflicting findings. However, the protocols have never been validated using in vivo kinematic data. In a parallel review on in vivo kinematics by Malakoutian et al., it was found that the assumption that the patients move exactly the same after fusion implemented with the stiffness- and hybrid protocol does not match the patients’ behavior. They showed that the motion of the whole lumbar spine rather tends to decrease in most studies, which could be predicted by the flexibility protocol. However, when the flexibility protocol is used with the “gold standard” pure moment, the difference in the kinematic changes between the cranial and caudal adjacent segment cannot be reproduced, putting the validity of current in vitro protocols into question.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lund T, Oxland TR (2011) Adjacent level disk disease—is it really a fusion disease? Orthop Clin N Am 42:529–541CrossRef Lund T, Oxland TR (2011) Adjacent level disk disease—is it really a fusion disease? Orthop Clin N Am 42:529–541CrossRef
2.
go back to reference Park P, Garton HJ, Gala VC et al (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29:1938–1944CrossRef Park P, Garton HJ, Gala VC et al (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29:1938–1944CrossRef
3.
go back to reference Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4:190S–194SCrossRefPubMed Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4:190S–194SCrossRefPubMed
4.
go back to reference Malakoutian M, Volkheimer D, Street J et al (2015) Do in vivo kinematic studies provide insight into the degeneration of adjacent segments?—a qualitative systematic literature review. Eur Spine J. doi:10.1007/s00586-015-3992-0 Malakoutian M, Volkheimer D, Street J et al (2015) Do in vivo kinematic studies provide insight into the degeneration of adjacent segments?—a qualitative systematic literature review. Eur Spine J. doi:10.​1007/​s00586-015-3992-0
5.
go back to reference Cole T-C, Burkhardt D, Ghosh P et al (1985) Effects of spinal fusion on the proteoglycans of the canine intervertebral disc. J Orthop Res 3:277–291CrossRefPubMed Cole T-C, Burkhardt D, Ghosh P et al (1985) Effects of spinal fusion on the proteoglycans of the canine intervertebral disc. J Orthop Res 3:277–291CrossRefPubMed
6.
go back to reference Bushell GR, Ghosh P, Taylor TKF et al (1978) The effect of spinal fusion on the collagen and proteoglycans of the canine intervertebral disc. J Surg Res 25:61–69CrossRefPubMed Bushell GR, Ghosh P, Taylor TKF et al (1978) The effect of spinal fusion on the collagen and proteoglycans of the canine intervertebral disc. J Surg Res 25:61–69CrossRefPubMed
7.
go back to reference Hoogendoorn RJW, Helder MN, Wuisman PIJM et al (2008) Adjacent segment degeneration––observations in a goat spinal fusion study. Spine (Phila Pa 1976) 33:1337–1343CrossRef Hoogendoorn RJW, Helder MN, Wuisman PIJM et al (2008) Adjacent segment degeneration––observations in a goat spinal fusion study. Spine (Phila Pa 1976) 33:1337–1343CrossRef
8.
go back to reference Phillips FM, Reuben J, Wetzel FT (2002) Intervertebral disc degeneration adjacent to a lumbar fusion—an experimental rabbit model. J Bone Joint Surg Br 84-B:289–294CrossRef Phillips FM, Reuben J, Wetzel FT (2002) Intervertebral disc degeneration adjacent to a lumbar fusion—an experimental rabbit model. J Bone Joint Surg Br 84-B:289–294CrossRef
9.
go back to reference Wilke H-J, Kettler A, Wenger KH, Claes LE (1997) Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 247:542–555CrossRefPubMed Wilke H-J, Kettler A, Wenger KH, Claes LE (1997) Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 247:542–555CrossRefPubMed
11.
go back to reference Reitmaier S, Schmidt H, Ihler R et al (2013) Preliminary investigations on intradiscal pressures during daily activities: an in vivo study using the merino sheep. PLoS One 8:e69610PubMedCentralCrossRefPubMed Reitmaier S, Schmidt H, Ihler R et al (2013) Preliminary investigations on intradiscal pressures during daily activities: an in vivo study using the merino sheep. PLoS One 8:e69610PubMedCentralCrossRefPubMed
12.
go back to reference Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech 22:257–265CrossRef Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech 22:257–265CrossRef
13.
go back to reference Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine (Phila Pa 1976) 13:1129–1134CrossRef Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine (Phila Pa 1976) 13:1129–1134CrossRef
14.
go back to reference Patwardhan AG, Havey RM, Meade KP et al (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24:1003–1009CrossRef Patwardhan AG, Havey RM, Meade KP et al (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24:1003–1009CrossRef
15.
go back to reference Wilke H-J, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154PubMedCentralCrossRefPubMed Wilke H-J, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154PubMedCentralCrossRefPubMed
16.
go back to reference Gertzbein SD, Holtby R, Tile M et al (1984) Determination of a locus of instantaneous centers of rotation of the lumbar disc by Moiré fringes: a new technique. Spine (Phila Pa 1976) 9:409–413CrossRef Gertzbein SD, Holtby R, Tile M et al (1984) Determination of a locus of instantaneous centers of rotation of the lumbar disc by Moiré fringes: a new technique. Spine (Phila Pa 1976) 9:409–413CrossRef
17.
go back to reference Quinnell RC, Stockdale HR (1981) Some experimental observations of the influence of a single lumbar floating fusion on the remaining lumbar spine. Spine (Phila Pa 1976) 6:263–267CrossRef Quinnell RC, Stockdale HR (1981) Some experimental observations of the influence of a single lumbar floating fusion on the remaining lumbar spine. Spine (Phila Pa 1976) 6:263–267CrossRef
18.
go back to reference Dekutoski MB, Schendel MJ, Ogilvie JW et al (1994) Comparison of in vivo and in vitro adjacent segment motion after lumbar fusion. Spine (Phila Pa 1976) 19:1745–1751CrossRef Dekutoski MB, Schendel MJ, Ogilvie JW et al (1994) Comparison of in vivo and in vitro adjacent segment motion after lumbar fusion. Spine (Phila Pa 1976) 19:1745–1751CrossRef
19.
go back to reference Lucas DB, Bresler B (1961) Stability of the ligamentous spine. Technical Report esr. 11 No. 40, Biomechanics Laboratory, University of California at San Francisco, The Laboratory Lucas DB, Bresler B (1961) Stability of the ligamentous spine. Technical Report esr. 11 No. 40, Biomechanics Laboratory, University of California at San Francisco, The Laboratory
20.
go back to reference Crisco JJ (1989) The biomechanical stability of the human lumbar spine: experimental and theoretical investigations (doctoral dissertation). CT, Yale University, New Haven Crisco JJ (1989) The biomechanical stability of the human lumbar spine: experimental and theoretical investigations (doctoral dissertation). CT, Yale University, New Haven
22.
go back to reference Bastian L, Lange U, Knop C et al (2001) Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study. Eur Spine J 10:295–300PubMedCentralCrossRefPubMed Bastian L, Lange U, Knop C et al (2001) Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study. Eur Spine J 10:295–300PubMedCentralCrossRefPubMed
23.
go back to reference Schmoelz W, Huber JF, Nydegger T et al (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423CrossRefPubMed Schmoelz W, Huber JF, Nydegger T et al (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423CrossRefPubMed
24.
go back to reference Moore J, Yoganandan N, Pintar FA et al (2006) Tapered cages in anterior lumbar interbody fusion: biomechanics of segmental reactions. J Neurosurg Spine 5:330–335CrossRefPubMed Moore J, Yoganandan N, Pintar FA et al (2006) Tapered cages in anterior lumbar interbody fusion: biomechanics of segmental reactions. J Neurosurg Spine 5:330–335CrossRefPubMed
25.
go back to reference Schmoelz W, Huber JF, Nydegger T et al (2006) Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure. Eur Spine J 15:1276–1285PubMedCentralCrossRefPubMed Schmoelz W, Huber JF, Nydegger T et al (2006) Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure. Eur Spine J 15:1276–1285PubMedCentralCrossRefPubMed
26.
go back to reference Delank K-S, Gercek E, Kuhn S et al (2010) How does spinal canal decompression and dorsal stabilization affect segmental mobility? A biomechanical study. Arch Orthop Trauma Surg 130:285–292CrossRefPubMed Delank K-S, Gercek E, Kuhn S et al (2010) How does spinal canal decompression and dorsal stabilization affect segmental mobility? A biomechanical study. Arch Orthop Trauma Surg 130:285–292CrossRefPubMed
27.
go back to reference Dahl MC, Ellingson AM, Mehta HP et al (2013) The biomechanics of a multilevel lumbar spine hybrid using nucleus replacement in conjunction with fusion. Spine J 13:175–183CrossRefPubMed Dahl MC, Ellingson AM, Mehta HP et al (2013) The biomechanics of a multilevel lumbar spine hybrid using nucleus replacement in conjunction with fusion. Spine J 13:175–183CrossRefPubMed
28.
go back to reference Cheng BC, Gordon J, Cheng J, Welch WC (2007) Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine (Phila Pa 1976) 32:2551–2557CrossRef Cheng BC, Gordon J, Cheng J, Welch WC (2007) Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine (Phila Pa 1976) 32:2551–2557CrossRef
29.
go back to reference Akamaru T, Kawahara N, Yoon TS et al (2003) Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: a biomechanical analysis. Spine (Phila Pa 1976) 28:1560–1566 Akamaru T, Kawahara N, Yoon TS et al (2003) Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: a biomechanical analysis. Spine (Phila Pa 1976) 28:1560–1566
30.
go back to reference Umehara S, Zindrick MR, Patwardhan AG et al (2000) The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine (Phila Pa 1976) 25:1617–1624CrossRef Umehara S, Zindrick MR, Patwardhan AG et al (2000) The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine (Phila Pa 1976) 25:1617–1624CrossRef
31.
go back to reference Weinhoffer SL, Guyer RD, Herbert M, Griffith SL (1995) Intradiscal pressure measurements above an instrumented fusion: a cadaveric study. Spine (Phila Pa 1976) 20:526–531CrossRef Weinhoffer SL, Guyer RD, Herbert M, Griffith SL (1995) Intradiscal pressure measurements above an instrumented fusion: a cadaveric study. Spine (Phila Pa 1976) 20:526–531CrossRef
32.
go back to reference Chow DHK, Luk KDK, Evans JH, Leong JCY (1996) Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine (Phila Pa 1976) 21:549–555CrossRef Chow DHK, Luk KDK, Evans JH, Leong JCY (1996) Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine (Phila Pa 1976) 21:549–555CrossRef
33.
go back to reference Cunningham BW, Kotani Y, McNulty PS et al (1997) The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine (Phila Pa 1976) 22:2655–2663CrossRef Cunningham BW, Kotani Y, McNulty PS et al (1997) The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine (Phila Pa 1976) 22:2655–2663CrossRef
34.
go back to reference Panjabi M, Malcolmson G, Teng E et al (2007) Hybrid testing of lumbar CHARITE discs versus fusions. Spine (Phila Pa 1976) 32:959–966CrossRef Panjabi M, Malcolmson G, Teng E et al (2007) Hybrid testing of lumbar CHARITE discs versus fusions. Spine (Phila Pa 1976) 32:959–966CrossRef
35.
go back to reference Panjabi M, Henderson G, Abjornson C, Yue J (2007) Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions. Spine (Phila Pa 1976) 32:1311–1319CrossRef Panjabi M, Henderson G, Abjornson C, Yue J (2007) Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions. Spine (Phila Pa 1976) 32:1311–1319CrossRef
36.
go back to reference Panjabi MM, Henderson G, James Y, Timm JP (2007) StabilimaxNZ versus simulated fusion: evaluation of adjacent-level effects. Eur Spine J 16:2159–2165PubMedCentralCrossRefPubMed Panjabi MM, Henderson G, James Y, Timm JP (2007) StabilimaxNZ versus simulated fusion: evaluation of adjacent-level effects. Eur Spine J 16:2159–2165PubMedCentralCrossRefPubMed
37.
go back to reference Molz FJ, Partin JI, Kirkpatrick JS (2003) The acute effects of posterior fusion instrumentation on kinematics and intradiscal pressure of the human lumbar spine. J Spinal Disord Tech 16:171–179CrossRefPubMed Molz FJ, Partin JI, Kirkpatrick JS (2003) The acute effects of posterior fusion instrumentation on kinematics and intradiscal pressure of the human lumbar spine. J Spinal Disord Tech 16:171–179CrossRefPubMed
38.
go back to reference Strube P, Tohtz S, Hoff E et al (2010) Dynamic stabilization adjacent to single-level fusion: Part I. Biomechanical effects on lumbar spinal motion. Eur Spine J 19:2171–2180PubMedCentralCrossRefPubMed Strube P, Tohtz S, Hoff E et al (2010) Dynamic stabilization adjacent to single-level fusion: Part I. Biomechanical effects on lumbar spinal motion. Eur Spine J 19:2171–2180PubMedCentralCrossRefPubMed
39.
go back to reference Dmitriev AE, Gill NW, Kuklo TR, Rosner MK (2008) Effect of multilevel lumbar disc arthroplasty on the operative- and adjacent-level kinematics and intradiscal pressures: an in vitro human cadaveric assessment. Spine J 8:918–925CrossRefPubMed Dmitriev AE, Gill NW, Kuklo TR, Rosner MK (2008) Effect of multilevel lumbar disc arthroplasty on the operative- and adjacent-level kinematics and intradiscal pressures: an in vitro human cadaveric assessment. Spine J 8:918–925CrossRefPubMed
40.
go back to reference Kikkawa J, Cunningham BW, Shirado O et al (2010) Biomechanical evaluation of a posterolateral lumbar disc arthroplasty device: an in vitro human cadaveric model. Spine (Phila Pa 1976) 35:1760–1768CrossRef Kikkawa J, Cunningham BW, Shirado O et al (2010) Biomechanical evaluation of a posterolateral lumbar disc arthroplasty device: an in vitro human cadaveric model. Spine (Phila Pa 1976) 35:1760–1768CrossRef
41.
go back to reference Ilharreborde B, Shaw MN, Berglund LJ et al (2011) Biomechanical evaluation of posterior lumbar dynamic stabilization: an in vitro comparison between Universal Clamp and Wallis systems. Eur Spine J 20:289–296PubMedCentralCrossRefPubMed Ilharreborde B, Shaw MN, Berglund LJ et al (2011) Biomechanical evaluation of posterior lumbar dynamic stabilization: an in vitro comparison between Universal Clamp and Wallis systems. Eur Spine J 20:289–296PubMedCentralCrossRefPubMed
42.
go back to reference Lindsey DP, Swanson KE, Fuchs P et al (2003) The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine (Phila Pa 1976) 28:2192–2197CrossRef Lindsey DP, Swanson KE, Fuchs P et al (2003) The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine (Phila Pa 1976) 28:2192–2197CrossRef
43.
go back to reference Swanson KE, Lindsey DP, Hsu KY et al (2003) The effects of an interspinous implant on intervertebral disc pressures. Spine (Phila Pa 1976) 28:26–32CrossRef Swanson KE, Lindsey DP, Hsu KY et al (2003) The effects of an interspinous implant on intervertebral disc pressures. Spine (Phila Pa 1976) 28:26–32CrossRef
44.
go back to reference Wiseman CM, Lindsey DP, Fredrick AD, Yerby SA (2005) The effect of an interspinous process implant on facet loading during extension. Spine (Phila Pa 1976) 30:903–907CrossRef Wiseman CM, Lindsey DP, Fredrick AD, Yerby SA (2005) The effect of an interspinous process implant on facet loading during extension. Spine (Phila Pa 1976) 30:903–907CrossRef
45.
go back to reference Crawford NR, Brantley AGU, Dickman CA, Koeneman EJ (1995) An apparatus for applying pure nonconstraining moment to spine segments in vitro. Spine (Phila Pa 1976) 20:2097–2100CrossRef Crawford NR, Brantley AGU, Dickman CA, Koeneman EJ (1995) An apparatus for applying pure nonconstraining moment to spine segments in vitro. Spine (Phila Pa 1976) 20:2097–2100CrossRef
46.
go back to reference Rohlmann A, Neller S, Bergmann G et al (2001) Effect of an internal fixator and a bone graft on intersegmental spinal motion and intradiscal pressure in the adjacent regions. Eur Spine J 10:301–308PubMedCentralCrossRefPubMed Rohlmann A, Neller S, Bergmann G et al (2001) Effect of an internal fixator and a bone graft on intersegmental spinal motion and intradiscal pressure in the adjacent regions. Eur Spine J 10:301–308PubMedCentralCrossRefPubMed
47.
go back to reference Hartmann F, Dietz SO, Kuhn S et al (2011) Biomechanical comparison of an interspinous device and a rigid stabilization on lumbar adjacent segment range of motion. Acta Chir Orthop Traumatol Cech 78:404–409PubMed Hartmann F, Dietz SO, Kuhn S et al (2011) Biomechanical comparison of an interspinous device and a rigid stabilization on lumbar adjacent segment range of motion. Acta Chir Orthop Traumatol Cech 78:404–409PubMed
48.
go back to reference Cripton PA, Bruehlmann SB, Orr TE et al (2000) In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts. J Biomech 33:1559–1568CrossRefPubMed Cripton PA, Bruehlmann SB, Orr TE et al (2000) In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts. J Biomech 33:1559–1568CrossRefPubMed
49.
go back to reference Wilke H-J, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97CrossRefPubMed Wilke H-J, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97CrossRefPubMed
50.
go back to reference Cardoso MJ, Dmitriev AE, Helgeson M et al (2008) Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation? An in vitro human cadaveric assessment. Spine (Phila Pa 1976) 33:2868–2873CrossRef Cardoso MJ, Dmitriev AE, Helgeson M et al (2008) Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation? An in vitro human cadaveric assessment. Spine (Phila Pa 1976) 33:2868–2873CrossRef
51.
go back to reference Tan J-S, Singh S, Zhu Q-A et al (2008) The effect of cement augmentation and extension of posterior instrumentation on stabilization and adjacent level effects in the elderly spine. Spine (Phila Pa 1976) 33:2728–2740CrossRef Tan J-S, Singh S, Zhu Q-A et al (2008) The effect of cement augmentation and extension of posterior instrumentation on stabilization and adjacent level effects in the elderly spine. Spine (Phila Pa 1976) 33:2728–2740CrossRef
52.
go back to reference Ingalhalikar AV, Reddy CG, Lim TH et al (2009) Effect of lumbar total disc arthroplasty on the segmental motion and intradiscal pressure at the adjacent level: an in vitro biomechanical study. J Neurosurg Spine 11:715–723CrossRefPubMed Ingalhalikar AV, Reddy CG, Lim TH et al (2009) Effect of lumbar total disc arthroplasty on the segmental motion and intradiscal pressure at the adjacent level: an in vitro biomechanical study. J Neurosurg Spine 11:715–723CrossRefPubMed
53.
go back to reference Cabello J, Cavanilles-Walker JM, Iborra M et al (2013) The protective role of dynamic stabilization on the adjacent disc to a rigid instrumented level. An in vitro biomechanical analysis. Arch Orthop Trauma Surg 133:443–448CrossRefPubMed Cabello J, Cavanilles-Walker JM, Iborra M et al (2013) The protective role of dynamic stabilization on the adjacent disc to a rigid instrumented level. An in vitro biomechanical analysis. Arch Orthop Trauma Surg 133:443–448CrossRefPubMed
54.
go back to reference Yoganandan N, Pintar F, Maiman DJ et al (1993) Kinematics of the lumbar spine following pedicle screw plate fixation. Spine (Phila Pa 1976) 18:504–512CrossRef Yoganandan N, Pintar F, Maiman DJ et al (1993) Kinematics of the lumbar spine following pedicle screw plate fixation. Spine (Phila Pa 1976) 18:504–512CrossRef
55.
go back to reference Ha S-K, Kim S-H, Kim DH et al (2009) Biomechanical study of lumbar spinal arthroplasty with a semi-constrained artificial disc (activ L) in the human cadaveric spine. J Korean Neurosurg Soc 45:169–175PubMedCentralCrossRefPubMed Ha S-K, Kim S-H, Kim DH et al (2009) Biomechanical study of lumbar spinal arthroplasty with a semi-constrained artificial disc (activ L) in the human cadaveric spine. J Korean Neurosurg Soc 45:169–175PubMedCentralCrossRefPubMed
Metadata
Title
Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature
Authors
David Volkheimer
Masoud Malakoutian
Thomas R. Oxland
Hans-Joachim Wilke
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 9/2015
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-015-4040-9

Other articles of this Issue 9/2015

European Spine Journal 9/2015 Go to the issue