Skip to main content
Top
Published in: European Spine Journal 3/2015

01-04-2015 | Original Article

Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial

Authors: Juan S. Uribe, Robert E. Isaacs, Jim A. Youssef, Kaveh Khajavi, Jeffrey R. Balzer, Adam S. Kanter, Fabrice A. Küelling, Mark D. Peterson, SOLAS Degenerative Study Group

Published in: European Spine Journal | Special Issue 3/2015

Login to get access

Abstract

Purpose

This multicenter study aims to evaluate the utility of triggered electromyography (t-EMG) recorded throughout psoas retraction during lateral transpsoas interbody fusion to predict postoperative changes in motor function.

Methods

Three hundred and twenty-three patients undergoing L4–5 minimally invasive lateral interbody fusion from 21 sites were enrolled. Intraoperative data collection included initial t-EMG thresholds in response to posterior retractor blade stimulation and subsequent t-EMG threshold values collected every 5 min throughout retraction. Additional data collection included dimensions/duration of retraction as well as pre-and postoperative lower extremity neurologic exams.

Results

Prior to expanding the retractor, the lowestt-EMG threshold was identified posterior to the retractor in 94 % of cases. Postoperatively, 13 (4.5 %) patients had a new motor weakness that was consistent with symptomatic neuropraxia (SN) of lumbar plexus nerves on the approach side. There were no significant differences between patients with or without a corresponding postoperative SN with respect to initial posterior blade reading (p = 0.600), or retraction dimensions (p > 0.05). Retraction time was significantly longer in those patients with SN vs. those without (p = 0.031). Stepwise logistic regression showed a significant positive relationship between the presence of new postoperative SN and total retraction time (p < 0.001), as well as change in t-EMG thresholds over time (p < 0.001), although false positive rates (increased threshold in patients with no new SN) remained high regardless of the absolute increase in threshold used to define an alarm criteria.

Conclusions

Prolonged retraction time and coincident increases in t-EMG thresholds are predictors of declining nerve integrity. Increasing t-EMG thresholds, while predictive of injury, were also observed in a large number of patients without iatrogenic injury, with a greater predictive value in cases with extended duration. In addition to a careful approach with minimal muscle retraction and consistent lumbar plexus directional retraction, the incidence of postoperative motor neuropraxia may be reduced by limiting retraction time and utilizing t-EMG throughout retraction, while understanding that the specificity of this monitoring technique is low during initial retraction and increases with longer retraction duration.
Literature
1.
go back to reference Rodgers WB, Gerber EJ, Rodgers JA (2010) Lumbar fusion in octogenarians: the promise of minimally invasive surgery. Spine (Phila Pa 1976) 35:S355–S360CrossRef Rodgers WB, Gerber EJ, Rodgers JA (2010) Lumbar fusion in octogenarians: the promise of minimally invasive surgery. Spine (Phila Pa 1976) 35:S355–S360CrossRef
2.
go back to reference Lucio JC, VanConia RB, Deluzio KJ, Lehmen JA, Rodgers JA, Rodgers WB (2012) Economics of less invasive spinal surgery: an analysis of hospital cost differences between open and minimally invasive instrumented spinal fusion procedures during the perioperative period. Risk Manag Healthc Policy 5:65PubMedCentralPubMed Lucio JC, VanConia RB, Deluzio KJ, Lehmen JA, Rodgers JA, Rodgers WB (2012) Economics of less invasive spinal surgery: an analysis of hospital cost differences between open and minimally invasive instrumented spinal fusion procedures during the perioperative period. Risk Manag Healthc Policy 5:65PubMedCentralPubMed
3.
go back to reference Smith WD, Christian G, Serrano S, Malone KT (2012) A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci 19:673–680CrossRefPubMed Smith WD, Christian G, Serrano S, Malone KT (2012) A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci 19:673–680CrossRefPubMed
4.
go back to reference Benglis DM, Vanni S, Levi AD (2009) An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine 10:139–144CrossRefPubMed Benglis DM, Vanni S, Levi AD (2009) An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine 10:139–144CrossRefPubMed
5.
go back to reference Uribe JS, Arredondo N, Dakwar E, Vale FL (2010) Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine 13:260–266CrossRefPubMed Uribe JS, Arredondo N, Dakwar E, Vale FL (2010) Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine 13:260–266CrossRefPubMed
6.
go back to reference Moro T, Kikuchi S, Konno S, Yaginuma H (2003) An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine 28:423–428PubMed Moro T, Kikuchi S, Konno S, Yaginuma H (2003) An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine 28:423–428PubMed
7.
go back to reference Tohmeh AG, Rodgers WB, Peterson MD (2011) Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine 14:31–37CrossRefPubMed Tohmeh AG, Rodgers WB, Peterson MD (2011) Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine 14:31–37CrossRefPubMed
8.
go back to reference Taylor W, O’Brien R, Cornwall G et al (2013) The role of integrated neurophysiologic monitoring in XLIF. In: Goodrich JA, Volcan IJ (eds) eXtreme lateral interbody fusion (XLIF®), 2nd edn. Quality Medical Publishing, St. Louis, pp 45–57 Taylor W, O’Brien R, Cornwall G et al (2013) The role of integrated neurophysiologic monitoring in XLIF. In: Goodrich JA, Volcan IJ (eds) eXtreme lateral interbody fusion (XLIF®), 2nd edn. Quality Medical Publishing, St. Louis, pp 45–57
9.
go back to reference Berjano P, Lamartina C (2011) Minimally invasive lateral transpsoas approach with advanced neurophysiologic monitoring for lumbar interbody fusion. Eur Spine J 20:1584–1586CrossRefPubMed Berjano P, Lamartina C (2011) Minimally invasive lateral transpsoas approach with advanced neurophysiologic monitoring for lumbar interbody fusion. Eur Spine J 20:1584–1586CrossRefPubMed
10.
go back to reference Cornefjord M, Olmarker K, Farley DB, Weinstein JN, Rydevik B (1995) Neuropeptide changes in compressed spinal nerve roots. Spine 20:670–673CrossRefPubMed Cornefjord M, Olmarker K, Farley DB, Weinstein JN, Rydevik B (1995) Neuropeptide changes in compressed spinal nerve roots. Spine 20:670–673CrossRefPubMed
11.
go back to reference Cornefjord M, Sato K, Olmarker K, Rydevik B, Nordborg C (1997) A model for chronic nerve root compression studies. Presentation of a porcine model for controlled, slow-onset compression with analyses of anatomic aspects, compression onset rate, and morphologic and neurophysiologic effects. Spine (Phila Pa 1976) 22:946–957CrossRef Cornefjord M, Sato K, Olmarker K, Rydevik B, Nordborg C (1997) A model for chronic nerve root compression studies. Presentation of a porcine model for controlled, slow-onset compression with analyses of anatomic aspects, compression onset rate, and morphologic and neurophysiologic effects. Spine (Phila Pa 1976) 22:946–957CrossRef
12.
go back to reference Dezawa A, Unno K, Yamane T, Miki H (2002) Changes in the microhemodynamics of nerve root retraction in patients with lumbar spinal canal stenosis. Spine (Phila Pa 1976) 27:2844–2849CrossRef Dezawa A, Unno K, Yamane T, Miki H (2002) Changes in the microhemodynamics of nerve root retraction in patients with lumbar spinal canal stenosis. Spine (Phila Pa 1976) 27:2844–2849CrossRef
13.
go back to reference Olmarker K, Holm S, Rydevik B (1990) Importance of compression onset rate for the degree of impairment of impulse propagation in experimental compression injury of the porcine cauda equina. Spine (Phila Pa 1976) 15:416–419CrossRef Olmarker K, Holm S, Rydevik B (1990) Importance of compression onset rate for the degree of impairment of impulse propagation in experimental compression injury of the porcine cauda equina. Spine (Phila Pa 1976) 15:416–419CrossRef
14.
go back to reference Pedowitz RA, Garfin SR, Massie JB et al (1992) Effects of magnitude and duration of compression on spinal nerve root conduction. Spine (Phila Pa 1976) 17:194–199CrossRef Pedowitz RA, Garfin SR, Massie JB et al (1992) Effects of magnitude and duration of compression on spinal nerve root conduction. Spine (Phila Pa 1976) 17:194–199CrossRef
15.
go back to reference Matsui H, Kitagawa H, Kawaguchi Y, Tsuji H (1995) Physiologic changes of nerve root during posterior lumbar discectomy. Spine (Phila Pa 1976) 20:654–659CrossRef Matsui H, Kitagawa H, Kawaguchi Y, Tsuji H (1995) Physiologic changes of nerve root during posterior lumbar discectomy. Spine (Phila Pa 1976) 20:654–659CrossRef
16.
go back to reference Valone F III, Lyon R, Lieberman J, Burch S (2014) Efficacy of transcranial motor evoked potentials, mechanically elicited electromyography, and evoked electromyography to assess nerve root function during sustained compression in a porcine model. Spine (Phila Pa 1976) 39:E989–E993CrossRef Valone F III, Lyon R, Lieberman J, Burch S (2014) Efficacy of transcranial motor evoked potentials, mechanically elicited electromyography, and evoked electromyography to assess nerve root function during sustained compression in a porcine model. Spine (Phila Pa 1976) 39:E989–E993CrossRef
17.
go back to reference Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443CrossRefPubMed Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443CrossRefPubMed
18.
go back to reference Peterson M, Youssef J (2013) eXtreme Lateral Interbody Fusion (XLIF): Lumbar Surgical Technique. In: Goodrich JA, Volcan IJ (eds) eXtreme lateral interbody fusion (XLIF®), 2nd edn. Quality Medical Publishing, St. Louis, pp 159–178 Peterson M, Youssef J (2013) eXtreme Lateral Interbody Fusion (XLIF): Lumbar Surgical Technique. In: Goodrich JA, Volcan IJ (eds) eXtreme lateral interbody fusion (XLIF®), 2nd edn. Quality Medical Publishing, St. Louis, pp 159–178
19.
go back to reference Sharma AK, Kepler CK, Girardi FP, Cammisa FP, Huang RC, Sama AA (2011) Lateral lumbar interbody fusion: clinical and radiographic outcomes at 1 year: a preliminary report. J Spinal Disord Tech 24:242–250CrossRefPubMed Sharma AK, Kepler CK, Girardi FP, Cammisa FP, Huang RC, Sama AA (2011) Lateral lumbar interbody fusion: clinical and radiographic outcomes at 1 year: a preliminary report. J Spinal Disord Tech 24:242–250CrossRefPubMed
20.
go back to reference Moller DJ, Slimack NP, Acosta FL Jr, Koski TR, Fessler RG, Liu JC (2011) Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus 31:E4CrossRefPubMed Moller DJ, Slimack NP, Acosta FL Jr, Koski TR, Fessler RG, Liu JC (2011) Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus 31:E4CrossRefPubMed
21.
go back to reference Berjano P, Balsano M, Buric J, Petruzzi M, Lamartina C (2012) Direct lateral access lumbar and thoracolumbar fusion: preliminary results. Eur Spine J 21(Suppl 1):S37–S42CrossRefPubMed Berjano P, Balsano M, Buric J, Petruzzi M, Lamartina C (2012) Direct lateral access lumbar and thoracolumbar fusion: preliminary results. Eur Spine J 21(Suppl 1):S37–S42CrossRefPubMed
22.
go back to reference Rodgers WB, Cox CS, Gerber EJ (2009) Minimally invasive treatment (XLIF) of adjacent segment disease after prior lumbar fusions. Internet J Minim Invasive Spinal Tech 3 Rodgers WB, Cox CS, Gerber EJ (2009) Minimally invasive treatment (XLIF) of adjacent segment disease after prior lumbar fusions. Internet J Minim Invasive Spinal Tech 3
23.
go back to reference Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS (2010) Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus 28:E7CrossRefPubMed Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS (2010) Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus 28:E7CrossRefPubMed
24.
go back to reference Formica M, Berjano P, Cavagnaro L, Zanirato A, Piazzolla A, Formica C (2014) Extreme lateral approach to the spine in degenerative and post traumatic lumbar diseases: selection process, results and complications. Eur Spine J 23(Suppl 6):684–692CrossRefPubMed Formica M, Berjano P, Cavagnaro L, Zanirato A, Piazzolla A, Formica C (2014) Extreme lateral approach to the spine in degenerative and post traumatic lumbar diseases: selection process, results and complications. Eur Spine J 23(Suppl 6):684–692CrossRefPubMed
25.
go back to reference Davis TT, Bae HW, Mok JM, Rasouli A, Delamarter RB (2011) Lumbar plexus anatomy within the psoas muscle: implications for the transpsoas lateral approach to the L4–L5 disc. J Bone Joint Surg Am 93:1482–1487PubMed Davis TT, Bae HW, Mok JM, Rasouli A, Delamarter RB (2011) Lumbar plexus anatomy within the psoas muscle: implications for the transpsoas lateral approach to the L4–L5 disc. J Bone Joint Surg Am 93:1482–1487PubMed
26.
go back to reference Le TV, Burkett CJ, Deukmedjian AR, Uribe JS (2013) Postoperative lumbar plexus injury after lumbar retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine (Phila Pa 1976) 38:E13–E20CrossRef Le TV, Burkett CJ, Deukmedjian AR, Uribe JS (2013) Postoperative lumbar plexus injury after lumbar retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine (Phila Pa 1976) 38:E13–E20CrossRef
27.
go back to reference Bendersky M, Sola C, Muntadas J et al (2015) Monitoring lumbar plexus integrity in extreme lateral transpsoas approaches to the lumbar spine: a new protocol with anatomical bases. Eur Spine J Bendersky M, Sola C, Muntadas J et al (2015) Monitoring lumbar plexus integrity in extreme lateral transpsoas approaches to the lumbar spine: a new protocol with anatomical bases. Eur Spine J
Metadata
Title
Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial
Authors
Juan S. Uribe
Robert E. Isaacs
Jim A. Youssef
Kaveh Khajavi
Jeffrey R. Balzer
Adam S. Kanter
Fabrice A. Küelling
Mark D. Peterson
SOLAS Degenerative Study Group
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue Special Issue 3/2015
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-015-3871-8

Other articles of this Special Issue 3/2015

European Spine Journal 3/2015 Go to the issue