Skip to main content
Top
Published in: European Spine Journal 1/2017

01-01-2017 | Original Article

Flexibility of thoracic spines under simultaneous multi-planar loading

Authors: Sean L. Borkowski, Sophia N. Sangiorgio, Richard E. Bowen, Anthony A. Scaduto, Juliann Kwak, Edward Ebramzadeh

Published in: European Spine Journal | Issue 1/2017

Login to get access

Abstract

Purpose

The corrective potential of two posterior-only destabilization procedures for scoliosis deformity was quantified under single and multi-planar loading using cadaveric spines.

Methods

Ten full-length human cadaveric thoracic spines were mounted in an 8-df servohydraulic load frame. Cyclic, pure moments were applied in: (1) flexion–extension, (2) lateral bending, (3) axial rotation, (4) flexion–extension with axial rotation, and (5) lateral bending with axial rotation at 0.5°/s, to ±4 Nm. Each specimen was tested intact, and again after nine en bloc bilateral total facetectomies, and one, two, three, and four levels of Ponte osteotomies. Motion was measured throughout loading using optical motion tracking.

Results

Under single-plane loading, facetectomies and Ponte osteotomies increased thoracic spine flexibility in all three planes. Compared to total facetectomies, higher per-level increases were seen following Ponte osteotomies, with increases in total range of motion (total ROM) of up to 2.7° in flexion–extension, 1.4° in lateral bending, and 3.1° in axial rotation following each osteotomy. Compared to the facetectomies, four supplemental osteotomies increased total ROM by 23 % in flexion (p < 0.01) and 8 % in axial rotation (p < 0.01). Increases in lateral bending were smaller. Under multi-planar loading, each Ponte osteotomy provided simultaneous increases of up to 1.4°, 1.6°, and 2.2° in flexion–extension, lateral bending, and axial rotation.

Conclusions

Ponte osteotomies provided higher per-level increases in ROM under single-plane loading than total facetectomies alone. Further, Ponte osteotomies provided simultaneous increase in all three planes under multi-planar loading. These results indicated that, to predict the correction potential of a surgical release, multi-planar testing may be necessary.
Appendix
Available only for authorised users
Literature
1.
go back to reference Diab MG, Franzone JM, Vitale MG (2011) The role of posterior spinal osteotomies in pediatric spinal deformity surgery: indications and operative technique. J Pediatr Orthop 31(1 Suppl):S88–S98CrossRefPubMed Diab MG, Franzone JM, Vitale MG (2011) The role of posterior spinal osteotomies in pediatric spinal deformity surgery: indications and operative technique. J Pediatr Orthop 31(1 Suppl):S88–S98CrossRefPubMed
2.
go back to reference Geck MJ, Macagno A, Ponte A, Shufflebarger HL (2007) The Ponte procedure: posterior only treatment of Scheuermann’s kyphosis using segmental posterior shortening and pedicle screw instrumentation. J Spinal Disord Tech 20(8):586–593CrossRefPubMed Geck MJ, Macagno A, Ponte A, Shufflebarger HL (2007) The Ponte procedure: posterior only treatment of Scheuermann’s kyphosis using segmental posterior shortening and pedicle screw instrumentation. J Spinal Disord Tech 20(8):586–593CrossRefPubMed
3.
go back to reference Lehman RA Jr, Lenke LG, Keeler KA, Kim YJ, Buchowski JM, Cheh G, Kuhns CA, Bridwell KH (2008) Operative treatment of adolescent idiopathic scoliosis with posterior pedicle screw-only constructs: Minimum three-year follow-up of one hundred fourteen cases. Spine (Phila Pa 1976) 33(14):1598–1604CrossRef Lehman RA Jr, Lenke LG, Keeler KA, Kim YJ, Buchowski JM, Cheh G, Kuhns CA, Bridwell KH (2008) Operative treatment of adolescent idiopathic scoliosis with posterior pedicle screw-only constructs: Minimum three-year follow-up of one hundred fourteen cases. Spine (Phila Pa 1976) 33(14):1598–1604CrossRef
4.
go back to reference Suk SI, Kim WJ, Lee SM, Kim JH, Chung ER (2001) Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine (Phila Pa 1976) 26(18):2049–2057CrossRef Suk SI, Kim WJ, Lee SM, Kim JH, Chung ER (2001) Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine (Phila Pa 1976) 26(18):2049–2057CrossRef
5.
go back to reference Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB (1995) Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine (Phila Pa 1976) 20(12):1399–1405CrossRef Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB (1995) Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine (Phila Pa 1976) 20(12):1399–1405CrossRef
6.
go back to reference Shah SA, Dhawale AA, Oda JE, Yorgova P, Neiss GI, Holmes L, Gabos PG (2013) Ponte osteotomies with pedicle screw instrumentation in the treatment of adolescent idiopathic scoliosis. Spine Deformity 1(3):196–204CrossRefPubMed Shah SA, Dhawale AA, Oda JE, Yorgova P, Neiss GI, Holmes L, Gabos PG (2013) Ponte osteotomies with pedicle screw instrumentation in the treatment of adolescent idiopathic scoliosis. Spine Deformity 1(3):196–204CrossRefPubMed
7.
go back to reference Pizones J, Izquierdo E, Sanchez-Mariscal F, Alvarez P, Zuniga L, Gomez A (2010) Does wide posterior multiple level release improve the correction of adolescent idiopathic scoliosis curves? J Spinal Disord Tech 23(7):e24–e30CrossRefPubMed Pizones J, Izquierdo E, Sanchez-Mariscal F, Alvarez P, Zuniga L, Gomez A (2010) Does wide posterior multiple level release improve the correction of adolescent idiopathic scoliosis curves? J Spinal Disord Tech 23(7):e24–e30CrossRefPubMed
8.
go back to reference Shufflebarger HL, Clark CE (1998) Effect of wide posterior release on correction in adolescent idiopathic scoliosis. J Pediatr Orthop B 7(2):117–123CrossRefPubMed Shufflebarger HL, Clark CE (1998) Effect of wide posterior release on correction in adolescent idiopathic scoliosis. J Pediatr Orthop B 7(2):117–123CrossRefPubMed
9.
go back to reference Shufflebarger HL, Geck MJ, Clark CE (2004) The posterior approach for lumbar and thoracolumbar adolescent idiopathic scoliosis: posterior shortening and pedicle screws. Spine 29(3):269–276 (discussion 276)CrossRefPubMed Shufflebarger HL, Geck MJ, Clark CE (2004) The posterior approach for lumbar and thoracolumbar adolescent idiopathic scoliosis: posterior shortening and pedicle screws. Spine 29(3):269–276 (discussion 276)CrossRefPubMed
10.
go back to reference Halanski MA, Cassidy JA (2011) Do multilevel Ponte osteotomies in thoracic idiopathic scoliosis surgery improve curve correction and restore thoracic kyphosis? J Spinal Disord Tech 26(5):252–255CrossRef Halanski MA, Cassidy JA (2011) Do multilevel Ponte osteotomies in thoracic idiopathic scoliosis surgery improve curve correction and restore thoracic kyphosis? J Spinal Disord Tech 26(5):252–255CrossRef
11.
go back to reference Anderson AL, McIff TE, Asher MA, Burton DC, Glattes RC (2009) The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness. Spine 34(5):441–446CrossRefPubMed Anderson AL, McIff TE, Asher MA, Burton DC, Glattes RC (2009) The effect of posterior thoracic spine anatomical structures on motion segment flexion stiffness. Spine 34(5):441–446CrossRefPubMed
12.
go back to reference Feiertag MA, Horton WC, Norman JT, Proctor FC, Hutton WC (1995) The effect of different surgical releases on thoracic spinal motion. A cadaveric study. Spine 20(14):1604–1611CrossRefPubMed Feiertag MA, Horton WC, Norman JT, Proctor FC, Hutton WC (1995) The effect of different surgical releases on thoracic spinal motion. A cadaveric study. Spine 20(14):1604–1611CrossRefPubMed
13.
go back to reference Horton WC, Kraiwattanapong C, Akamaru T, Minamide A, Park JS, Park MS, Hutton WC (2005) The role of the sternum, costosternal articulations, intervertebral disc, and facets in thoracic sagittal plane biomechanics: a comparison of three different sequences of surgical release. Spine 30(18):2014–2023CrossRefPubMed Horton WC, Kraiwattanapong C, Akamaru T, Minamide A, Park JS, Park MS, Hutton WC (2005) The role of the sternum, costosternal articulations, intervertebral disc, and facets in thoracic sagittal plane biomechanics: a comparison of three different sequences of surgical release. Spine 30(18):2014–2023CrossRefPubMed
14.
go back to reference Oda I, Abumi K, Cunningham BW, Kaneda K, McAfee PC (2002) An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine 27(3):E64–E70CrossRefPubMed Oda I, Abumi K, Cunningham BW, Kaneda K, McAfee PC (2002) An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine 27(3):E64–E70CrossRefPubMed
15.
go back to reference Panjabi MM, Hausfeld JN, White AA 3rd (1981) A biomechanical study of the ligamentous stability of the thoracic spine in man. Acta Orthop Scand 52(3):315–326CrossRefPubMed Panjabi MM, Hausfeld JN, White AA 3rd (1981) A biomechanical study of the ligamentous stability of the thoracic spine in man. Acta Orthop Scand 52(3):315–326CrossRefPubMed
16.
go back to reference White AA 3rd, Hirsch C (1971) The significance of the vertebral posterior elements in the mechanics of the thoracic spine. Clin Orthop Relat Res 81:2–14CrossRefPubMed White AA 3rd, Hirsch C (1971) The significance of the vertebral posterior elements in the mechanics of the thoracic spine. Clin Orthop Relat Res 81:2–14CrossRefPubMed
17.
go back to reference Sangiorgio SN, Borkowski SL, Bowen RE, Scaduto AA, Frost NL, Ebramzadeh E (2013) Quantification of increase in three-dimensional spine flexibility following sequential Ponte osteotomies in a cadaveric model. Spine Deformity 1(3):171–178CrossRefPubMed Sangiorgio SN, Borkowski SL, Bowen RE, Scaduto AA, Frost NL, Ebramzadeh E (2013) Quantification of increase in three-dimensional spine flexibility following sequential Ponte osteotomies in a cadaveric model. Spine Deformity 1(3):171–178CrossRefPubMed
18.
go back to reference Rt Watkins, Watkins R 3rd, Williams L, Ahlbrand S, Garcia R, Karamanian A, Sharp L, Vo C, Hedman T (2005) Stability provided by the sternum and rib cage in the thoracic spine. Spine 30(11):1283–1286CrossRef Rt Watkins, Watkins R 3rd, Williams L, Ahlbrand S, Garcia R, Karamanian A, Sharp L, Vo C, Hedman T (2005) Stability provided by the sternum and rib cage in the thoracic spine. Spine 30(11):1283–1286CrossRef
19.
go back to reference Deviren V, Acaroglu E, Lee J, Fujita M, Hu S, Lenke LG, Polly D Jr, Kuklo TR, O’Brien M, Brumfield D, Puttlitz CM (2005) Pedicle screw fixation of the thoracic spine: an in vitro biomechanical study on different configurations. Spine (Phila Pa 1976) 30(22):2530–2537CrossRef Deviren V, Acaroglu E, Lee J, Fujita M, Hu S, Lenke LG, Polly D Jr, Kuklo TR, O’Brien M, Brumfield D, Puttlitz CM (2005) Pedicle screw fixation of the thoracic spine: an in vitro biomechanical study on different configurations. Spine (Phila Pa 1976) 30(22):2530–2537CrossRef
20.
go back to reference Balabaud L, Gallard E, Skalli W, Lassau JP, Lavaste F, Steib JP (2002) Biomechanical evaluation of a bipedicular spinal fixation system: a comparative stiffness test. Spine (Phila Pa 1976) 27(17):1875–1880CrossRef Balabaud L, Gallard E, Skalli W, Lassau JP, Lavaste F, Steib JP (2002) Biomechanical evaluation of a bipedicular spinal fixation system: a comparative stiffness test. Spine (Phila Pa 1976) 27(17):1875–1880CrossRef
21.
go back to reference Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154CrossRefPubMedPubMedCentral Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154CrossRefPubMedPubMedCentral
22.
go back to reference Schmidt J, Berg DR, Ploeg H-L, Ploeg L (2009) Precision, repeatability, and accuracy of optotrak optical motion tracking systems. Int J Exp Comput Biomech 1(1):114–127CrossRef Schmidt J, Berg DR, Ploeg H-L, Ploeg L (2009) Precision, repeatability, and accuracy of optotrak optical motion tracking systems. Int J Exp Comput Biomech 1(1):114–127CrossRef
23.
go back to reference Cho KJ, Bridwell KH, Lenke LG, Berra A, Baldus C (2005) Comparison of Smith-Petersen versus pedicle subtraction osteotomy for the correction of fixed sagittal imbalance. Spine 30(18):2030–2037 (discussion 2038)CrossRefPubMed Cho KJ, Bridwell KH, Lenke LG, Berra A, Baldus C (2005) Comparison of Smith-Petersen versus pedicle subtraction osteotomy for the correction of fixed sagittal imbalance. Spine 30(18):2030–2037 (discussion 2038)CrossRefPubMed
24.
go back to reference Lee SM, Suk SI, Chung ER (2004) Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29(3):343–349CrossRef Lee SM, Suk SI, Chung ER (2004) Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29(3):343–349CrossRef
25.
go back to reference Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. a conceptual framework. Spine (Phila Pa 1976) 13(10):1129–1134CrossRef Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. a conceptual framework. Spine (Phila Pa 1976) 13(10):1129–1134CrossRef
26.
go back to reference Chang MS, Lenke LG (2009) Vertebral derotation in adolescent idiopathic scoliosis. Op Tech Orthop 19(1):19–23CrossRef Chang MS, Lenke LG (2009) Vertebral derotation in adolescent idiopathic scoliosis. Op Tech Orthop 19(1):19–23CrossRef
27.
go back to reference Brasiliense LB, Lazaro BC, Reyes PM, Dogan S, Theodore N, Crawford NR (2011) Biomechanical contribution of the rib cage to thoracic stability. Spine (Phila Pa 1976) 36(26):E1686–E1693CrossRef Brasiliense LB, Lazaro BC, Reyes PM, Dogan S, Theodore N, Crawford NR (2011) Biomechanical contribution of the rib cage to thoracic stability. Spine (Phila Pa 1976) 36(26):E1686–E1693CrossRef
28.
go back to reference Andriacchi T, Schultz A, Belytschko T, Galante J (1974) A model for studies of mechanical interactions between the human spine and rib cage. J Biomech 7(6):497–507CrossRefPubMed Andriacchi T, Schultz A, Belytschko T, Galante J (1974) A model for studies of mechanical interactions between the human spine and rib cage. J Biomech 7(6):497–507CrossRefPubMed
Metadata
Title
Flexibility of thoracic spines under simultaneous multi-planar loading
Authors
Sean L. Borkowski
Sophia N. Sangiorgio
Richard E. Bowen
Anthony A. Scaduto
Juliann Kwak
Edward Ebramzadeh
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 1/2017
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-014-3499-0

Other articles of this Issue 1/2017

European Spine Journal 1/2017 Go to the issue