Skip to main content
Top
Published in: European Spine Journal 6/2013

01-06-2013 | Original Article

Our experience and early results with a complementary implant for the correction of major thoracic curves

Authors: Zoltán Csernátony, László Kiss, Sándor Manó, Zsolt Hunya

Published in: European Spine Journal | Issue 6/2013

Login to get access

Abstract

Purpose

In our article, we would like to introduce a new auxiliary implant called the CAB hook, for use in posterior approach scoliosis surgery.

Methods

Since 2007, we operated 42 patients with the CAB hook with an average preoperative Cobb angle of 59.3° (28°–92°). In three cases, the posterior approach was preceded by ventral release and Halo traction. In four cases, besides the CAB hooks, SCS hooks and pedicular screws, in three cases both CAB and SCS hooks, in nine cases CAB hooks with SCS pedicular screws, and in 23 cases, only CAB were used. The average follow-up time was 21.6 month (2–51).

Results

All the patients are satisfied with the results. No reoperation was needed due to the loss of correction, pain, implant failure, or infection. The average postoperative Cobb angle decreased to 24.7° (4°–60°). Based on this we calculated the Cincinnati Correction Index (CCI), which was 1.53 (0.7–4.8), which means that our correction exceeded the flexibility of the spine based on the lateral bending X-ray by 53 %.

Conclusion

As with all new surgical techniques and implants after the short learning curve, we were able to improve the degree of correction and decrease the time of surgery. One of the advantages of the CAB hook is that besides a few implant-specific instruments, no special instrumentation is required for insertion, and image intensifier need not be used.
Literature
1.
go back to reference Abul-Kasim K, Ohlin A (2011) The rate of screw misplacement in segmental pedicle screw fixation in adolescent idiopathic scoliosis. Acta Orthop 82(1):50–55PubMedCrossRef Abul-Kasim K, Ohlin A (2011) The rate of screw misplacement in segmental pedicle screw fixation in adolescent idiopathic scoliosis. Acta Orthop 82(1):50–55PubMedCrossRef
2.
go back to reference Amiot LP, Lang K, Putzier M, Zippel H, Labelle H (2000) Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine 25(5):606–614PubMedCrossRef Amiot LP, Lang K, Putzier M, Zippel H, Labelle H (2000) Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine 25(5):606–614PubMedCrossRef
3.
go back to reference Balabaud L, Gallard E, Skalli W, Dupas B, Roger R, Lavaste F et al (2003) Biomechanical evaluation of a bipedicular spinal fixation device: three different strenght tests. Eur Spine J 12:480–486PubMedCrossRef Balabaud L, Gallard E, Skalli W, Dupas B, Roger R, Lavaste F et al (2003) Biomechanical evaluation of a bipedicular spinal fixation device: three different strenght tests. Eur Spine J 12:480–486PubMedCrossRef
4.
go back to reference Bauer R, Kerschbaumer F, Poisel S (1993) Atlas of spinal operations, 1st edn. Georg Thieme Verlag, Stuttgart Bauer R, Kerschbaumer F, Poisel S (1993) Atlas of spinal operations, 1st edn. Georg Thieme Verlag, Stuttgart
5.
go back to reference Cotrel Y, Dubousset J (1984) A new technic for segmental spinal osteosynthesis using the posterior approach. Rev Chir Orthop Reparatrice Appar Mot 70(6):489–494PubMed Cotrel Y, Dubousset J (1984) A new technic for segmental spinal osteosynthesis using the posterior approach. Rev Chir Orthop Reparatrice Appar Mot 70(6):489–494PubMed
6.
go back to reference Cotrel Y, Dubousset J, Guillaumat M (1988) New universal instrumentation in spinal surgery. Clin Orthop Relat Res 227:10–23PubMed Cotrel Y, Dubousset J, Guillaumat M (1988) New universal instrumentation in spinal surgery. Clin Orthop Relat Res 227:10–23PubMed
7.
go back to reference Csernátony Z, Szepesi K, Gáspár L, Dezső Z, Jónás Z (2000) “The rotational preconstraint”. A kinetic model of a possible new mechanism in the ethiopathogenesis of scoliosis. Med Hypotheses 54(2):203–206PubMedCrossRef Csernátony Z, Szepesi K, Gáspár L, Dezső Z, Jónás Z (2000) “The rotational preconstraint”. A kinetic model of a possible new mechanism in the ethiopathogenesis of scoliosis. Med Hypotheses 54(2):203–206PubMedCrossRef
8.
go back to reference Csernátony Z, Goodship A, Szepesi K, Jónás Z, Gáspár L, Benkő K et al (2001) A complementary thoracic implant for the surgical correction of the scoliotic curve. A preliminary report. Eur J Orthop Traumatol 11:85–89CrossRef Csernátony Z, Goodship A, Szepesi K, Jónás Z, Gáspár L, Benkő K et al (2001) A complementary thoracic implant for the surgical correction of the scoliotic curve. A preliminary report. Eur J Orthop Traumatol 11:85–89CrossRef
9.
go back to reference Csernátony Z, Szepesi K, Gáspár L, Kiss L (2002) Contradictions of derotation in scoliosis surgery using the CD principle. Med Hypotheses 58(6):498–502PubMedCrossRef Csernátony Z, Szepesi K, Gáspár L, Kiss L (2002) Contradictions of derotation in scoliosis surgery using the CD principle. Med Hypotheses 58(6):498–502PubMedCrossRef
10.
go back to reference Csernátony Z, Molnar S, Zs Hunya, Manó S, Kiss L (2011) Biomechanical examination of the thoracic spine—the axial rotation moment and vertical loading capacity of the transverse process. J Orthop Res 29(12):1904–1909PubMedCrossRef Csernátony Z, Molnar S, Zs Hunya, Manó S, Kiss L (2011) Biomechanical examination of the thoracic spine—the axial rotation moment and vertical loading capacity of the transverse process. J Orthop Res 29(12):1904–1909PubMedCrossRef
11.
go back to reference Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44:591–610PubMed Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44:591–610PubMed
12.
go back to reference Karger C, Steib JP, Roussouly P, Chopin D, Roy C, Dimnet J et al (1995) Les ‘nouveaux’ systèmes d’ instrumentation rachidienne postérieure. Expansion Scientifique Française Cahiers d’ Enseignements de la SOFCOT. Paris, pp 121–35 Karger C, Steib JP, Roussouly P, Chopin D, Roy C, Dimnet J et al (1995) Les ‘nouveaux’ systèmes d’ instrumentation rachidienne postérieure. Expansion Scientifique Française Cahiers d’ Enseignements de la SOFCOT. Paris, pp 121–35
13.
go back to reference King HA, Moe JH, Bradford DS et al (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 65:1302–1313PubMed King HA, Moe JH, Bradford DS et al (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 65:1302–1313PubMed
14.
go back to reference La Rosa G, Giglio G, Oggiano L (2011) Surgical treatment of neurological scoliosis using hybrid construct (lumbar transpedicular screws plus thoracis sublaminar acrylic loops). Eur Spine J 20:90–94 (Suppl. 1)CrossRef La Rosa G, Giglio G, Oggiano L (2011) Surgical treatment of neurological scoliosis using hybrid construct (lumbar transpedicular screws plus thoracis sublaminar acrylic loops). Eur Spine J 20:90–94 (Suppl. 1)CrossRef
15.
go back to reference Luque ER (1989) Segmental spinal instrumentation in neuromuscular scoliosis. Orthopade 18:128–133PubMed Luque ER (1989) Segmental spinal instrumentation in neuromuscular scoliosis. Orthopade 18:128–133PubMed
16.
go back to reference Mazda K, Ilharreborde B, Even J, Lefevre Y, Fitoussi F, Pennecot GF (2009) Efficacy and safety of posteromedial translation for correction of thoracic curves in adolescent idiopathic scoliosis using a new connection to the spine: the Universal Clamp. Eur Spine J 18:158–169PubMedCrossRef Mazda K, Ilharreborde B, Even J, Lefevre Y, Fitoussi F, Pennecot GF (2009) Efficacy and safety of posteromedial translation for correction of thoracic curves in adolescent idiopathic scoliosis using a new connection to the spine: the Universal Clamp. Eur Spine J 18:158–169PubMedCrossRef
17.
go back to reference Ovadia D, Korn A, Fishkin M, Steinberg DM, Wientroub S, Ofiram E (2011) The contribution of an electronic conductivity device to the safety of pedicle screw insertion in scoliosis surgery. Spine 36(20):1314–1321CrossRef Ovadia D, Korn A, Fishkin M, Steinberg DM, Wientroub S, Ofiram E (2011) The contribution of an electronic conductivity device to the safety of pedicle screw insertion in scoliosis surgery. Spine 36(20):1314–1321CrossRef
18.
go back to reference Sanders J (2011) Scoliosis “nonfusion”—a reality check. J Pediatr Orthop 31(1 Suppl):114–118CrossRef Sanders J (2011) Scoliosis “nonfusion”—a reality check. J Pediatr Orthop 31(1 Suppl):114–118CrossRef
19.
go back to reference Vora VCA, Babekhir N, Boachie-Adjei O, Lenke L, Peskin M, Charles G, Kim Y (2007) A pedicle screw construct gives an enhanced posterior correction of adolescent idiopathic scoliosis when compared with other constructs: myth or reality. Spine 32(17):1869–1874PubMedCrossRef Vora VCA, Babekhir N, Boachie-Adjei O, Lenke L, Peskin M, Charles G, Kim Y (2007) A pedicle screw construct gives an enhanced posterior correction of adolescent idiopathic scoliosis when compared with other constructs: myth or reality. Spine 32(17):1869–1874PubMedCrossRef
Metadata
Title
Our experience and early results with a complementary implant for the correction of major thoracic curves
Authors
Zoltán Csernátony
László Kiss
Sándor Manó
Zsolt Hunya
Publication date
01-06-2013
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue 6/2013
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-013-2698-4

Other articles of this Issue 6/2013

European Spine Journal 6/2013 Go to the issue