Skip to main content
Top
Published in: Journal of Anesthesia 4/2019

01-08-2019 | Anesthetics | Original Article

Phospholipase C-related inactive protein type-1 deficiency affects anesthetic electroencephalogram activity induced by propofol and etomidate in mice

Authors: Tomonori Furukawa, Yoshikazu Nikaido, Shuji Shimoyama, Yoshiki Ogata, Tetsuya Kushikata, Kazuyoshi Hirota, Takashi Kanematsu, Masato Hirata, Shinya Ueno

Published in: Journal of Anesthesia | Issue 4/2019

Login to get access

Abstract

Purpose

The general anesthetics propofol and etomidate mainly exert their anesthetic actions via GABA A receptor (GABAA-R). The GABAA-R activity is influenced by phospholipase C-related inactive protein type-1 (PRIP-1), which is related to trafficking and subcellular localization of GABAA-R. PRIP-1 deficiency attenuates the behavioral reactions to propofol but not etomidate. However, the effect of these anesthetics and of PRIP-1 deficiency on brain activity of CNS are still unclear. In this study, we examined the effects of propofol and etomidate on the electroencephalogram (EEG).

Methods

The cortical EEG activity was recorded in wild-type (WT) and PRIP-1 knockout (PRIP-1 KO) mice. All recorded EEG data were offline analyzed, and the power spectral density and 95% spectral edge frequency of EEG signals were compared between genotypes before and after injections of anesthetics.

Results

PRIP-1 deficiency induced increases in EEG absolute powers, but did not markedly change the relative spectral powers during waking and sleep states in the absence of anesthesia. Propofol administration induced increases in low-frequency relative EEG activity and decreases in SEF95 values in WT but not in PRIP-1 KO mice. Following etomidate injection, low-frequency EEG power was increased in both genotype groups. At high frequency, the relative power in PRIP-1 KO mice was smaller than that in WT mice.

Conclusions

The lack of PRIP-1 disrupted the EEG power distribution, but did not affect the depth of anesthesia after etomidate administration. Our analyses suggest that PRIP-1 is differentially involved in anesthetic EEG activity with the regulation of GABAA-R activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, Cirelli C, Tononi G. Cortical firing and sleep homeostasis. Neuron. 2009;63(6):865–78.CrossRefPubMedPubMedCentral Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, Cirelli C, Tononi G. Cortical firing and sleep homeostasis. Neuron. 2009;63(6):865–78.CrossRefPubMedPubMedCentral
2.
go back to reference Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, Salazar-Gomez AF, Harrell PG, Sampson AL, Cimenser A, Ching S, Kopell NJ, Tavares-Stoeckel C, Habeeb K, Merhar R, Brown EN. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA. 2013;110(12):E1142–E1151151.CrossRefPubMed Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, Salazar-Gomez AF, Harrell PG, Sampson AL, Cimenser A, Ching S, Kopell NJ, Tavares-Stoeckel C, Habeeb K, Merhar R, Brown EN. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA. 2013;110(12):E1142–E1151151.CrossRefPubMed
3.
go back to reference Wang K, Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW. EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory. Front Syst Neurosci. 2014;8:215.CrossRefPubMedPubMedCentral Wang K, Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW. EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory. Front Syst Neurosci. 2014;8:215.CrossRefPubMedPubMedCentral
4.
go back to reference Kuizenga K, Wierda JM, Kalkman CJ. Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth. 2001;86(3):354–60.CrossRefPubMed Kuizenga K, Wierda JM, Kalkman CJ. Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth. 2001;86(3):354–60.CrossRefPubMed
5.
go back to reference Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, Brichant JF, Phillips C, Massimini M, Laureys S, Tononi G, Boly M. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;34(3):283–91.CrossRefPubMedPubMedCentral Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, Brichant JF, Phillips C, Massimini M, Laureys S, Tononi G, Boly M. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;34(3):283–91.CrossRefPubMedPubMedCentral
6.
go back to reference Gabor G, Judit T, Zsolt I. Comparison of propofol and etomidate regarding impact on seizure threshold during electroconvulsive therapy in patients with schizophrenia. Neuropsychopharmacol Hung. 2007;9(3):125–30.PubMed Gabor G, Judit T, Zsolt I. Comparison of propofol and etomidate regarding impact on seizure threshold during electroconvulsive therapy in patients with schizophrenia. Neuropsychopharmacol Hung. 2007;9(3):125–30.PubMed
7.
go back to reference Tan HL, Lee CY. Comparison between the effects of propofol and etomidate on motor and electroencephalogram seizure duration during electroconvulsive therapy. Anaesth Intensive Care. 2009;37(5):807–14.CrossRefPubMed Tan HL, Lee CY. Comparison between the effects of propofol and etomidate on motor and electroencephalogram seizure duration during electroconvulsive therapy. Anaesth Intensive Care. 2009;37(5):807–14.CrossRefPubMed
8.
go back to reference Drexler B, Jurd R, Rudolph U, Antkowiak B. Distinct actions of etomidate and propofol at beta3-containing gamma-aminobutyric acid type A receptors. Neuropharmacology. 2009;57(4):446–55.CrossRefPubMed Drexler B, Jurd R, Rudolph U, Antkowiak B. Distinct actions of etomidate and propofol at beta3-containing gamma-aminobutyric acid type A receptors. Neuropharmacology. 2009;57(4):446–55.CrossRefPubMed
9.
go back to reference Kim MG, Park SW, Kim JH, Lee J, Kae SH, Jang HJ, Koh DH, Choi MH. Etomidate versus propofol sedation for complex upper endoscopic procedures: a prospective double-blinded randomized controlled trial. Gastrointest Endosc. 2017;86(3):452–61.CrossRefPubMed Kim MG, Park SW, Kim JH, Lee J, Kae SH, Jang HJ, Koh DH, Choi MH. Etomidate versus propofol sedation for complex upper endoscopic procedures: a prospective double-blinded randomized controlled trial. Gastrointest Endosc. 2017;86(3):452–61.CrossRefPubMed
10.
go back to reference Jurd R, Arras M, Lambert S, Drexler B, Siegwart R, Crestani F, Zaugg M, Vogt KE, Ledermann B, Antkowiak B, Rudolph U. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J. 2003;17(2):250–2.CrossRefPubMed Jurd R, Arras M, Lambert S, Drexler B, Siegwart R, Crestani F, Zaugg M, Vogt KE, Ledermann B, Antkowiak B, Rudolph U. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J. 2003;17(2):250–2.CrossRefPubMed
11.
go back to reference Feng HJ, Macdonald RL. Multiple actions of propofol on alphabetagamma and alphabetadelta GABAA receptors. Mol Pharmacol. 2004;66(6):1517–24.CrossRefPubMed Feng HJ, Macdonald RL. Multiple actions of propofol on alphabetagamma and alphabetadelta GABAA receptors. Mol Pharmacol. 2004;66(6):1517–24.CrossRefPubMed
12.
go back to reference Sanchis-Segura C, Cline B, Jurd R, Rudolph U, Spanagel R. Etomidate and propofol-hyposensitive GABAA receptor beta3(N265M) mice show little changes in acute alcohol sensitivity but enhanced tolerance and withdrawal. Neurosci Lett. 2007;416(3):275–8.CrossRefPubMed Sanchis-Segura C, Cline B, Jurd R, Rudolph U, Spanagel R. Etomidate and propofol-hyposensitive GABAA receptor beta3(N265M) mice show little changes in acute alcohol sensitivity but enhanced tolerance and withdrawal. Neurosci Lett. 2007;416(3):275–8.CrossRefPubMed
13.
go back to reference Hill-Venning C, Belelli D, Peters JA, Lambert JJ. Subunit-dependent interaction of the general anaesthetic etomidate with the gamma-aminobutyric acid type A receptor. Br J Pharmacol. 1997;120(5):749–56.CrossRefPubMedPubMedCentral Hill-Venning C, Belelli D, Peters JA, Lambert JJ. Subunit-dependent interaction of the general anaesthetic etomidate with the gamma-aminobutyric acid type A receptor. Br J Pharmacol. 1997;120(5):749–56.CrossRefPubMedPubMedCentral
14.
go back to reference Belelli D, Muntoni AL, Merrywest SD, Gentet LJ, Casula A, Callachan H, Madau P, Gemmell DK, Hamilton NM, Lambert JJ, Sillar KT, Peters JA. The in vitro and in vivo enantioselectivity of etomidate implicates the GABAA receptor in general anaesthesia. Neuropharmacology. 2003;45(1):57–71.CrossRefPubMed Belelli D, Muntoni AL, Merrywest SD, Gentet LJ, Casula A, Callachan H, Madau P, Gemmell DK, Hamilton NM, Lambert JJ, Sillar KT, Peters JA. The in vitro and in vivo enantioselectivity of etomidate implicates the GABAA receptor in general anaesthesia. Neuropharmacology. 2003;45(1):57–71.CrossRefPubMed
15.
go back to reference Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ. Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci. 2005;25(50):11513–20.CrossRefPubMed Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ. Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci. 2005;25(50):11513–20.CrossRefPubMed
16.
go back to reference Cirone J, Rosahl TW, Reynolds DS, Newman RJ, O'Meara GF, Hutson PH, Wafford KA. Gamma-aminobutyric acid type A receptor beta 2 subunit mediates the hypothermic effect of etomidate in mice. Anesthesiology. 2004;100(6):1438–45.CrossRefPubMed Cirone J, Rosahl TW, Reynolds DS, Newman RJ, O'Meara GF, Hutson PH, Wafford KA. Gamma-aminobutyric acid type A receptor beta 2 subunit mediates the hypothermic effect of etomidate in mice. Anesthesiology. 2004;100(6):1438–45.CrossRefPubMed
17.
go back to reference Haenschel C, Baldeweg T, Croft RJ, Whittington M, Gruzelier J. Gamma and beta frequency oscillations in response to novel auditory stimuli: a comparison of human electroencephalogram (EEG) data with in vitro models. Proc Natl Acad Sci USA. 2000;97(13):7645–50.CrossRefPubMed Haenschel C, Baldeweg T, Croft RJ, Whittington M, Gruzelier J. Gamma and beta frequency oscillations in response to novel auditory stimuli: a comparison of human electroencephalogram (EEG) data with in vitro models. Proc Natl Acad Sci USA. 2000;97(13):7645–50.CrossRefPubMed
18.
go back to reference Terunuma M, Jang IS, Ha SH, Kittler JT, Kanematsu T, Jovanovic JN, Nakayama KI, Akaike N, Ryu SH, Moss SJ, Hirata M. GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J Neurosci. 2004;24(32):7074–84.CrossRefPubMed Terunuma M, Jang IS, Ha SH, Kittler JT, Kanematsu T, Jovanovic JN, Nakayama KI, Akaike N, Ryu SH, Moss SJ, Hirata M. GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J Neurosci. 2004;24(32):7074–84.CrossRefPubMed
19.
go back to reference Kanematsu T, Yasunaga A, Mizoguchi Y, Kuratani A, Kittler JT, Jovanovic JN, Takenaka K, Nakayama KI, Fukami K, Takenawa T, Moss SJ, Nabekura J, Hirata M. Modulation of GABA(A) receptor phosphorylation and membrane trafficking by phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underlying brain-derived neurotrophic factor-dependent regulation of GABAergic inhibition. J Biol Chem. 2006;281(31):22180–9.CrossRefPubMed Kanematsu T, Yasunaga A, Mizoguchi Y, Kuratani A, Kittler JT, Jovanovic JN, Takenaka K, Nakayama KI, Fukami K, Takenawa T, Moss SJ, Nabekura J, Hirata M. Modulation of GABA(A) receptor phosphorylation and membrane trafficking by phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underlying brain-derived neurotrophic factor-dependent regulation of GABAergic inhibition. J Biol Chem. 2006;281(31):22180–9.CrossRefPubMed
20.
go back to reference Kanematsu T, Mizokami A, Watanabe K, Hirata M. Regulation of GABA(A)-receptor surface expression with special reference to the involvement of GABARAP (GABA(A) receptor-associated protein) and PRIP (phospholipase C-related, but catalytically inactive protein). J Pharmacol Sci. 2007;104(4):285–92.CrossRefPubMed Kanematsu T, Mizokami A, Watanabe K, Hirata M. Regulation of GABA(A)-receptor surface expression with special reference to the involvement of GABARAP (GABA(A) receptor-associated protein) and PRIP (phospholipase C-related, but catalytically inactive protein). J Pharmacol Sci. 2007;104(4):285–92.CrossRefPubMed
21.
go back to reference Yanagihori S, Terunuma M, Koyano K, Kanematsu T, Ho Ryu S, Hirata M. Protein phosphatase regulation by PRIP, a PLC-related catalytically inactive protein–implications in the phospho-modulation of the GABAA receptor. Adv Enzyme Regul. 2006;46:203–22.CrossRefPubMed Yanagihori S, Terunuma M, Koyano K, Kanematsu T, Ho Ryu S, Hirata M. Protein phosphatase regulation by PRIP, a PLC-related catalytically inactive protein–implications in the phospho-modulation of the GABAA receptor. Adv Enzyme Regul. 2006;46:203–22.CrossRefPubMed
22.
go back to reference Migita K, Tomiyama M, Yamada J, Fukuzawa M, Kanematsu T, Hirata M, Ueno S. Phenotypes of pain behavior in phospholipase C-related but catalytically inactive protein type 1 knockout mice. Mol Pain. 2011;7:79.CrossRefPubMedPubMedCentral Migita K, Tomiyama M, Yamada J, Fukuzawa M, Kanematsu T, Hirata M, Ueno S. Phenotypes of pain behavior in phospholipase C-related but catalytically inactive protein type 1 knockout mice. Mol Pain. 2011;7:79.CrossRefPubMedPubMedCentral
23.
go back to reference Zhu G, Yoshida S, Migita K, Yamada J, Mori F, Tomiyama M, Wakabayashi K, Kanematsu T, Hirata M, Kaneko S, Ueno S, Okada M. Dysfunction of extrasynaptic GABAergic transmission in phospholipase C-related, but catalytically inactive protein 1 knockout mice is associated with an epilepsy phenotype. J Pharmacol Exp Ther. 2012;340(3):520–8.CrossRefPubMed Zhu G, Yoshida S, Migita K, Yamada J, Mori F, Tomiyama M, Wakabayashi K, Kanematsu T, Hirata M, Kaneko S, Ueno S, Okada M. Dysfunction of extrasynaptic GABAergic transmission in phospholipase C-related, but catalytically inactive protein 1 knockout mice is associated with an epilepsy phenotype. J Pharmacol Exp Ther. 2012;340(3):520–8.CrossRefPubMed
24.
go back to reference Nikaido Y, Furukawa T, Shimoyama S, Yamada J, Migita K, Koga K, Kushikata T, Hirota K, Kanematsu T, Hirata M, Ueno S. Propofol anesthesia is reduced in phospholipase c-related inactive protein type-1 knockout mice. J Pharmacol Exp Ther. 2017;361(3):367–74.CrossRefPubMed Nikaido Y, Furukawa T, Shimoyama S, Yamada J, Migita K, Koga K, Kushikata T, Hirota K, Kanematsu T, Hirata M, Ueno S. Propofol anesthesia is reduced in phospholipase c-related inactive protein type-1 knockout mice. J Pharmacol Exp Ther. 2017;361(3):367–74.CrossRefPubMed
25.
go back to reference Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.CrossRef Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.CrossRef
26.
27.
go back to reference Kushikata T, Sawada M, Niwa H, Kudo T, Kudo M, Tonosaki M, Hirota K. Ketamine and propofol have opposite effects on postanesthetic sleep architecture in rats: relevance to the endogenous sleep-wakefulness substances orexin and melanin-concentrating hormone. J Anesth. 2016;30(3):437–43.CrossRefPubMed Kushikata T, Sawada M, Niwa H, Kudo T, Kudo M, Tonosaki M, Hirota K. Ketamine and propofol have opposite effects on postanesthetic sleep architecture in rats: relevance to the endogenous sleep-wakefulness substances orexin and melanin-concentrating hormone. J Anesth. 2016;30(3):437–43.CrossRefPubMed
28.
go back to reference Rudolph U, Mohler H. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol. 2004;44:475–98.CrossRefPubMed Rudolph U, Mohler H. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol. 2004;44:475–98.CrossRefPubMed
29.
go back to reference Ferguson C, Hardy SL, Werner DF, Hileman SM, Delorey TM, Homanics GE. New insight into the role of the beta3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout. BMC Neurosci. 2007;8:85.CrossRefPubMedPubMedCentral Ferguson C, Hardy SL, Werner DF, Hileman SM, Delorey TM, Homanics GE. New insight into the role of the beta3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout. BMC Neurosci. 2007;8:85.CrossRefPubMedPubMedCentral
30.
go back to reference DeLorey TM, Handforth A, Anagnostaras SG, Homanics GE, Minassian BA, Asatourian A, Fanselow MS, Delgado-Escueta A, Ellison GD, Olsen RW. Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci. 1998;18(20):8505–14.CrossRefPubMed DeLorey TM, Handforth A, Anagnostaras SG, Homanics GE, Minassian BA, Asatourian A, Fanselow MS, Delgado-Escueta A, Ellison GD, Olsen RW. Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci. 1998;18(20):8505–14.CrossRefPubMed
31.
go back to reference Liljelund P, Handforth A, Homanics GE, Olsen RW. GABAA receptor beta3 subunit gene-deficient heterozygous mice show parent-of-origin and gender-related differences in beta3 subunit levels, EEG, and behavior. Brain Res Dev Brain Res. 2005;157(2):150–61.CrossRefPubMed Liljelund P, Handforth A, Homanics GE, Olsen RW. GABAA receptor beta3 subunit gene-deficient heterozygous mice show parent-of-origin and gender-related differences in beta3 subunit levels, EEG, and behavior. Brain Res Dev Brain Res. 2005;157(2):150–61.CrossRefPubMed
32.
go back to reference Krasowski MD, Rick CE, Harrison NL, Firestone LL, Homanics GE. A deficit of functional GABA(A) receptors in neurons of beta 3 subunit knockout mice. Neurosci Lett. 1998;240(2):81–4.CrossRefPubMedPubMedCentral Krasowski MD, Rick CE, Harrison NL, Firestone LL, Homanics GE. A deficit of functional GABA(A) receptors in neurons of beta 3 subunit knockout mice. Neurosci Lett. 1998;240(2):81–4.CrossRefPubMedPubMedCentral
33.
go back to reference Wisor JP, DeLorey TM, Homanics GE, Edgar DM. Sleep states and sleep electroencephalographic spectral power in mice lacking the beta 3 subunit of the GABA(A) receptor. Brain Res. 2002;955(1–2):221–8.CrossRefPubMed Wisor JP, DeLorey TM, Homanics GE, Edgar DM. Sleep states and sleep electroencephalographic spectral power in mice lacking the beta 3 subunit of the GABA(A) receptor. Brain Res. 2002;955(1–2):221–8.CrossRefPubMed
34.
go back to reference Sidorov MS, Deck GM, Dolatshahi M, Thibert RL, Bird LM, Chu CJ, Philpot BD. Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis. J Neurodev Disord. 2017;9:17.CrossRefPubMedPubMedCentral Sidorov MS, Deck GM, Dolatshahi M, Thibert RL, Bird LM, Chu CJ, Philpot BD. Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis. J Neurodev Disord. 2017;9:17.CrossRefPubMedPubMedCentral
35.
go back to reference Kanematsu T, Jang IS, Yamaguchi T, Nagahama H, Yoshimura K, Hidaka K, Matsuda M, Takeuchi H, Misumi Y, Nakayama K, Yamamoto T, Akaike N, Hirata M. Role of the PLC-related, catalytically inactive protein p130 in GABA(A) receptor function. EMBO J. 2002;21(5):1004–111.CrossRefPubMedPubMedCentral Kanematsu T, Jang IS, Yamaguchi T, Nagahama H, Yoshimura K, Hidaka K, Matsuda M, Takeuchi H, Misumi Y, Nakayama K, Yamamoto T, Akaike N, Hirata M. Role of the PLC-related, catalytically inactive protein p130 in GABA(A) receptor function. EMBO J. 2002;21(5):1004–111.CrossRefPubMedPubMedCentral
36.
go back to reference Flores FJ, Hartnack KE, Fath AB, Kim SE, Wilson MA, Brown EN, Purdon PL. Thalamocortical synchronization during induction and emergence from propofol-induced unconsciousness. Proc Natl Acad Sci USA. 2017;114(32):E6660–E666868.CrossRefPubMed Flores FJ, Hartnack KE, Fath AB, Kim SE, Wilson MA, Brown EN, Purdon PL. Thalamocortical synchronization during induction and emergence from propofol-induced unconsciousness. Proc Natl Acad Sci USA. 2017;114(32):E6660–E666868.CrossRefPubMed
37.
go back to reference Lambert S, Arras M, Vogt KE, Rudolph U. Isoflurane-induced surgical tolerance mediated only in part by beta3-containing GABA(A) receptors. Eur J Pharmacol. 2005;516(1):23–7.CrossRefPubMed Lambert S, Arras M, Vogt KE, Rudolph U. Isoflurane-induced surgical tolerance mediated only in part by beta3-containing GABA(A) receptors. Eur J Pharmacol. 2005;516(1):23–7.CrossRefPubMed
38.
go back to reference Liao M, Sonner JM, Jurd R, Rudolph U, Borghese CM, Harris RA, Laster MJ, Eger EI, 2nd. Beta3-containing gamma-aminobutyric acid A receptors are not major targets for the amnesic and immobilizing actions of isoflurane. Anesth Analg. 2005;101(2):412–8 (table of contents). Liao M, Sonner JM, Jurd R, Rudolph U, Borghese CM, Harris RA, Laster MJ, Eger EI, 2nd. Beta3-containing gamma-aminobutyric acid A receptors are not major targets for the amnesic and immobilizing actions of isoflurane. Anesth Analg. 2005;101(2):412–8 (table of contents).
39.
go back to reference Reynolds DS, Rosahl TW, Cirone J, O'Meara GF, Haythornthwaite A, Newman RJ, Myers J, Sur C, Howell O, Rutter AR, Atack J, Macaulay AJ, Hadingham KL, Hutson PH, Belelli D, Lambert JJ, Dawson GR, McKernan R, Whiting PJ, Wafford KA. Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci. 2003;23(24):8608–17.CrossRefPubMed Reynolds DS, Rosahl TW, Cirone J, O'Meara GF, Haythornthwaite A, Newman RJ, Myers J, Sur C, Howell O, Rutter AR, Atack J, Macaulay AJ, Hadingham KL, Hutson PH, Belelli D, Lambert JJ, Dawson GR, McKernan R, Whiting PJ, Wafford KA. Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci. 2003;23(24):8608–17.CrossRefPubMed
40.
go back to reference Drexler B, Roether CL, Jurd R, Rudolph U, Antkowiak B. Opposing actions of etomidate on cortical theta oscillations are mediated by different gamma-aminobutyric acid type A receptor subtypes. Anesthesiology. 2005;102(2):346–52.CrossRefPubMed Drexler B, Roether CL, Jurd R, Rudolph U, Antkowiak B. Opposing actions of etomidate on cortical theta oscillations are mediated by different gamma-aminobutyric acid type A receptor subtypes. Anesthesiology. 2005;102(2):346–52.CrossRefPubMed
41.
go back to reference Butovas S, Rudolph U, Jurd R, Schwarz C, Antkowiak B. Activity patterns in the prefrontal cortex and hippocampus during and after awakening from etomidate anesthesia. Anesthesiology. 2010;113(1):48–57.CrossRefPubMed Butovas S, Rudolph U, Jurd R, Schwarz C, Antkowiak B. Activity patterns in the prefrontal cortex and hippocampus during and after awakening from etomidate anesthesia. Anesthesiology. 2010;113(1):48–57.CrossRefPubMed
42.
go back to reference Uji A, Matsuda M, Kukita T, Maeda K, Kanematsu T, Hirata M. Molecules interacting with PRIP-2, a novel Ins(1,4,5)P3 binding protein type 2: comparison with PRIP-1. Life Sci. 2002;72(4–5):443–53.CrossRefPubMed Uji A, Matsuda M, Kukita T, Maeda K, Kanematsu T, Hirata M. Molecules interacting with PRIP-2, a novel Ins(1,4,5)P3 binding protein type 2: comparison with PRIP-1. Life Sci. 2002;72(4–5):443–53.CrossRefPubMed
43.
go back to reference Brunig I, Scotti E, Sidler C, Fritschy JM. Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol. 2002;443(1):43–55.CrossRefPubMed Brunig I, Scotti E, Sidler C, Fritschy JM. Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol. 2002;443(1):43–55.CrossRefPubMed
44.
go back to reference Sieghart W, Sperk G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem. 2002;2(8):795–816.CrossRefPubMed Sieghart W, Sperk G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem. 2002;2(8):795–816.CrossRefPubMed
45.
go back to reference Wang H, Luo M, Li C, Wang G. Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem. 2011;119(1):210–9.CrossRefPubMed Wang H, Luo M, Li C, Wang G. Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem. 2011;119(1):210–9.CrossRefPubMed
46.
go back to reference Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br J Pharmacol. 1991;104(3):619–28.CrossRefPubMedPubMedCentral Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br J Pharmacol. 1991;104(3):619–28.CrossRefPubMedPubMedCentral
47.
go back to reference Kingston S, Mao L, Yang L, Arora A, Fibuch EE, Wang JQ. Propofol inhibits phosphorylation of N-methyl-d-aspartate receptor NR1 subunits in neurons. Anesthesiology. 2006;104(4):763–9.CrossRefPubMed Kingston S, Mao L, Yang L, Arora A, Fibuch EE, Wang JQ. Propofol inhibits phosphorylation of N-methyl-d-aspartate receptor NR1 subunits in neurons. Anesthesiology. 2006;104(4):763–9.CrossRefPubMed
48.
go back to reference Qiu Q, Sun L, Wang XM, Lo ACY, Wong KL, Gu P, Wong SCS, Cheung CW. Propofol produces preventive analgesia via GluN2B-containing NMDA Receptor/ERK1/2 Signaling Pathway in a rat model of inflammatory pain. Mol Pain. 2017;13:1744806917737462.CrossRefPubMedPubMedCentral Qiu Q, Sun L, Wang XM, Lo ACY, Wong KL, Gu P, Wong SCS, Cheung CW. Propofol produces preventive analgesia via GluN2B-containing NMDA Receptor/ERK1/2 Signaling Pathway in a rat model of inflammatory pain. Mol Pain. 2017;13:1744806917737462.CrossRefPubMedPubMedCentral
49.
go back to reference Chen D, Qi X, Zhuang R, Cao J, Xu Y, Huang X, Li Y. Prenatal propofol exposure downregulates NMDA receptor expression and causes cognitive and emotional disorders in rats. Eur J Pharmacol. 2019;843:268–76.CrossRefPubMed Chen D, Qi X, Zhuang R, Cao J, Xu Y, Huang X, Li Y. Prenatal propofol exposure downregulates NMDA receptor expression and causes cognitive and emotional disorders in rats. Eur J Pharmacol. 2019;843:268–76.CrossRefPubMed
50.
go back to reference Lin CR, Cheng JT, Lin FC, Chou AK, Lee TC, Chen JT, Yang LC. Effect of thiopental, propofol, and etomidate on vincristine toxicity in PC12 cells. Cell Biol Toxicol. 2002;18(1):63–70.CrossRefPubMed Lin CR, Cheng JT, Lin FC, Chou AK, Lee TC, Chen JT, Yang LC. Effect of thiopental, propofol, and etomidate on vincristine toxicity in PC12 cells. Cell Biol Toxicol. 2002;18(1):63–70.CrossRefPubMed
51.
go back to reference Kassem LA, Gamal El-Din MM, Yassin NA. Mechanisms of vincristine-induced neurotoxicity: Possible reversal by erythropoietin. Drug Discov Ther. 2011;5(3):136–43.CrossRefPubMed Kassem LA, Gamal El-Din MM, Yassin NA. Mechanisms of vincristine-induced neurotoxicity: Possible reversal by erythropoietin. Drug Discov Ther. 2011;5(3):136–43.CrossRefPubMed
52.
go back to reference Putzke C, Hanley PJ, Schlichthörl G, Preisig-Müller R, Rinné S, Anetseder M, Eckenhoff R, Berkowitz C, Vassiliou T, Wulf H, Eberhart L. Differential effects of volatile and intravenous anesthetics on the activity of human TASK-1. Am J Physiol Cell Physiol. 2007;293(4):C1319–C13261326.CrossRefPubMed Putzke C, Hanley PJ, Schlichthörl G, Preisig-Müller R, Rinné S, Anetseder M, Eckenhoff R, Berkowitz C, Vassiliou T, Wulf H, Eberhart L. Differential effects of volatile and intravenous anesthetics on the activity of human TASK-1. Am J Physiol Cell Physiol. 2007;293(4):C1319–C13261326.CrossRefPubMed
53.
go back to reference Lazarenko RM, Willcox SC, Shu S, Berg AP, Jevtovic-Todorovic V, Talley EM, Chen X, Bayliss DA. Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics. J Neurosci. 2010;30(22):7691–704.CrossRefPubMedPubMedCentral Lazarenko RM, Willcox SC, Shu S, Berg AP, Jevtovic-Todorovic V, Talley EM, Chen X, Bayliss DA. Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics. J Neurosci. 2010;30(22):7691–704.CrossRefPubMedPubMedCentral
54.
go back to reference Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9(5):370–86.CrossRefPubMed Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9(5):370–86.CrossRefPubMed
55.
go back to reference Sugiyama G, Takeuchi H, Kanematsu T, Gao J, Matsuda M, Hirata M. Phospholipase C-related but catalytically inactive protein, PRIP as a scaffolding protein for phospho-regulation. Adv Biol Regul. 2013;53(3):331–40.CrossRefPubMed Sugiyama G, Takeuchi H, Kanematsu T, Gao J, Matsuda M, Hirata M. Phospholipase C-related but catalytically inactive protein, PRIP as a scaffolding protein for phospho-regulation. Adv Biol Regul. 2013;53(3):331–40.CrossRefPubMed
56.
go back to reference Shortal BP, Reitz SL, Aggarwal A, Meng QC, McKinstry-Wu AR, Kelz MB, Proekt A. Development and validation of brain target controlled infusion of propofol in mice. PLoS ONE. 2018;13(4):e0194949.CrossRefPubMedPubMedCentral Shortal BP, Reitz SL, Aggarwal A, Meng QC, McKinstry-Wu AR, Kelz MB, Proekt A. Development and validation of brain target controlled infusion of propofol in mice. PLoS ONE. 2018;13(4):e0194949.CrossRefPubMedPubMedCentral
57.
go back to reference Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neurosci. 2000;101(4):815–50.CrossRef Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neurosci. 2000;101(4):815–50.CrossRef
Metadata
Title
Phospholipase C-related inactive protein type-1 deficiency affects anesthetic electroencephalogram activity induced by propofol and etomidate in mice
Authors
Tomonori Furukawa
Yoshikazu Nikaido
Shuji Shimoyama
Yoshiki Ogata
Tetsuya Kushikata
Kazuyoshi Hirota
Takashi Kanematsu
Masato Hirata
Shinya Ueno
Publication date
01-08-2019
Publisher
Springer Japan
Published in
Journal of Anesthesia / Issue 4/2019
Print ISSN: 0913-8668
Electronic ISSN: 1438-8359
DOI
https://doi.org/10.1007/s00540-019-02663-z

Other articles of this Issue 4/2019

Journal of Anesthesia 4/2019 Go to the issue