Skip to main content
Top
Published in: Journal of Anesthesia 4/2019

01-08-2019 | Cytokines | Original Article

Neuroprotective effects of neurotropin in a mouse model of hypoxic–ischemic brain injury

Authors: Sohei Hishiyama, Masakazu Kotoda, Tadahiko Ishiyama, Kazuha Mitsui, Takashi Matsukawa

Published in: Journal of Anesthesia | Issue 4/2019

Login to get access

Abstract

Purpose

Ischemic–hypoxic insult leads to detrimental effects on multiple organs. The brain is especially vulnerable, and it is hard to regenerate once damaged. Currently, therapeutic options are very limited. Previous studies have reported neuroprotective effects of neurotropin, a non-protein extract derived from the inflamed skin of rabbits inoculated with vaccinia virus, using a murine model of peripheral nerve injury and cultured cell lines. However, whether neurotropin might have protective effects against brain injuries remains unclear. We, therefore, investigated the neuroprotective effect of neurotropin and possible underlying mechanisms, using a mouse model of hypoxic–ischemic brain injury.

Methods

Hypoxic–ischemic brain injury was induced via a combination of the left common carotid artery occlusion and exposure to hypoxic environment (8% oxygen) in adult male C57BL/6 mice. Immediately following induction of hypoxia–ischemia, mice received either saline or 2.4 units of neurotropin. The survival rate, neurological function, infarct volume, and expression of inflammatory cytokines were evaluated.

Results

Compared to the control group, the neurotropin group exhibited a significantly higher survival rate (100% vs. 62.5%, p < 0.05) and lower neurological deficit scores (1; 0–2 vs. 3; 0–5, median; range, p < 0.05) after the hypoxic–ischemic insult. The administration of neurotropin also reduced infarct volume (18.3 ± 5.1% vs. 38.3 ± 7.2%, p < 0.05) and mRNA expression of pro-inflammatory cytokines.

Conclusions

The post-treatment with neurotropin improved survival and neurological outcomes after hypoxic–ischemic insult. Our results indicate that neurotropin has neuroprotective effects against hypoxic–ischemic brain injury by suppressing pro-inflammatory cytokines.
Literature
1.
2.
go back to reference Nakajo Y, Yang D, Takahashi JC, Zhao Q, Kataoka H, Yanamoto H. ERV enhances spatial learning and prevents the development of infarcts, accompanied by upregulated BDNF in the cortex. Brain Res. 2015;1610:110–23.CrossRefPubMed Nakajo Y, Yang D, Takahashi JC, Zhao Q, Kataoka H, Yanamoto H. ERV enhances spatial learning and prevents the development of infarcts, accompanied by upregulated BDNF in the cortex. Brain Res. 2015;1610:110–23.CrossRefPubMed
3.
go back to reference Ishikawa T, Yasuda S, Minoda S, Ibuki T, Fukuhara K, Iwanaga Y, Ariyoshi T, Sasaki H. Neurotropin((R)) ameliorates chronic pain via induction of brain-derived neurotrophic factor. Cell Mol Neurobiol. 2015;35:231–41.CrossRefPubMed Ishikawa T, Yasuda S, Minoda S, Ibuki T, Fukuhara K, Iwanaga Y, Ariyoshi T, Sasaki H. Neurotropin((R)) ameliorates chronic pain via induction of brain-derived neurotrophic factor. Cell Mol Neurobiol. 2015;35:231–41.CrossRefPubMed
4.
go back to reference Yoshii H, Fukata Y, Yamamoto K, Naiki M, Suehiro S, Yanagihara Y, Okudaira H. Neurotropin inhibits accumulation of eosinophils induced by allergen through the suppression of sensitized T-cells. Int J Immunopharmacol. 1995;17:879–86.CrossRefPubMed Yoshii H, Fukata Y, Yamamoto K, Naiki M, Suehiro S, Yanagihara Y, Okudaira H. Neurotropin inhibits accumulation of eosinophils induced by allergen through the suppression of sensitized T-cells. Int J Immunopharmacol. 1995;17:879–86.CrossRefPubMed
5.
go back to reference Nishimoto S, Okada K, Tanaka H, Okamoto M, Fujisawa H, Okada T, Naiki M, Murase T, Yoshikawa H. Neurotropin attenuates local inflammatory response and inhibits demyelination induced by chronic constriction injury of the mouse sciatic nerve. Biologicals. 2016;44:206–11.CrossRefPubMed Nishimoto S, Okada K, Tanaka H, Okamoto M, Fujisawa H, Okada T, Naiki M, Murase T, Yoshikawa H. Neurotropin attenuates local inflammatory response and inhibits demyelination induced by chronic constriction injury of the mouse sciatic nerve. Biologicals. 2016;44:206–11.CrossRefPubMed
6.
go back to reference Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9:131–41.CrossRefPubMed Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9:131–41.CrossRefPubMed
7.
go back to reference Cowper-Smith CD, Anger GJ, Magal E, Norman MH, Robertson GS. Delayed administration of a potent cyclin dependent kinase and glycogen synthase kinase 3 beta inhibitor produces long-term neuroprotection in a hypoxia-ischemia model of brain injury. Neuroscience. 2008;155:864–75.CrossRefPubMed Cowper-Smith CD, Anger GJ, Magal E, Norman MH, Robertson GS. Delayed administration of a potent cyclin dependent kinase and glycogen synthase kinase 3 beta inhibitor produces long-term neuroprotection in a hypoxia-ischemia model of brain injury. Neuroscience. 2008;155:864–75.CrossRefPubMed
8.
go back to reference Hedna VS, Ansari S, Shahjouei S, Cai PY, Ahmad AS, Mocco J, Qureshi AI. Validity of laser doppler flowmetry in predicting outcome in murine intraluminal middle cerebral artery occlusion stroke. J Vasc Interv Neurol. 2015;8:74–82.PubMedPubMedCentral Hedna VS, Ansari S, Shahjouei S, Cai PY, Ahmad AS, Mocco J, Qureshi AI. Validity of laser doppler flowmetry in predicting outcome in murine intraluminal middle cerebral artery occlusion stroke. J Vasc Interv Neurol. 2015;8:74–82.PubMedPubMedCentral
9.
go back to reference Kotoda M, Ishiyama T, Mitsui K, Hishiyama S, Matsukawa T. Nicorandil increased the cerebral blood flow via nitric oxide pathway and ATP-sensitive potassium channel opening in mice. J Anesth. 2018;32:244–9.CrossRefPubMed Kotoda M, Ishiyama T, Mitsui K, Hishiyama S, Matsukawa T. Nicorandil increased the cerebral blood flow via nitric oxide pathway and ATP-sensitive potassium channel opening in mice. J Anesth. 2018;32:244–9.CrossRefPubMed
10.
go back to reference Toda K, Muneshige H, Ikuta Y. Antinociceptive effects of neurotropin in a rat model of painful peripheral mononeuropathy. Life Sci. 1998;62:913–21.CrossRefPubMed Toda K, Muneshige H, Ikuta Y. Antinociceptive effects of neurotropin in a rat model of painful peripheral mononeuropathy. Life Sci. 1998;62:913–21.CrossRefPubMed
11.
go back to reference Suzuki T, Li YH, Mashimo T. The antiallodynic and antihyperalgesic effects of neurotropin in mice with spinal nerve ligation. Anesth Analg. 2005;101:793–9.CrossRefPubMed Suzuki T, Li YH, Mashimo T. The antiallodynic and antihyperalgesic effects of neurotropin in mice with spinal nerve ligation. Anesth Analg. 2005;101:793–9.CrossRefPubMed
12.
go back to reference Wang P, Xu TY, Wei K, Guan YF, Wang X, Xu H, Su DF, Pei G, Miao CY. ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. Autophagy. 2014;10:1535–48.CrossRefPubMedPubMedCentral Wang P, Xu TY, Wei K, Guan YF, Wang X, Xu H, Su DF, Pei G, Miao CY. ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. Autophagy. 2014;10:1535–48.CrossRefPubMedPubMedCentral
13.
go back to reference Llovera G, Roth S, Plesnila N, Veltkamp R, Liesz A. Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. J Vis Exp. 2014;89:e51729. Llovera G, Roth S, Plesnila N, Veltkamp R, Liesz A. Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. J Vis Exp. 2014;89:e51729.
14.
go back to reference Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.CrossRefPubMed Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.CrossRefPubMed
15.
go back to reference Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7.CrossRefPubMed Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7.CrossRefPubMed
16.
go back to reference Sobowale OA, Parry-Jones AR, Smith CJ, Tyrrell PJ, Rothwell NJ, Allan SM. Interleukin-1 in Stroke: from bench to bedside. Stroke. 2016;47:2160–7.CrossRefPubMed Sobowale OA, Parry-Jones AR, Smith CJ, Tyrrell PJ, Rothwell NJ, Allan SM. Interleukin-1 in Stroke: from bench to bedside. Stroke. 2016;47:2160–7.CrossRefPubMed
17.
go back to reference Cojocaru IM, Cojocaru M, Tanasescu R, Iliescu I, Dumitrescu L, Silosi I. Expression of IL-6 activity in patients with acute ischemic stroke. Rom J Intern Med. 2009;47:393–6.PubMed Cojocaru IM, Cojocaru M, Tanasescu R, Iliescu I, Dumitrescu L, Silosi I. Expression of IL-6 activity in patients with acute ischemic stroke. Rom J Intern Med. 2009;47:393–6.PubMed
18.
go back to reference Doll DN, Rellick SL, Barr TL, Ren X, Simpkins JW. Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem. 2015;132:443–51.CrossRefPubMedPubMedCentral Doll DN, Rellick SL, Barr TL, Ren X, Simpkins JW. Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem. 2015;132:443–51.CrossRefPubMedPubMedCentral
19.
go back to reference Gredal H, Thomsen BB, Boza-Serrano A, Garosi L, Rusbridge C, Anthony D, Moller A, Finsen B, Deierborg T, Lambertsen KL, Berendt M. Interleukin-6 is increased in plasma and cerebrospinal fluid of community-dwelling domestic dogs with acute ischaemic stroke. Neuroreport. 2017;28:134–40.CrossRefPubMedPubMedCentral Gredal H, Thomsen BB, Boza-Serrano A, Garosi L, Rusbridge C, Anthony D, Moller A, Finsen B, Deierborg T, Lambertsen KL, Berendt M. Interleukin-6 is increased in plasma and cerebrospinal fluid of community-dwelling domestic dogs with acute ischaemic stroke. Neuroreport. 2017;28:134–40.CrossRefPubMedPubMedCentral
20.
go back to reference Wei J, Sun C, Liu C, Zhang Q. Effects of rat anti-mouse interleukin-6 receptor antibody on the recovery of cognitive function in stroke mice. Cell Mol Neurobiol. 2018;38:507–15.CrossRefPubMed Wei J, Sun C, Liu C, Zhang Q. Effects of rat anti-mouse interleukin-6 receptor antibody on the recovery of cognitive function in stroke mice. Cell Mol Neurobiol. 2018;38:507–15.CrossRefPubMed
21.
go back to reference Armstead WM, Hekierski H, Pastor P, Yarovoi S, Higazi AA, Cines DB. Release of IL-6 after stroke contributes to impaired cerebral autoregulation and hippocampal neuronal necrosis through NMDA receptor activation and upregulation of ET-1 and JNK. Transl Stroke Res. 2019;10:104–11.CrossRefPubMed Armstead WM, Hekierski H, Pastor P, Yarovoi S, Higazi AA, Cines DB. Release of IL-6 after stroke contributes to impaired cerebral autoregulation and hippocampal neuronal necrosis through NMDA receptor activation and upregulation of ET-1 and JNK. Transl Stroke Res. 2019;10:104–11.CrossRefPubMed
22.
go back to reference Fukuda Y, Fukui T, Hikichi C, Ishikawa T, Murate K, Adachi T, Imai H, Fukuhara K, Ueda A, Kaplan AP, Mutoh T. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res. 2015;1596:13–21.CrossRefPubMed Fukuda Y, Fukui T, Hikichi C, Ishikawa T, Murate K, Adachi T, Imai H, Fukuhara K, Ueda A, Kaplan AP, Mutoh T. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res. 2015;1596:13–21.CrossRefPubMed
23.
go back to reference Zheng Y, Fang W, Fan S, Liao W, Xiong Y, Liao S, Li Y, Xiao S, Liu J. Neurotropin inhibits neuroinflammation via suppressing NF-kappaB and MAPKs signaling pathways in lipopolysaccharide-stimulated BV2 cells. J Pharmacol Sci. 2018;136:242–8.CrossRefPubMed Zheng Y, Fang W, Fan S, Liao W, Xiong Y, Liao S, Li Y, Xiao S, Liu J. Neurotropin inhibits neuroinflammation via suppressing NF-kappaB and MAPKs signaling pathways in lipopolysaccharide-stimulated BV2 cells. J Pharmacol Sci. 2018;136:242–8.CrossRefPubMed
24.
go back to reference Liu F, Schafer DP, McCullough LD. TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods. 2009;179:1–8.CrossRefPubMedPubMedCentral Liu F, Schafer DP, McCullough LD. TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods. 2009;179:1–8.CrossRefPubMedPubMedCentral
25.
go back to reference Ohtaki H, Yin L, Nakamachi T, Dohi K, Kudo Y, Makino R, Shioda S. Expression of tumor necrosis factor alpha in nerve fibers and oligodendrocytes after transient focal ischemia in mice. Neurosci Lett. 2004;368:162–6.CrossRefPubMed Ohtaki H, Yin L, Nakamachi T, Dohi K, Kudo Y, Makino R, Shioda S. Expression of tumor necrosis factor alpha in nerve fibers and oligodendrocytes after transient focal ischemia in mice. Neurosci Lett. 2004;368:162–6.CrossRefPubMed
26.
go back to reference Clausen BH, Lambertsen KL, Meldgaard M, Finsen B. A quantitative in situ hybridization and polymerase chain reaction study of microglial-macrophage expression of interleukin-1beta mRNA following permanent middle cerebral artery occlusion in mice. Neuroscience. 2005;132:879–92.CrossRefPubMed Clausen BH, Lambertsen KL, Meldgaard M, Finsen B. A quantitative in situ hybridization and polymerase chain reaction study of microglial-macrophage expression of interleukin-1beta mRNA following permanent middle cerebral artery occlusion in mice. Neuroscience. 2005;132:879–92.CrossRefPubMed
27.
go back to reference Suzuki S, Tanaka K, Nogawa S, Nagata E, Ito D, Dembo T, Fukuuchi Y. Temporal profile and cellular localization of interleukin-6 protein after focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 1999;19:1256–62.CrossRefPubMed Suzuki S, Tanaka K, Nogawa S, Nagata E, Ito D, Dembo T, Fukuuchi Y. Temporal profile and cellular localization of interleukin-6 protein after focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 1999;19:1256–62.CrossRefPubMed
28.
go back to reference Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40:1849–57.CrossRefPubMed Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40:1849–57.CrossRefPubMed
29.
go back to reference Itoh ET. Hata, Analgesic mechanism of neurotropin: relation to the serotonergic system and influence of spinal cord transection. Jpn J Pharmacol. 1989;51:267–72.CrossRefPubMed Itoh ET. Hata, Analgesic mechanism of neurotropin: relation to the serotonergic system and influence of spinal cord transection. Jpn J Pharmacol. 1989;51:267–72.CrossRefPubMed
Metadata
Title
Neuroprotective effects of neurotropin in a mouse model of hypoxic–ischemic brain injury
Authors
Sohei Hishiyama
Masakazu Kotoda
Tadahiko Ishiyama
Kazuha Mitsui
Takashi Matsukawa
Publication date
01-08-2019
Publisher
Springer Japan
Published in
Journal of Anesthesia / Issue 4/2019
Print ISSN: 0913-8668
Electronic ISSN: 1438-8359
DOI
https://doi.org/10.1007/s00540-019-02655-z

Other articles of this Issue 4/2019

Journal of Anesthesia 4/2019 Go to the issue