Skip to main content
Top
Published in: Pediatric Nephrology 4/2014

01-04-2014 | Review

Gene regulatory network of renal primordium development

Authors: Michael Marcotte, Richa Sharma, Maxime Bouchard

Published in: Pediatric Nephrology | Issue 4/2014

Login to get access

Abstract

Animal development progresses through the stepwise deployment of gene regulatory networks (GRN) encoded in the genome. Comparative analyses in different species and organ systems have revealed that GRN blueprints are composed of subcircuits with stereotypical architectures that are often reused as modular units. In this review, we report the evidence for the GRN underlying renal primordium development. In vertebrates, renal development is initiated by the induction of a field of intermediate mesoderm cells competent to undergo lineage specification and nephric (Wolffian) duct formation. Definition of the renal field leads to the activation of a core regulatory subcircuit composed of the transcription factors Pax2/8, Gata3 and Lim1. These transcription factors turn on a second layer of transcriptional regulators while also activating effectors of tissue morphogenesis and cellular specialization. Elongation and connection of the nephric duct to the cloaca (bladder/urethra primordium) is followed by metanephric kidney induction through signals emanating from the metanephric mesenchyme. Central to this process is the activation and positioning of the glial cell line-derived neurotrophic factor (Gdnf)–Ret signaling pathway by network subcircuits located in the mesenchyme and epithelial tissues of the caudal trunk. Evidence shows that each step of the renal primordium developmental program is regulated by structured GRN subunits organized in a hierarchical manner. Understanding the structure and dynamics of the renal GRN will help us understand the intrinsic phenotypical variability of congenital anomalies of the kidney and urinary tract and guide our approaches to regenerative medicine.
Literature
1.
2.
3.
go back to reference Olson EN (2002) A genetic blueprint for growth and development of the heart. Harvey Lect 98:41–64PubMed Olson EN (2002) A genetic blueprint for growth and development of the heart. Harvey Lect 98:41–64PubMed
5.
go back to reference Uetani N, Bouchard M (2009) Plumbing in the embryo: developmental defects of the urinary tracts. Clin Genet 75:307–317PubMedCrossRef Uetani N, Bouchard M (2009) Plumbing in the embryo: developmental defects of the urinary tracts. Clin Genet 75:307–317PubMedCrossRef
6.
go back to reference Bouchard M, Souabni A, Busslinger M (2004) Tissue-specific expression of cre recombinase from the Pax8 locus. Genesis 38:105–109PubMedCrossRef Bouchard M, Souabni A, Busslinger M (2004) Tissue-specific expression of cre recombinase from the Pax8 locus. Genesis 38:105–109PubMedCrossRef
7.
8.
go back to reference Barak H, Rosenfelder L, Schultheiss TM, Reshef R (2005) Cell fate specification along the anterior-posterior axis of the intermediate mesoderm. Dev Dyn 232:901–914PubMedCrossRef Barak H, Rosenfelder L, Schultheiss TM, Reshef R (2005) Cell fate specification along the anterior-posterior axis of the intermediate mesoderm. Dev Dyn 232:901–914PubMedCrossRef
9.
go back to reference James RG, Schultheiss TM (2005) Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 288:113–125PubMedCrossRef James RG, Schultheiss TM (2005) Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 288:113–125PubMedCrossRef
10.
go back to reference Mauch TJ, Yang G, Wright M, Smith D, Schoenwolf GC (2000) Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev Biol 220:62–75PubMedCrossRef Mauch TJ, Yang G, Wright M, Smith D, Schoenwolf GC (2000) Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev Biol 220:62–75PubMedCrossRef
11.
go back to reference Obara-Ishihara T, Kuhlman J, Niswander L, Herzlinger D (1999) The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126:1103–1108PubMed Obara-Ishihara T, Kuhlman J, Niswander L, Herzlinger D (1999) The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126:1103–1108PubMed
12.
go back to reference James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133:2995–3004PubMedCrossRef James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133:2995–3004PubMedCrossRef
13.
go back to reference Wilm B, James RG, Schultheiss TM, Hogan BL (2004) The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Dev Biol 271:176–189PubMedCrossRef Wilm B, James RG, Schultheiss TM, Hogan BL (2004) The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Dev Biol 271:176–189PubMedCrossRef
14.
go back to reference Fleming BM, Yelin R, James RG, Schultheiss TM (2013) A role for Vg1/Nodal signaling in specification of the intermediate mesoderm. Development 140:1819–1829PubMedCrossRef Fleming BM, Yelin R, James RG, Schultheiss TM (2013) A role for Vg1/Nodal signaling in specification of the intermediate mesoderm. Development 140:1819–1829PubMedCrossRef
15.
go back to reference Cartry J, Nichane M, Ribes V, Colas A, Riou JF, Pieler T, Dolle P, Bellefroid EJ, Umbhauer M (2006) Retinoic acid signalling is required for specification of pronephric cell fate. Dev Biol 299:35–51PubMedCrossRef Cartry J, Nichane M, Ribes V, Colas A, Riou JF, Pieler T, Dolle P, Bellefroid EJ, Umbhauer M (2006) Retinoic acid signalling is required for specification of pronephric cell fate. Dev Biol 299:35–51PubMedCrossRef
16.
go back to reference Moriya N, Uchiyama H, Asashima M (1993) Induction of pronephric tubules by activin and retinoic acid in presumptive ectoderm of Xenopus laevis. Dev Growth Diff 35:123–128CrossRef Moriya N, Uchiyama H, Asashima M (1993) Induction of pronephric tubules by activin and retinoic acid in presumptive ectoderm of Xenopus laevis. Dev Growth Diff 35:123–128CrossRef
17.
go back to reference Taira M, Jamrich M, Good PJ, Dawid IB (1992) The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6:356–366PubMedCrossRef Taira M, Jamrich M, Good PJ, Dawid IB (1992) The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6:356–366PubMedCrossRef
18.
go back to reference Taira M, Otani H, Jamrich M, Dawid IB (1994) Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation. Development 120:1525–1536PubMed Taira M, Otani H, Jamrich M, Dawid IB (1994) Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation. Development 120:1525–1536PubMed
19.
go back to reference Wingert RA, Selleck R, Yu J, Song HD, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP, Davidson AJ (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938PubMedCrossRef Wingert RA, Selleck R, Yu J, Song HD, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP, Davidson AJ (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938PubMedCrossRef
20.
go back to reference Taira M, Otani H, Saint-Jeannet JP, Dawid IB (1994) Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus. Nature 372:677–679PubMedCrossRef Taira M, Otani H, Saint-Jeannet JP, Dawid IB (1994) Role of the LIM class homeodomain protein Xlim-1 in neural and muscle induction by the Spemann organizer in Xenopus. Nature 372:677–679PubMedCrossRef
21.
go back to reference Preger-Ben Noon E, Barak H, Guttmann-Raviv N, Reshef R (2009) Interplay between activin and Hox genes determines the formation of the kidney morphogenetic field. Development 136:1995–2004PubMedCrossRef Preger-Ben Noon E, Barak H, Guttmann-Raviv N, Reshef R (2009) Interplay between activin and Hox genes determines the formation of the kidney morphogenetic field. Development 136:1995–2004PubMedCrossRef
22.
go back to reference Attia L, Yelin R, Schultheiss TM (2012) Analysis of nephric duct specification in the avian embryo. Development 139:4143–4151PubMedCrossRef Attia L, Yelin R, Schultheiss TM (2012) Analysis of nephric duct specification in the avian embryo. Development 139:4143–4151PubMedCrossRef
23.
go back to reference Heller N, Brandli AW (1999) Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages. Dev Genet 24:208–219PubMedCrossRef Heller N, Brandli AW (1999) Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages. Dev Genet 24:208–219PubMedCrossRef
24.
go back to reference Krauss S, Johansen T, Korzh V, Fjose A (1991) Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 113:1193–1206PubMed Krauss S, Johansen T, Korzh V, Fjose A (1991) Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 113:1193–1206PubMed
25.
go back to reference Pfeffer PL, Gerster T, Lun K, Brand M, Busslinger M (1998) Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 125:3063–3074PubMed Pfeffer PL, Gerster T, Lun K, Brand M, Busslinger M (1998) Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 125:3063–3074PubMed
26.
go back to reference Puschel AW, Westerfield M, Dressler GR (1992) Comparative analysis of Pax-2 protein distributions during neurulation in mice and zebrafish. Mech Dev 38:197–208PubMedCrossRef Puschel AW, Westerfield M, Dressler GR (1992) Comparative analysis of Pax-2 protein distributions during neurulation in mice and zebrafish. Mech Dev 38:197–208PubMedCrossRef
27.
go back to reference Carroll TJ, Wallingford JB, Vize PD (1999) Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis. Dev Genet 24:199–207PubMedCrossRef Carroll TJ, Wallingford JB, Vize PD (1999) Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis. Dev Genet 24:199–207PubMedCrossRef
28.
go back to reference Sheng G, Stern CD (1999) Gata2 and Gata3: novel markers for early embryonic polarity and for non-neural ectoderm in the chick embryo. Mech Dev 87:213–216PubMedCrossRef Sheng G, Stern CD (1999) Gata2 and Gata3: novel markers for early embryonic polarity and for non-neural ectoderm in the chick embryo. Mech Dev 87:213–216PubMedCrossRef
29.
go back to reference Wingert RA, Davidson AJ (2011) Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b. Dev Dyn 240:2011–2027PubMedCrossRef Wingert RA, Davidson AJ (2011) Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b. Dev Dyn 240:2011–2027PubMedCrossRef
30.
go back to reference Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16:2958–2970PubMedCrossRef Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16:2958–2970PubMedCrossRef
31.
go back to reference Barnes JD, Crosby JL, Jones CM, Wright CV, Hogan BL (1994) Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev Biol 161:168–178PubMedCrossRef Barnes JD, Crosby JL, Jones CM, Wright CV, Hogan BL (1994) Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev Biol 161:168–178PubMedCrossRef
32.
go back to reference Fujii T, Pichel JG, Taira M, Toyama R, Dawid IB, Westphal H (1994) Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev Dyn 199:73–83PubMedCrossRef Fujii T, Pichel JG, Taira M, Toyama R, Dawid IB, Westphal H (1994) Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev Dyn 199:73–83PubMedCrossRef
33.
go back to reference Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR (2005) Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132:2809–2823PubMedCrossRef Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR (2005) Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132:2809–2823PubMedCrossRef
34.
go back to reference Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP (2000) Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 223:77–90PubMedCrossRef Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP (2000) Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 223:77–90PubMedCrossRef
35.
go back to reference Pedersen A, Skjong C, Shawlot W (2005) Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev Biol 288:571–581PubMedCrossRef Pedersen A, Skjong C, Shawlot W (2005) Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev Biol 288:571–581PubMedCrossRef
36.
go back to reference Shawlot W, Behringer RR (1995) Requirement for Lim1 in head-organizer function. Nature 374:425–430PubMedCrossRef Shawlot W, Behringer RR (1995) Requirement for Lim1 in head-organizer function. Nature 374:425–430PubMedCrossRef
37.
go back to reference Boualia SK, Gaitan Y, Tremblay M, Sharma R, Cardin J, Kania A, Bouchard M (2013) A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis. Dev Biol. doi:10.1016/j.ydbio.2013.07.028 PubMed Boualia SK, Gaitan Y, Tremblay M, Sharma R, Cardin J, Kania A, Bouchard M (2013) A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis. Dev Biol. doi:10.​1016/​j.​ydbio.​2013.​07.​028 PubMed
38.
go back to reference Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax2/8-regulated Gata3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133:53–61PubMedCrossRef Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax2/8-regulated Gata3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133:53–61PubMedCrossRef
39.
go back to reference Boualia SK, Gaitan Y, Murawski I, Nadon R, Gupta IR, Bouchard M (2011) Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2. PloS One 6:e21529PubMedCentralPubMedCrossRef Boualia SK, Gaitan Y, Murawski I, Nadon R, Gupta IR, Bouchard M (2011) Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2. PloS One 6:e21529PubMedCentralPubMedCrossRef
40.
go back to reference Bedell VM, Person AD, Larson JD, McLoon A, Balciunas D, Clark KJ, Neff KI, Nelson KE, Bill BR, Schimmenti LA, Beiraghi S, Ekker SC (2012) The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development. Development 139:793–804PubMedCrossRef Bedell VM, Person AD, Larson JD, McLoon A, Balciunas D, Clark KJ, Neff KI, Nelson KE, Bill BR, Schimmenti LA, Beiraghi S, Ekker SC (2012) The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development. Development 139:793–804PubMedCrossRef
41.
go back to reference Linton JM, Martin GR, Reichardt LF (2007) The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development 134:2501–2509PubMedCentralPubMedCrossRef Linton JM, Martin GR, Reichardt LF (2007) The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development 134:2501–2509PubMedCentralPubMedCrossRef
42.
go back to reference Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, Carroll T, Bouchard M (2008) Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet 4:e1000316PubMedCentralPubMedCrossRef Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, Carroll T, Bouchard M (2008) Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet 4:e1000316PubMedCentralPubMedCrossRef
43.
go back to reference Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Nat Acad Sci USA 93:10657–10661PubMedCrossRef Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Nat Acad Sci USA 93:10657–10661PubMedCrossRef
44.
go back to reference Chia I, Grote D, Marcotte M, Batourina E, Mendelsohn C, Bouchard M (2011) Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development 138:2089–2097PubMedCrossRef Chia I, Grote D, Marcotte M, Batourina E, Mendelsohn C, Bouchard M (2011) Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development 138:2089–2097PubMedCrossRef
45.
go back to reference Marose TD, Merkel CE, McMahon AP, Carroll TJ (2008) Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 314:112–126PubMedCentralPubMedCrossRef Marose TD, Merkel CE, McMahon AP, Carroll TJ (2008) Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 314:112–126PubMedCentralPubMedCrossRef
46.
go back to reference Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32:109–115PubMedCrossRef Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32:109–115PubMedCrossRef
47.
go back to reference Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, Niederreither K, Dolle P, Duester G, Chambon P, Costantini F, Gilbert T, Molotkov A, Mendelsohn C (2010) Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137:283–292PubMedCrossRef Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, Niederreither K, Dolle P, Duester G, Chambon P, Costantini F, Gilbert T, Molotkov A, Mendelsohn C (2010) Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137:283–292PubMedCrossRef
48.
go back to reference Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017PubMed Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017PubMed
49.
go back to reference Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND (2008) Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol 317:83–94PubMedCrossRef Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND (2008) Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol 317:83–94PubMedCrossRef
50.
go back to reference Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S (1997) Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664PubMed Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S (1997) Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664PubMed
51.
go back to reference Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185PubMedCrossRef Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185PubMedCrossRef
52.
go back to reference Menshykau D, Iber D (2013) Kidney branching morphogenesis under the control of a ligand-receptor-based Turing mechanism. Phys Biol 10:046003PubMedCrossRef Menshykau D, Iber D (2013) Kidney branching morphogenesis under the control of a ligand-receptor-based Turing mechanism. Phys Biol 10:046003PubMedCrossRef
53.
go back to reference Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, Jain S, Asai N, Takahashi M, Schmidt-Ott KM, Barasch J, D’Agati V, Costantini F (2009) Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41:1295–1302PubMedCentralPubMedCrossRef Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, Jain S, Asai N, Takahashi M, Schmidt-Ott KM, Barasch J, D’Agati V, Costantini F (2009) Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41:1295–1302PubMedCentralPubMedCrossRef
54.
go back to reference Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239PubMedCrossRef Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239PubMedCrossRef
55.
go back to reference Tufro A, Teichman J, Woda C, Villegas G (2008) Semaphorin3a inhibits ureteric bud branching morphogenesis. Mech Dev 125:558–568PubMedCrossRef Tufro A, Teichman J, Woda C, Villegas G (2008) Semaphorin3a inhibits ureteric bud branching morphogenesis. Mech Dev 125:558–568PubMedCrossRef
56.
go back to reference Ueland J, Yuan A, Marlier A, Gallagher AR, Karihaloo A (2009) A novel role for the chemokine receptor Cxcr4 in kidney morphogenesis: an in vitro study. Dev Dyn 238:1083–1091PubMedCrossRef Ueland J, Yuan A, Marlier A, Gallagher AR, Karihaloo A (2009) A novel role for the chemokine receptor Cxcr4 in kidney morphogenesis: an in vitro study. Dev Dyn 238:1083–1091PubMedCrossRef
57.
go back to reference Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62PubMedCentralPubMedCrossRef Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62PubMedCentralPubMedCrossRef
58.
go back to reference Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324PubMedCrossRef Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324PubMedCrossRef
59.
go back to reference Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver_Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79PubMedCrossRef Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver_Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79PubMedCrossRef
60.
go back to reference Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76PubMedCrossRef Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76PubMedCrossRef
61.
go back to reference Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumae U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087PubMed Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumae U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087PubMed
62.
go back to reference Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73PubMedCrossRef Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73PubMedCrossRef
63.
go back to reference van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214PubMedCrossRef van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214PubMedCrossRef
64.
go back to reference Ye X, Wang Y, Rattner A, Nathans J (2011) Genetic mosaic analysis reveals a major role for frizzled 4 and frizzled 8 in controlling ureteric growth in the developing kidney. Development 138:1161–1172PubMedCrossRef Ye X, Wang Y, Rattner A, Nathans J (2011) Genetic mosaic analysis reveals a major role for frizzled 4 and frizzled 8 in controlling ureteric growth in the developing kidney. Development 138:1161–1172PubMedCrossRef
65.
go back to reference Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873PubMedCentralPubMedCrossRef Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873PubMedCentralPubMedCrossRef
66.
go back to reference Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756PubMed Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756PubMed
67.
go back to reference Michos O, Goncalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, Galli A, Vainio S, Zeller R (2007) Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134:2397–2405PubMedCrossRef Michos O, Goncalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, Galli A, Vainio S, Zeller R (2007) Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134:2397–2405PubMedCrossRef
68.
go back to reference Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131:3401–3410PubMedCrossRef Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131:3401–3410PubMedCrossRef
69.
go back to reference Goncalves A, Zeller R (2011) Genetic analysis reveals an unexpected role of BMP7 in initiation of ureteric bud outgrowth in mouse embryos. PloS One 6:e19370PubMedCentralPubMedCrossRef Goncalves A, Zeller R (2011) Genetic analysis reveals an unexpected role of BMP7 in initiation of ureteric bud outgrowth in mouse embryos. PloS One 6:e19370PubMedCentralPubMedCrossRef
70.
go back to reference Choi Y, Tee JB, Gallegos TF, Shah MM, Oishi H, Sakurai H, Kitamura S, Wu W, Bush KT, Nigam SK (2009) Neuropeptide Y functions as a facilitator of GDNF-induced budding of the Wolffian duct. Development 136:4213–4224PubMedCrossRef Choi Y, Tee JB, Gallegos TF, Shah MM, Oishi H, Sakurai H, Kitamura S, Wu W, Bush KT, Nigam SK (2009) Neuropeptide Y functions as a facilitator of GDNF-induced budding of the Wolffian duct. Development 136:4213–4224PubMedCrossRef
71.
go back to reference Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16:1423–1432PubMedCrossRef Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16:1423–1432PubMedCrossRef
72.
go back to reference Sajithlal G, Zou D, Silvius D, Xu PX (2005) Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol 284:323–336PubMedCrossRef Sajithlal G, Zou D, Silvius D, Xu PX (2005) Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol 284:323–336PubMedCrossRef
73.
go back to reference Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27:7661–7668PubMedCentralPubMedCrossRef Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27:7661–7668PubMedCentralPubMedCrossRef
74.
go back to reference Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094PubMedCentralPubMedCrossRef Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094PubMedCentralPubMedCrossRef
75.
go back to reference Kobayashi H, Kawakami K, Asashima M, Nishinakamura R (2007) Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech Dev 124:290–303PubMedCrossRef Kobayashi H, Kawakami K, Asashima M, Nishinakamura R (2007) Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech Dev 124:290–303PubMedCrossRef
76.
go back to reference Esquela AF, Lee SJ (2003) Regulation of metanephric kidney development by growth/differentiation factor 11. Dev Biol 257:356–370PubMedCrossRef Esquela AF, Lee SJ (2003) Regulation of metanephric kidney development by growth/differentiation factor 11. Dev Biol 257:356–370PubMedCrossRef
77.
go back to reference Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395PubMed Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395PubMed
78.
go back to reference Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k-mutant mice result from defects in ureteric bud development. Development 122:1919–1929PubMed Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k-mutant mice result from defects in ureteric bud development. Development 122:1919–1929PubMed
79.
go back to reference Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D’Agati V, Licht JD, Martin GR, Costantini F (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6:e1000809PubMedCentralPubMedCrossRef Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D’Agati V, Licht JD, Martin GR, Costantini F (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6:e1000809PubMedCentralPubMedCrossRef
80.
go back to reference Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschke P, Salomon R, Antignac C, Ornitz DM, Kopan R (2012) FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 22:1191–1207PubMedCentralPubMedCrossRef Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschke P, Salomon R, Antignac C, Ornitz DM, Kopan R (2012) FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 22:1191–1207PubMedCentralPubMedCrossRef
81.
go back to reference Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D (1999) FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126:547–554PubMed Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D (1999) FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126:547–554PubMed
82.
go back to reference Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM (2008) Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 64:592–598PubMedCentralPubMedCrossRef Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM (2008) Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 64:592–598PubMedCentralPubMedCrossRef
83.
go back to reference Hains DS, Sims-Lucas S, Carpenter A, Saha M, Murawski I, Kish K, Gupta I, McHugh K, Bates CM (2010) High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J Urol 183:2077–2084PubMedCentralPubMedCrossRef Hains DS, Sims-Lucas S, Carpenter A, Saha M, Murawski I, Kish K, Gupta I, McHugh K, Bates CM (2010) High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J Urol 183:2077–2084PubMedCentralPubMedCrossRef
84.
go back to reference Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM (2004) Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276:403–415PubMedCrossRef Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM (2004) Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276:403–415PubMedCrossRef
85.
go back to reference Gerber SD, Steinberg F, Beyeler M, Villiger PM, Trueb B (2009) The murine Fgfrl1 receptor is essential for the development of the metanephric kidney. Dev Biol 335:106–119PubMedCrossRef Gerber SD, Steinberg F, Beyeler M, Villiger PM, Trueb B (2009) The murine Fgfrl1 receptor is essential for the development of the metanephric kidney. Dev Biol 335:106–119PubMedCrossRef
86.
go back to reference Gerber SD, Amann R, Wyder S, Trueb B (2012) Comparison of the gene expression profiles from normal and Fgfrl1 deficient mouse kidneys reveals downstream targets of Fgfrl1 signaling. PloS One 7:e33457PubMedCentralPubMedCrossRef Gerber SD, Amann R, Wyder S, Trueb B (2012) Comparison of the gene expression profiles from normal and Fgfrl1 deficient mouse kidneys reveals downstream targets of Fgfrl1 signaling. PloS One 7:e33457PubMedCentralPubMedCrossRef
Metadata
Title
Gene regulatory network of renal primordium development
Authors
Michael Marcotte
Richa Sharma
Maxime Bouchard
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 4/2014
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-013-2635-0

Other articles of this Issue 4/2014

Pediatric Nephrology 4/2014 Go to the issue