Skip to main content
Top
Published in: Pediatric Nephrology 4/2014

01-04-2014 | Review

Urinary tract pacemaker cells: current knowledge and insights from nonrenal pacemaker cells provide a basis for future discovery

Authors: Meghan M. Feeney, Norman D. Rosenblum

Published in: Pediatric Nephrology | Issue 4/2014

Login to get access

Abstract

Coordinated ureteric peristalsis propels urine from the kidney to the bladder. Cells in the renal pelvis and ureter spontaneously generate and propagate electrical activity to control this process. Recently, c-kit tyrosine kinase and hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) were identified in the upper urinary tract. Both of these proteins are required for coordinated proximal to distal contractions in the ureter. Alterations in pacemaker cell expression are present in multiple congenital kidney diseases, suggesting a functional contribution by these cells to pathologic states. In contrast to gut and heart pacemaker cells, the developmental biology of ureteric pacemaker cells, including cell lineage and signaling mechanisms, is undefined. Here, we review pacemaker cell identify and function in the urinary pelvis and ureter and the control of pacemaker function by Hedgehog-GLI signaling. Next, we highlight current knowledge of gut and heart pacemaker cells that is likely to provide insight into developmental mechanisms that could control urinary pacemaker cells.
Literature
1.
go back to reference David SG, Cebrian C, Vaughan ED Jr, Herzlinger D (2005) C-Kit and ureteral peristalsis. J Urol 173(1):292–295PubMedCrossRef David SG, Cebrian C, Vaughan ED Jr, Herzlinger D (2005) C-Kit and ureteral peristalsis. J Urol 173(1):292–295PubMedCrossRef
2.
go back to reference Hurtado R, Bub G, Herzlinger D (2009) The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int 77(6):500–508PubMedCrossRef Hurtado R, Bub G, Herzlinger D (2009) The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int 77(6):500–508PubMedCrossRef
3.
go back to reference Bozler E (1942) The activity of the pacemaker previous to the discharge of a muscular impulse. Am J Physiol 136:543–552 Bozler E (1942) The activity of the pacemaker previous to the discharge of a muscular impulse. Am J Physiol 136:543–552
4.
go back to reference Gosling JA, Dixon JS (1971) Morphologic evidence that the renal calyx and pelvis control ureteric activity in the rabbit. Am J Anat 130:393–408PubMedCrossRef Gosling JA, Dixon JS (1971) Morphologic evidence that the renal calyx and pelvis control ureteric activity in the rabbit. Am J Anat 130:393–408PubMedCrossRef
5.
go back to reference Björk L, Nylén O (1972) Cineradiographic investigations of contraction in the normal upper urinary tract in man. Acta Radiol Diagn 12(1):25–33 Björk L, Nylén O (1972) Cineradiographic investigations of contraction in the normal upper urinary tract in man. Acta Radiol Diagn 12(1):25–33
6.
go back to reference Gosling JA (1970) Atypical muscle cells in the wall of the renal calix and pelvis with a note on their possible significance. Experientia 26(7):769–770PubMedCrossRef Gosling JA (1970) Atypical muscle cells in the wall of the renal calix and pelvis with a note on their possible significance. Experientia 26(7):769–770PubMedCrossRef
7.
go back to reference Gosling JA, Dixon JS (1974) Species variation in the location of upper urinary tract pacemaker cells. Invest Urol 11(5):418–423PubMed Gosling JA, Dixon JS (1974) Species variation in the location of upper urinary tract pacemaker cells. Invest Urol 11(5):418–423PubMed
8.
go back to reference Klemm MF, Exintaris B, Lang RJ (1999) Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol 519(Pt 3):867–884PubMedCrossRef Klemm MF, Exintaris B, Lang RJ (1999) Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol 519(Pt 3):867–884PubMedCrossRef
9.
go back to reference Metzger R, Schuster T, Till H, Stehr M, Franke F-E, Dietz H-G (2004) Cajal-like cells in the human upper urinary tract. J Urol 172(2):769–772PubMedCrossRef Metzger R, Schuster T, Till H, Stehr M, Franke F-E, Dietz H-G (2004) Cajal-like cells in the human upper urinary tract. J Urol 172(2):769–772PubMedCrossRef
10.
go back to reference Metzger R, Schuster T, Till H, Franke F-E, Dietz H-G (2005) Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatr Surg Intl 21(3):169–174CrossRef Metzger R, Schuster T, Till H, Franke F-E, Dietz H-G (2005) Cajal-like cells in the upper urinary tract: comparative study in various species. Pediatr Surg Intl 21(3):169–174CrossRef
11.
go back to reference Pezzone MA, Watkins SC, Alber SM, King WE, de Groat WC, Chancellor MB, Fraser MO (2003) Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Renal Physiol 284(5):F925–F929 Pezzone MA, Watkins SC, Alber SM, King WE, de Groat WC, Chancellor MB, Fraser MO (2003) Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Renal Physiol 284(5):F925–F929
12.
go back to reference Lang RJ, Zoltkowski BZ, Hammer JM, Meeker WF, Wendt I (2007) Electrical characterization of interstitial cells of Cajal-like cells and smooth muscle cells isolated from the mouse ureteropelvic junction. J Urol 177(4):1573–1580PubMedCrossRef Lang RJ, Zoltkowski BZ, Hammer JM, Meeker WF, Wendt I (2007) Electrical characterization of interstitial cells of Cajal-like cells and smooth muscle cells isolated from the mouse ureteropelvic junction. J Urol 177(4):1573–1580PubMedCrossRef
13.
go back to reference Tekgül S, Riedmiller H, Hoebeke P, Kočvara R, Nijman RJM, Radmayr C, Stein R, Dogan HS (2012) EAU guidelines on vesicoureteral reflux in children. Eur Urol 62(3):534–542PubMedCrossRef Tekgül S, Riedmiller H, Hoebeke P, Kočvara R, Nijman RJM, Radmayr C, Stein R, Dogan HS (2012) EAU guidelines on vesicoureteral reflux in children. Eur Urol 62(3):534–542PubMedCrossRef
14.
go back to reference Schwentner C, Oswald J, Lunacek A, Fritsch H, Deibl M, Bartsch G, Radmayr C (2005) Loss of interstitial cells of Cajal and Gap junction protein connexin 43 at the vesicoureteral junction in children with vesicoureteral reflux. J Urol 174(5):1981–1986PubMedCrossRef Schwentner C, Oswald J, Lunacek A, Fritsch H, Deibl M, Bartsch G, Radmayr C (2005) Loss of interstitial cells of Cajal and Gap junction protein connexin 43 at the vesicoureteral junction in children with vesicoureteral reflux. J Urol 174(5):1981–1986PubMedCrossRef
15.
go back to reference Oberritter Z, Rolle U, Juhasz Z, Cserni T, Puri P (2009) Altered expression of c-kit-positive cells in the ureterovesical junction after surgically created vesicoureteral reflux. Pediatr Surg Int 25(12):1103–1107PubMedCrossRef Oberritter Z, Rolle U, Juhasz Z, Cserni T, Puri P (2009) Altered expression of c-kit-positive cells in the ureterovesical junction after surgically created vesicoureteral reflux. Pediatr Surg Int 25(12):1103–1107PubMedCrossRef
16.
go back to reference Solari V, Piotrowska AP, Puri P (2003) Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol 170(6):2420–2422PubMedCrossRef Solari V, Piotrowska AP, Puri P (2003) Altered expression of interstitial cells of Cajal in congenital ureteropelvic junction obstruction. J Urol 170(6):2420–2422PubMedCrossRef
17.
go back to reference Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND (2011) GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121(3):1199–1206PubMedCentralPubMedCrossRef Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND (2011) GLI3 repressor controls functional development of the mouse ureter. J Clin Invest 121(3):1199–1206PubMedCentralPubMedCrossRef
18.
go back to reference Christoffels VM, Smits GJ, Kispert A, Moorman AFM (2010) Development of the pacemaker tissues of the heart. Circ Res 106(2):240–254PubMedCrossRef Christoffels VM, Smits GJ, Kispert A, Moorman AFM (2010) Development of the pacemaker tissues of the heart. Circ Res 106(2):240–254PubMedCrossRef
19.
go back to reference Mangoni ME, Nargeot J (2007) Genesis and regulation of the heart automaticity. Physiol Rev 88(3):919–982CrossRef Mangoni ME, Nargeot J (2007) Genesis and regulation of the heart automaticity. Physiol Rev 88(3):919–982CrossRef
20.
go back to reference Mikawa T, Hurtado R (2007) Development of the cardiac conduction system. Semin Cell Dev Biol 18(1):90–100PubMedCrossRef Mikawa T, Hurtado R (2007) Development of the cardiac conduction system. Semin Cell Dev Biol 18(1):90–100PubMedCrossRef
21.
go back to reference Hoogaars WHM, Tessari A, Moorman AFM, de Boer PAJ, Hagoort J, Soufan AT, Campione M, Cristoffels VM (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62(3):489–499PubMedCrossRef Hoogaars WHM, Tessari A, Moorman AFM, de Boer PAJ, Hagoort J, Soufan AT, Campione M, Cristoffels VM (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62(3):489–499PubMedCrossRef
22.
go back to reference Garcia-Frigola C, Shi Y, Evans SM (2003) Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 3(6):777–783PubMedCrossRef Garcia-Frigola C, Shi Y, Evans SM (2003) Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 3(6):777–783PubMedCrossRef
23.
go back to reference Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835PubMedCrossRef Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6(11):826–835PubMedCrossRef
24.
go back to reference Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF, Kispert A (2006) Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98(12):1555–1563PubMedCrossRef Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF, Kispert A (2006) Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98(12):1555–1563PubMedCrossRef
25.
go back to reference Mommersteeg MTM, Dominguez JN, Wiese C, Norden J, de Gier-de Vries C, Burch JB, Kispert A, Brown NA, Moorman AF, Christoffels VM (2010) The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc Res 87(1):92–101PubMedCrossRef Mommersteeg MTM, Dominguez JN, Wiese C, Norden J, de Gier-de Vries C, Burch JB, Kispert A, Brown NA, Moorman AF, Christoffels VM (2010) The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc Res 87(1):92–101PubMedCrossRef
26.
go back to reference Hoogaars WMH, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, Ravesloot JH, Moorman AF, Verheijck EE, Christoffels VM (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21(9):1098–1112PubMedCrossRef Hoogaars WMH, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, Ravesloot JH, Moorman AF, Verheijck EE, Christoffels VM (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21(9):1098–1112PubMedCrossRef
27.
go back to reference Mommersteeg MTM, Hoogaars WMH, Prall OWJ, de Gier-de Vries C, Wiese C, Clout DEW, Papaioannou VE, Brown NA, Harvey RP, Moorman AFM, Cristoffels VM (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100(3):354–362PubMedCrossRef Mommersteeg MTM, Hoogaars WMH, Prall OWJ, de Gier-de Vries C, Wiese C, Clout DEW, Papaioannou VE, Brown NA, Harvey RP, Moorman AFM, Cristoffels VM (2007) Molecular pathway for the localized formation of the sinoatrial node. Circ Res 100(3):354–362PubMedCrossRef
28.
go back to reference Blaschke RJ, Hahuij ND, Kuijper S, Just S, Wisse LJ, Deissler K, Maxelon T, Anastassiadis K, Spitzer J, Hardt SE, Scholer H, Feitma H, Rottbauer W, Blum M, Meijlink, Rappold G, Gittenberger-de Groot AC (2007) Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 115(14):1830–1838PubMedCrossRef Blaschke RJ, Hahuij ND, Kuijper S, Just S, Wisse LJ, Deissler K, Maxelon T, Anastassiadis K, Spitzer J, Hardt SE, Scholer H, Feitma H, Rottbauer W, Blum M, Meijlink, Rappold G, Gittenberger-de Groot AC (2007) Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 115(14):1830–1838PubMedCrossRef
29.
go back to reference Espinoza-Lewis RA, Yu L, He F, Liu H, Tang R, Shi J, Sun X, Martin JF, Wang D, Yang J, Chen Y (2009) Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol 327(2):376–385PubMedCentralPubMedCrossRef Espinoza-Lewis RA, Yu L, He F, Liu H, Tang R, Shi J, Sun X, Martin JF, Wang D, Yang J, Chen Y (2009) Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol 327(2):376–385PubMedCentralPubMedCrossRef
30.
go back to reference Wiese C, Grieskamp T, Airik R, Mommersteeg MTM, Gardiwal A, de Gier-de Vries C, Schuster-Gossler K, Moorman AF, Kispert A, Christoffels VM (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104(3):388–397PubMedCrossRef Wiese C, Grieskamp T, Airik R, Mommersteeg MTM, Gardiwal A, de Gier-de Vries C, Schuster-Gossler K, Moorman AF, Kispert A, Christoffels VM (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104(3):388–397PubMedCrossRef
31.
go back to reference Cheng G, Litchenberg WH, Cole CJ, Mikawa T, Thompson RP, Gourdie RG (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126(22):5041–5049PubMed Cheng G, Litchenberg WH, Cole CJ, Mikawa T, Thompson RP, Gourdie RG (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126(22):5041–5049PubMed
32.
go back to reference Aanhaanen WTJ, Brons JF, Domínguez JN, Rana MS, Norden J, Airik R, Wakker V, de Gier-de Vries C, Brown NA, Kispert A, Moorman AFM, Cristoffels VM (2009) The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104(11):1267–1274PubMedCrossRef Aanhaanen WTJ, Brons JF, Domínguez JN, Rana MS, Norden J, Airik R, Wakker V, de Gier-de Vries C, Brown NA, Kispert A, Moorman AFM, Cristoffels VM (2009) The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104(11):1267–1274PubMedCrossRef
33.
go back to reference Streutker CJ, Huizinga JD, Driman DK, Riddell RH (2007) Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology 50(2):176–189PubMedCrossRef Streutker CJ, Huizinga JD, Driman DK, Riddell RH (2007) Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology 50(2):176–189PubMedCrossRef
34.
go back to reference Torihashi S, Ward SM, Sanders KM (1997) Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112(1):144–155PubMedCrossRef Torihashi S, Ward SM, Sanders KM (1997) Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112(1):144–155PubMedCrossRef
35.
go back to reference Lecoin L, Gabella G, Le Douarin N (1996) Origin of the c-kit-positive interstitial cells in the avian bowel. Development 122(3):725–733PubMed Lecoin L, Gabella G, Le Douarin N (1996) Origin of the c-kit-positive interstitial cells in the avian bowel. Development 122(3):725–733PubMed
36.
go back to reference Young HM, Ciampoli D, Southwell BR, Newgreen DF (1996) Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol 180(1):97–107PubMedCrossRef Young HM, Ciampoli D, Southwell BR, Newgreen DF (1996) Origin of interstitial cells of Cajal in the mouse intestine. Dev Biol 180(1):97–107PubMedCrossRef
37.
go back to reference Kluppel M, Huizinga JD, Malysz J, Bernstein A (1998) Developmental origin and Kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine. Dev Dyn 211(1):60–71PubMedCrossRef Kluppel M, Huizinga JD, Malysz J, Bernstein A (1998) Developmental origin and Kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine. Dev Dyn 211(1):60–71PubMedCrossRef
38.
go back to reference Sohal GS, Ali MM, Farooqui FA (2002) A second source of precursor cells for the developing enteric nervous system and interstitial cells of Cajal. Int J Dev Neurosci 20:619–626PubMedCrossRef Sohal GS, Ali MM, Farooqui FA (2002) A second source of precursor cells for the developing enteric nervous system and interstitial cells of Cajal. Int J Dev Neurosci 20:619–626PubMedCrossRef
39.
Metadata
Title
Urinary tract pacemaker cells: current knowledge and insights from nonrenal pacemaker cells provide a basis for future discovery
Authors
Meghan M. Feeney
Norman D. Rosenblum
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 4/2014
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-013-2631-4

Other articles of this Issue 4/2014

Pediatric Nephrology 4/2014 Go to the issue