Skip to main content
Top
Published in: Pediatric Nephrology 4/2014

01-04-2014 | Review

The MDM2–p53 pathway: multiple roles in kidney development

Authors: Samir S. El-Dahr, Sylvia Hilliard, Karam Aboudehen, Zubaida Saifudeen

Published in: Pediatric Nephrology | Issue 4/2014

Login to get access

Abstract

The molecular basis of nephron progenitor cell renewal and differentiation into nascent epithelial nephrons is an area of intense investigation. Defects in these early stages of nephrogenesis lead to renal hypoplasia, and eventually hypertension and chronic kidney disease. Terminal nephron differentiation, the process by which renal epithelial precursor cells exit the cell cycle and acquire physiological functions is equally important. Failure of terminal epithelial cell differentiation results in renal dysplasia and cystogenesis. Thus, a better understanding of the transcriptional frameworks that regulate early and late renal cell differentiation is of great clinical significance. In this review, we will discuss evidence implicating the MDM2–p53 pathway in cell fate determination during development. The emerging central theme from loss- and gain-of-function studies is that tight regulation of p53 levels and transcriptional activity is absolutely required for nephrogenesis. We will also discuss how post-translational modifications of p53 (e.g., acetylation and phosphorylation) alter the spatiotemporal and functional properties of p53 and thus cell fate during kidney development. Mutations and polymorphisms in the MDM2–p53 pathway are present in more than 50 % of cancers in humans. This raises the question of whether sequence variants in the MDM2–-p53 pathway increase the susceptibility to renal dysgenesis, hypertension or chronic kidney disease. With the advent of whole exome sequencing and other high throughput technologies, this hypothesis is testable in cohorts of children with renal dysgenesis.
Literature
1.
go back to reference Dotsch V, Bernassola F, Coutandin D, Candi E, Melino G (2010) p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol 2:a004887PubMedCrossRef Dotsch V, Bernassola F, Coutandin D, Candi E, Melino G (2010) p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol 2:a004887PubMedCrossRef
2.
go back to reference El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825PubMedCrossRef El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825PubMedCrossRef
3.
go back to reference Mack DH, Vartikar J, Pipas JM, Laimins LA (1993) Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363:281–283PubMedCrossRef Mack DH, Vartikar J, Pipas JM, Laimins LA (1993) Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363:281–283PubMedCrossRef
4.
go back to reference Saifudeen Z, Liu J, Dipp S, Yao X, Li Y, McLaughlin N, Aboudehen K, El-Dahr SS (2012) A p53-Pax2 pathway in kidney development: implications for nephrogenesis. PLoS One 7:e44869PubMedCentralPubMedCrossRef Saifudeen Z, Liu J, Dipp S, Yao X, Li Y, McLaughlin N, Aboudehen K, El-Dahr SS (2012) A p53-Pax2 pathway in kidney development: implications for nephrogenesis. PLoS One 7:e44869PubMedCentralPubMedCrossRef
6.
go back to reference Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z, Liu J, Zhao XD, Chew JL, Lee YL, Kuznetsov VA, Sung WK, Miller LD, Lim B, Liu ET, Yu Q, Ng HH, Ruan Y (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219PubMedCrossRef Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z, Liu J, Zhao XD, Chew JL, Lee YL, Kuznetsov VA, Sung WK, Miller LD, Lim B, Liu ET, Yu Q, Ng HH, Ruan Y (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219PubMedCrossRef
7.
go back to reference Albrechtsen N, Dornreiter I, Grosse F, Kim E, Wiesmuller L, Deppert W (1999) Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene 18:7706–7717PubMedCrossRef Albrechtsen N, Dornreiter I, Grosse F, Kim E, Wiesmuller L, Deppert W (1999) Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene 18:7706–7717PubMedCrossRef
8.
go back to reference Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908PubMedCrossRef Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908PubMedCrossRef
9.
go back to reference Freedman DA, Wu L, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55:96–107PubMedCrossRef Freedman DA, Wu L, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55:96–107PubMedCrossRef
10.
11.
go back to reference Lozano G, de Oca M, Luna R (1998) MDM2 function. Biochim Biophys Acta 1377:M55–M59PubMed Lozano G, de Oca M, Luna R (1998) MDM2 function. Biochim Biophys Acta 1377:M55–M59PubMed
12.
go back to reference Fuchs SY, Fried VA, Ronai Z (1998) Stress-activated kinases regulate protein stability. Oncogene 17:1483–1490PubMedCrossRef Fuchs SY, Fried VA, Ronai Z (1998) Stress-activated kinases regulate protein stability. Oncogene 17:1483–1490PubMedCrossRef
14.
go back to reference Ashcroft M, Kubbutat MH, Vousden KH (1999) Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 19:1751–1758PubMedCentralPubMed Ashcroft M, Kubbutat MH, Vousden KH (1999) Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 19:1751–1758PubMedCentralPubMed
15.
go back to reference Kubbutat MH, Ludwig RL, Ashcroft M, Vousden KH (1998) Regulation of Mdm2-directed degradation by the C terminus of p53. Mol Cell Biol 18:5690–5698PubMedCentralPubMed Kubbutat MH, Ludwig RL, Ashcroft M, Vousden KH (1998) Regulation of Mdm2-directed degradation by the C terminus of p53. Mol Cell Biol 18:5690–5698PubMedCentralPubMed
16.
go back to reference Lohrum MA, Vousden KH (1999) Regulation and activation of p53 and its family members. Cell Death Differ 6:1162–1168PubMedCrossRef Lohrum MA, Vousden KH (1999) Regulation and activation of p53 and its family members. Cell Death Differ 6:1162–1168PubMedCrossRef
18.
go back to reference Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. Embo J 17:554–564PubMedCrossRef Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. Embo J 17:554–564PubMedCrossRef
19.
go back to reference Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4:793–805PubMedCrossRef Bode AM, Dong Z (2004) Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4:793–805PubMedCrossRef
20.
go back to reference Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Fornace AJ Jr, Appella E, Anderson CW (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278:37536–37544PubMedCrossRef Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Fornace AJ Jr, Appella E, Anderson CW (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278:37536–37544PubMedCrossRef
21.
go back to reference Aboudehen K, Hilliard S, Saifudeen Z, El-Dahr SS (2012) Mechanisms of p53 activation and physiological relevance in the developing kidney. Am J Physiol 302:F928–940 Aboudehen K, Hilliard S, Saifudeen Z, El-Dahr SS (2012) Mechanisms of p53 activation and physiological relevance in the developing kidney. Am J Physiol 302:F928–940
22.
go back to reference Li M, Luo J, Brooks CL, Gu W (2002) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277:50607–50611PubMedCrossRef Li M, Luo J, Brooks CL, Gu W (2002) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277:50607–50611PubMedCrossRef
23.
go back to reference Knights CD, Catania J, Giovanni SD, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173:533–544PubMedCrossRef Knights CD, Catania J, Giovanni SD, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173:533–544PubMedCrossRef
25.
go back to reference Choi J, Donehower LA (1999) p53 in embryonic development: maintaining a fine balance. Cell Mol Life Sci 55:38–47PubMedCrossRef Choi J, Donehower LA (1999) p53 in embryonic development: maintaining a fine balance. Cell Mol Life Sci 55:38–47PubMedCrossRef
26.
go back to reference Rogel A, Popliker M, Webb CG, Oren M (1985) p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors. Mol Cell Biol 5:2851–2855PubMedCentralPubMed Rogel A, Popliker M, Webb CG, Oren M (1985) p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors. Mol Cell Biol 5:2851–2855PubMedCentralPubMed
27.
go back to reference Louis JM, McFarland VW, May P, Mora PT (1988) The phosphoprotein p53 is down-regulated post-transcriptionally during embryogenesis in vertebrates. Biochim Biophys Acta 950:395–402PubMedCrossRef Louis JM, McFarland VW, May P, Mora PT (1988) The phosphoprotein p53 is down-regulated post-transcriptionally during embryogenesis in vertebrates. Biochim Biophys Acta 950:395–402PubMedCrossRef
28.
go back to reference Schmid P, Lorenz A, Hameister H, Montenarh M (1991) Expression of p53 during mouse embryogenesis. Development 113:857–865PubMed Schmid P, Lorenz A, Hameister H, Montenarh M (1991) Expression of p53 during mouse embryogenesis. Development 113:857–865PubMed
29.
go back to reference Almog N, Rotter V (1997) Involvement of p53 in cell differentiation and development. Biochim Biophys Acta 1333:F1–27PubMed Almog N, Rotter V (1997) Involvement of p53 in cell differentiation and development. Biochim Biophys Acta 1333:F1–27PubMed
31.
go back to reference Tamir Y, Bengal E (1998) p53 protein is activated during muscle differentiation and participates with MyoD in the transcription of muscle creatine kinase gene. Oncogene 17:347–356PubMedCrossRef Tamir Y, Bengal E (1998) p53 protein is activated during muscle differentiation and participates with MyoD in the transcription of muscle creatine kinase gene. Oncogene 17:347–356PubMedCrossRef
32.
go back to reference Porrello A, Cerone MA, Coen S, Gurtner A, Fontemaggi G, Cimino L, Piaggio G, Sacchi A, Soddu S (2000) p53 regulates myogenesis by triggering the differentiation activity of pRb. J Cell Biol 151:1295–1304PubMedCrossRef Porrello A, Cerone MA, Coen S, Gurtner A, Fontemaggi G, Cimino L, Piaggio G, Sacchi A, Soddu S (2000) p53 regulates myogenesis by triggering the differentiation activity of pRb. J Cell Biol 151:1295–1304PubMedCrossRef
33.
go back to reference Saifudeen Z, Dipp S, Fan H, El-Dahr SS (2005) Combinatorial control of the bradykinin B2 receptor promoter by p53, CREB, KLF-4, and CBP: implications for terminal nephron differentiation. Am J Physiol Renal Physiol 288:F899–F909PubMedCrossRef Saifudeen Z, Dipp S, Fan H, El-Dahr SS (2005) Combinatorial control of the bradykinin B2 receptor promoter by p53, CREB, KLF-4, and CBP: implications for terminal nephron differentiation. Am J Physiol Renal Physiol 288:F899–F909PubMedCrossRef
34.
go back to reference Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221PubMedCrossRef Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221PubMedCrossRef
35.
go back to reference Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10:175–180PubMedCrossRef Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10:175–180PubMedCrossRef
36.
go back to reference Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113:301–314PubMedCrossRef Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113:301–314PubMedCrossRef
37.
go back to reference Dey DC, Bronson RP, Dahl J, Carroll JP, Benjamin TL (2000) Accelerated development of polyoma tumors and embryonic lethality: different effects of p53 loss on related mouse backgrounds. Cell Growth Differ 11:231–237PubMed Dey DC, Bronson RP, Dahl J, Carroll JP, Benjamin TL (2000) Accelerated development of polyoma tumors and embryonic lethality: different effects of p53 loss on related mouse backgrounds. Cell Growth Differ 11:231–237PubMed
38.
go back to reference Dumble ML, Knight B, Quail EA, Yeoh GC (2001) Hepatoblast-like cells populate the adult p53 knockout mouse liver: evidence for a hyperproliferative maturation-arrested stem cell compartment. Cell Growth Differ 12:223–231PubMed Dumble ML, Knight B, Quail EA, Yeoh GC (2001) Hepatoblast-like cells populate the adult p53 knockout mouse liver: evidence for a hyperproliferative maturation-arrested stem cell compartment. Cell Growth Differ 12:223–231PubMed
39.
go back to reference Lee KC, Crowe AJ, Barton MC (1999) p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Mol Cell Biol 19:1279–1288PubMedCentralPubMed Lee KC, Crowe AJ, Barton MC (1999) p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Mol Cell Biol 19:1279–1288PubMedCentralPubMed
40.
go back to reference Reichel MB, Ali RR, D'Esposito F, Clarke AR, Luthert PJ, Bhattacharya SS, Hunt DM (1998) High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice. Cell Death Differ 5:156–162PubMedCrossRef Reichel MB, Ali RR, D'Esposito F, Clarke AR, Luthert PJ, Bhattacharya SS, Hunt DM (1998) High frequency of persistent hyperplastic primary vitreous and cataracts in p53-deficient mice. Cell Death Differ 5:156–162PubMedCrossRef
41.
go back to reference Rotter V, Schwartz D, Almon E, Goldfinger N, Kapon A, Meshorer A, Donehower LA, Levine AJ (1993) Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. Proc Natl Acad Sci U S A 90:9075–9079PubMedCentralPubMedCrossRef Rotter V, Schwartz D, Almon E, Goldfinger N, Kapon A, Meshorer A, Donehower LA, Levine AJ (1993) Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. Proc Natl Acad Sci U S A 90:9075–9079PubMedCentralPubMedCrossRef
42.
go back to reference Hoever M, Clement JH, Wedlich D, Montenarh M, Knochel W (1994) Overexpression of wild-type p53 interferes with normal development in Xenopus laevis embryos. Oncogene 9:109–120PubMed Hoever M, Clement JH, Wedlich D, Montenarh M, Knochel W (1994) Overexpression of wild-type p53 interferes with normal development in Xenopus laevis embryos. Oncogene 9:109–120PubMed
43.
go back to reference Allemand I, Anglo A, Jeantet AY, Cerutti I, May E (1999) Testicular wild-type p53 expression in transgenic mice induces spermiogenesis alterations ranging from differentiation defects to apoptosis. Oncogene 18:6521–6530PubMedCrossRef Allemand I, Anglo A, Jeantet AY, Cerutti I, May E (1999) Testicular wild-type p53 expression in transgenic mice induces spermiogenesis alterations ranging from differentiation defects to apoptosis. Oncogene 18:6521–6530PubMedCrossRef
44.
go back to reference Hilliard S, Aboudehen K, Yao X, El-Dahr SS (2011) Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching. Dev Biol 353:354–366PubMedCentralPubMedCrossRef Hilliard S, Aboudehen K, Yao X, El-Dahr SS (2011) Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching. Dev Biol 353:354–366PubMedCentralPubMedCrossRef
45.
go back to reference Godley LA, Kopp JB, Eckhaus M, Paglino JJ, Owens J, Varmus HE (1996) Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys. Genes Dev 10:836–850PubMedCrossRef Godley LA, Kopp JB, Eckhaus M, Paglino JJ, Owens J, Varmus HE (1996) Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys. Genes Dev 10:836–850PubMedCrossRef
46.
go back to reference Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208PubMedCrossRef Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208PubMedCrossRef
47.
go back to reference De Oca M, Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206 De Oca M, Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206
48.
go back to reference Gao Y, Ferguson DO, Xie W, Manis JP, Sekiguchi J, Frank KM, Chaudhuri J, Horner J, DePinho RA, Alt FW (2000) Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404:897–900PubMedCrossRef Gao Y, Ferguson DO, Xie W, Manis JP, Sekiguchi J, Frank KM, Chaudhuri J, Horner J, DePinho RA, Alt FW (2000) Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404:897–900PubMedCrossRef
49.
go back to reference Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, Stein GS, Lian JB, Jones SN (2006) Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 172:909–921PubMedCrossRef Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, Stein GS, Lian JB, Jones SN (2006) Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 172:909–921PubMedCrossRef
50.
go back to reference Mendrysa SM, McElwee MK, Michalowski J, O'Leary KA, Young KM, Perry ME (2003) mdm2 Is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol 23:462–472PubMedCentralPubMedCrossRef Mendrysa SM, McElwee MK, Michalowski J, O'Leary KA, Young KM, Perry ME (2003) mdm2 Is critical for inhibition of p53 during lymphopoiesis and the response to ionizing irradiation. Mol Cell Biol 23:462–472PubMedCentralPubMedCrossRef
51.
go back to reference Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602PubMedCrossRef Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602PubMedCrossRef
52.
go back to reference Saifudeen Z, Dipp S, Stefkova J, Yao X, Lookabaugh S, El-Dahr SS (2009) p53 regulates metanephric development. J Am Soc Nephrol 20:2328–2337PubMedCrossRef Saifudeen Z, Dipp S, Stefkova J, Yao X, Lookabaugh S, El-Dahr SS (2009) p53 regulates metanephric development. J Am Soc Nephrol 20:2328–2337PubMedCrossRef
53.
go back to reference Saifudeen Z, Marks J, Du H, El-Dahr SS (2002) Spatial repression of PCNA by p53 during kidney development. Am J Physiol Renal Physiol 283:F727–F733PubMedCrossRef Saifudeen Z, Marks J, Du H, El-Dahr SS (2002) Spatial repression of PCNA by p53 during kidney development. Am J Physiol Renal Physiol 283:F727–F733PubMedCrossRef
54.
go back to reference Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404:99–103PubMedCrossRef Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404:99–103PubMedCrossRef
55.
go back to reference Saifudeen Z, Diavolitsis V, Stefkova J, Dipp S, Fan H, El-Dahr SS (2005) Spatiotemporal switch from DeltaNp73 to TAp73 isoforms during nephrogenesis: impact on differentiation gene expression. J Biol Chem 280:23094–23102PubMedCrossRef Saifudeen Z, Diavolitsis V, Stefkova J, Dipp S, Fan H, El-Dahr SS (2005) Spatiotemporal switch from DeltaNp73 to TAp73 isoforms during nephrogenesis: impact on differentiation gene expression. J Biol Chem 280:23094–23102PubMedCrossRef
Metadata
Title
The MDM2–p53 pathway: multiple roles in kidney development
Authors
Samir S. El-Dahr
Sylvia Hilliard
Karam Aboudehen
Zubaida Saifudeen
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 4/2014
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-013-2629-y

Other articles of this Issue 4/2014

Pediatric Nephrology 4/2014 Go to the issue