Skip to main content
Top
Published in: Pediatric Nephrology 9/2011

01-09-2011 | Review

Xenopus pronephros development—past, present, and future

Authors: Oliver Wessely, Uyen Tran

Published in: Pediatric Nephrology | Issue 9/2011

Login to get access

Abstract

Kidney development is a multi-step process where undifferentiated mesenchyme is converted into a highly complex organ through several inductive events. The general principles regulating these events have been under intense investigation and despite extensive progress, many open questions remain. While the metanephric kidneys of mouse and rat have served as the primary model, other organisms also significantly contribute to the field. In particular, the more primitive pronephric kidney has emerged as an alternative model due to its simplicity and experimental accessibility. Many aspects of nephron development such as the patterning along its proximo-distal axis are evolutionarily conserved and are therefore directly applicable to higher vertebrates. This review will focus on the current understanding of pronephros development in Xenopus. It summarizes how signaling, transcriptional regulation, as well as post-transcriptional mechanisms contribute to the differentiation of renal epithelial cells. The data show that even in the simple pronephros the mechanisms regulating kidney organogenesis are highly complex. It also illustrates that a multifaceted analysis embracing modern genome-wide approaches combined with single gene analysis will be required to fully understand all the intricacies.
Literature
1.
go back to reference Saxén L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge, UKCrossRef Saxén L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge, UKCrossRef
2.
go back to reference Vize P, Woolf A, Bard J (2003) The kidney: from normal development to congenital diseases. Academic Press, Amsterdam Vize P, Woolf A, Bard J (2003) The kidney: from normal development to congenital diseases. Academic Press, Amsterdam
3.
go back to reference Smith HW (1953) From fish to philosopher. Little, Brown, Boston Smith HW (1953) From fish to philosopher. Little, Brown, Boston
4.
go back to reference Hall RW (1904) The development of the mesonephros and the Müllerian ducts in amphibia. Bull Mus Comp Zool 45:31–125 Hall RW (1904) The development of the mesonephros and the Müllerian ducts in amphibia. Bull Mus Comp Zool 45:31–125
6.
go back to reference White JT, Zhang B, Cerqueira DM, Tran U, Wessely O (2010) Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development 137:1863–1873PubMedPubMedCentralCrossRef White JT, Zhang B, Cerqueira DM, Tran U, Wessely O (2010) Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development 137:1863–1873PubMedPubMedCentralCrossRef
7.
go back to reference Gerth VE, Zhou X, Vize PD (2005) Nephrin expression and three-dimensional morphogenesis of the Xenopus pronephric glomus. Dev Dyn 233:1131–1139PubMedCrossRef Gerth VE, Zhou X, Vize PD (2005) Nephrin expression and three-dimensional morphogenesis of the Xenopus pronephric glomus. Dev Dyn 233:1131–1139PubMedCrossRef
8.
go back to reference Doherty JR, Johnson Hamlet MR, Kuliyev E, Mead PE (2007) A flk-1 promoter/enhancer reporter transgenic Xenopus laevis generated using the Sleeping Beauty transposon system: an in vivo model for vascular studies. Dev Dyn 236:2808–2817PubMedCrossRef Doherty JR, Johnson Hamlet MR, Kuliyev E, Mead PE (2007) A flk-1 promoter/enhancer reporter transgenic Xenopus laevis generated using the Sleeping Beauty transposon system: an in vivo model for vascular studies. Dev Dyn 236:2808–2817PubMedCrossRef
9.
go back to reference Takahashi-Iwanaga H (2002) Comparative anatomy of the podocyte: a scanning electron microscopic study. Microsc Res Tech 57:196–202PubMedCrossRef Takahashi-Iwanaga H (2002) Comparative anatomy of the podocyte: a scanning electron microscopic study. Microsc Res Tech 57:196–202PubMedCrossRef
10.
go back to reference Tran U, Pickney LM, Ozpolat BD, Wessely O (2007) Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. Dev Biol 307:152–164PubMedPubMedCentralCrossRef Tran U, Pickney LM, Ozpolat BD, Wessely O (2007) Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. Dev Biol 307:152–164PubMedPubMedCentralCrossRef
11.
go back to reference Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brandli AW (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9:R84PubMedPubMedCentralCrossRef Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brandli AW (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9:R84PubMedPubMedCentralCrossRef
12.
go back to reference Zhou X, Vize PD (2004) Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules. Dev Biol 271:322–338PubMedCrossRef Zhou X, Vize PD (2004) Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules. Dev Biol 271:322–338PubMedCrossRef
13.
go back to reference Mobjerg N, Larsen EH, Jespersen A (2000) Morphology of the kidney in larvae of Bufo viridis (Amphibia, Anura, Bufonidae). J Morphol 245:177–195PubMedCrossRef Mobjerg N, Larsen EH, Jespersen A (2000) Morphology of the kidney in larvae of Bufo viridis (Amphibia, Anura, Bufonidae). J Morphol 245:177–195PubMedCrossRef
14.
go back to reference Zhou X, Vize PD (2005) Amino acid cotransporter SLC3A2 is selectively expressed in the early proximal segment of Xenopus pronephric kidney nephrons. Gene Expr Patterns 5:774–777PubMedCrossRef Zhou X, Vize PD (2005) Amino acid cotransporter SLC3A2 is selectively expressed in the early proximal segment of Xenopus pronephric kidney nephrons. Gene Expr Patterns 5:774–777PubMedCrossRef
15.
go back to reference Eid SR, Terrettaz A, Nagata K, Brandli AW (2002) Embryonic expression of Xenopus SGLT-1 L, a novel member of the solute carrier family 5 (SLC5), is confined to tubules of the pronephric kidney. Int J Dev Biol 46:177–184PubMed Eid SR, Terrettaz A, Nagata K, Brandli AW (2002) Embryonic expression of Xenopus SGLT-1 L, a novel member of the solute carrier family 5 (SLC5), is confined to tubules of the pronephric kidney. Int J Dev Biol 46:177–184PubMed
16.
go back to reference Christensen EI, Raciti D, Reggiani L, Verroust PJ, Brandli AW (2008) Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney. Pflugers Arch 456:1163–1176PubMedCrossRef Christensen EI, Raciti D, Reggiani L, Verroust PJ, Brandli AW (2008) Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney. Pflugers Arch 456:1163–1176PubMedCrossRef
17.
go back to reference Reggiani L, Raciti D, Airik R, Kispert A, Brandli AW (2007) The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 21:2358–2370PubMedPubMedCentralCrossRef Reggiani L, Raciti D, Airik R, Kispert A, Brandli AW (2007) The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 21:2358–2370PubMedPubMedCentralCrossRef
18.
go back to reference Zhou X, Vize PD (2005) Pronephric regulation of acid-base balance; coexpression of carbonic anhydrase type 2 and sodium-bicarbonate cotransporter-1 in the late distal segment. Dev Dyn 233:142–144PubMedCrossRef Zhou X, Vize PD (2005) Pronephric regulation of acid-base balance; coexpression of carbonic anhydrase type 2 and sodium-bicarbonate cotransporter-1 in the late distal segment. Dev Dyn 233:142–144PubMedCrossRef
19.
go back to reference Vize PD (2003) The chloride conductance channel ClC-K is a specific marker for the Xenopus pronephric distal tubule and duct. Gene Expr Patterns 3:347–350PubMedCrossRef Vize PD (2003) The chloride conductance channel ClC-K is a specific marker for the Xenopus pronephric distal tubule and duct. Gene Expr Patterns 3:347–350PubMedCrossRef
20.
21.
22.
go back to reference Kyuno J, Jones EA (2007) GDNF expression during Xenopus development. Gene Expr Patterns 7:313–317PubMedCrossRef Kyuno J, Jones EA (2007) GDNF expression during Xenopus development. Gene Expr Patterns 7:313–317PubMedCrossRef
23.
go back to reference Osafune K, Nishinakamura R, Komazaki S, Asashima M (2002) In vitro induction of the pronephric duct in Xenopus explants. Dev Growth Differ 44:161–167PubMedCrossRef Osafune K, Nishinakamura R, Komazaki S, Asashima M (2002) In vitro induction of the pronephric duct in Xenopus explants. Dev Growth Differ 44:161–167PubMedCrossRef
24.
go back to reference Drawbridge J, Meighan CM, Mitchell EA (2000) GDNF and GFRalpha-1 are components of the axolotl pronephric duct guidance system. Dev Biol 228:116–124PubMedCrossRef Drawbridge J, Meighan CM, Mitchell EA (2000) GDNF and GFRalpha-1 are components of the axolotl pronephric duct guidance system. Dev Biol 228:116–124PubMedCrossRef
25.
go back to reference Urban AE, Zhou X, Ungos JM, Raible DW, Altmann CR, Vize PD (2006) FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. Dev Biol 297:103–117PubMedCrossRef Urban AE, Zhou X, Ungos JM, Raible DW, Altmann CR, Vize PD (2006) FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. Dev Biol 297:103–117PubMedCrossRef
26.
go back to reference Saulnier DM, Ghanbari H, Brandli AW (2002) Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. Dev Biol 248:13–28PubMedCrossRef Saulnier DM, Ghanbari H, Brandli AW (2002) Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. Dev Biol 248:13–28PubMedCrossRef
27.
go back to reference Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR (2005) FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132:3847–3857CrossRefPubMed Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR (2005) FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132:3847–3857CrossRefPubMed
28.
go back to reference Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683PubMedCrossRef Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683PubMedCrossRef
29.
go back to reference Tetelin S, Jones EA (2010) Xenopus Wnt11b is identified as a potential pronephric inducer. Dev Dyn 239:148–159PubMed Tetelin S, Jones EA (2010) Xenopus Wnt11b is identified as a potential pronephric inducer. Dev Dyn 239:148–159PubMed
30.
go back to reference Lavery DL, Davenport IR, Turnbull YD, Wheeler GN, Hoppler S (2008) Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis. Dev Dyn 237:768–779PubMedCrossRef Lavery DL, Davenport IR, Turnbull YD, Wheeler GN, Hoppler S (2008) Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis. Dev Dyn 237:768–779PubMedCrossRef
31.
go back to reference Satow R, Chan TC, Asashima M (2004) The role of Xenopus frizzled-8 in pronephric development. Biochem Biophys Res Commun 321:487–494PubMedCrossRef Satow R, Chan TC, Asashima M (2004) The role of Xenopus frizzled-8 in pronephric development. Biochem Biophys Res Commun 321:487–494PubMedCrossRef
32.
go back to reference Lyons JP, Miller RK, Zhou X, Weidinger G, Deroo T, Denayer T, Park JI, Ji H, Hong JY, Li A, Moon RT, Jones EA, Vleminckx K, Vize PD, McCrea PD (2009) Requirement of Wnt/beta-catenin signaling in pronephric kidney development. Mech Dev 126:142–159PubMedCrossRef Lyons JP, Miller RK, Zhou X, Weidinger G, Deroo T, Denayer T, Park JI, Ji H, Hong JY, Li A, Moon RT, Jones EA, Vleminckx K, Vize PD, McCrea PD (2009) Requirement of Wnt/beta-catenin signaling in pronephric kidney development. Mech Dev 126:142–159PubMedCrossRef
33.
go back to reference Colas A, Cartry J, Buisson I, Umbhauer M, Smith JC, Riou JF (2008) Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus. Dev Biol 320:351–365PubMedCrossRef Colas A, Cartry J, Buisson I, Umbhauer M, Smith JC, Riou JF (2008) Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus. Dev Biol 320:351–365PubMedCrossRef
34.
go back to reference Bracken CM, Mizeracka K, McLaughlin KA (2008) Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis. Dev Dyn 237:132–144PubMedCrossRef Bracken CM, Mizeracka K, McLaughlin KA (2008) Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis. Dev Dyn 237:132–144PubMedCrossRef
35.
go back to reference McLaughlin KA, Rones MS, Mercola M (2000) Notch regulates cell fate in the developing pronephros. Dev Biol 227:567–580PubMedCrossRef McLaughlin KA, Rones MS, Mercola M (2000) Notch regulates cell fate in the developing pronephros. Dev Biol 227:567–580PubMedCrossRef
36.
go back to reference Taelman V, Van Campenhout C, Solter M, Pieler T, Bellefroid EJ (2006) The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen. Development 133:2961–2971PubMedCrossRef Taelman V, Van Campenhout C, Solter M, Pieler T, Bellefroid EJ (2006) The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen. Development 133:2961–2971PubMedCrossRef
37.
go back to reference Naylor RW, Jones EA (2009) Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros. Development 136:3585–3595PubMedCrossRef Naylor RW, Jones EA (2009) Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros. Development 136:3585–3595PubMedCrossRef
38.
go back to reference Liu Y, Pathak N, Kramer-Zucker A, Drummond IA (2007) Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 134:1111–1122PubMedCrossRef Liu Y, Pathak N, Kramer-Zucker A, Drummond IA (2007) Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 134:1111–1122PubMedCrossRef
39.
go back to reference Ma M, Jiang YJ (2007) Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Gene 3:e18CrossRef Ma M, Jiang YJ (2007) Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Gene 3:e18CrossRef
40.
go back to reference Carroll TJ, Vize PD (1999) Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev Biol 214:46–59PubMedCrossRef Carroll TJ, Vize PD (1999) Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev Biol 214:46–59PubMedCrossRef
41.
go back to reference Carroll TJ, Wallingford JB, Vize PD (1999) Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis. Dev Genet 24:199–207PubMedCrossRef Carroll TJ, Wallingford JB, Vize PD (1999) Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis. Dev Genet 24:199–207PubMedCrossRef
42.
go back to reference Carroll TJ, Vize PD (1996) Wilms' tumor suppressor gene is involved in the development of disparate kidney forms: evidence from expression in the Xenopus pronephros. Dev Dyn 206:131–138PubMedCrossRef Carroll TJ, Vize PD (1996) Wilms' tumor suppressor gene is involved in the development of disparate kidney forms: evidence from expression in the Xenopus pronephros. Dev Dyn 206:131–138PubMedCrossRef
43.
go back to reference Vignali R, Poggi L, Madeddu F, Barsacchi G (2000) HNF1(beta) is required for mesoderm induction in the Xenopus embryo. Development 127:1455–1465PubMedCrossRef Vignali R, Poggi L, Madeddu F, Barsacchi G (2000) HNF1(beta) is required for mesoderm induction in the Xenopus embryo. Development 127:1455–1465PubMedCrossRef
44.
go back to reference Demartis A, Maffei M, Vignali R, Barsacchi G, De Simone V (1994) Cloning and developmental expression of LFB3/HNF1 beta transcription factor in Xenopus laevis. Mech Dev 47:19–28PubMedCrossRef Demartis A, Maffei M, Vignali R, Barsacchi G, De Simone V (1994) Cloning and developmental expression of LFB3/HNF1 beta transcription factor in Xenopus laevis. Mech Dev 47:19–28PubMedCrossRef
45.
go back to reference Dehbi M, Ghahremani M, Lechner M, Dressler G, Pelletier J (1996) The paired-box transcription factor, PAX2, positively modulates expression of the Wilms' tumor suppressor gene (WT1). Oncogene 13:447–453PubMed Dehbi M, Ghahremani M, Lechner M, Dressler G, Pelletier J (1996) The paired-box transcription factor, PAX2, positively modulates expression of the Wilms' tumor suppressor gene (WT1). Oncogene 13:447–453PubMed
46.
go back to reference Majumdar A, Lun K, Brand M, Drummond IA (2000) Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127:2089–2098PubMedCrossRef Majumdar A, Lun K, Brand M, Drummond IA (2000) Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127:2089–2098PubMedCrossRef
47.
go back to reference Ryan G, Steele-Perkins V, Morris JF, Rauscher FJ 3rd, Dressler GR (1995) Repression of Pax-2 by WT1 during normal kidney development. Development 121:867–875PubMedCrossRef Ryan G, Steele-Perkins V, Morris JF, Rauscher FJ 3rd, Dressler GR (1995) Repression of Pax-2 by WT1 during normal kidney development. Development 121:867–875PubMedCrossRef
48.
go back to reference Chan TC, Takahashi S, Asashima M (2000) A role for Xlim-1 in pronephros development in Xenopus laevis. Dev Biol 228:256–269PubMedCrossRef Chan TC, Takahashi S, Asashima M (2000) A role for Xlim-1 in pronephros development in Xenopus laevis. Dev Biol 228:256–269PubMedCrossRef
49.
go back to reference Wallingford JB, Carroll TJ, Vize PD (1998) Precocious expression of the Wilms' tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev Biol 202:103–112PubMedCrossRef Wallingford JB, Carroll TJ, Vize PD (1998) Precocious expression of the Wilms' tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev Biol 202:103–112PubMedCrossRef
50.
go back to reference Wild W, Pogge von Strandmann E, Nastos A, Senkel S, Lingott-Frieg A, Bulman M, Bingham C, Ellard S, Hattersley AT, Ryffel GU (2000) The mutated human gene encoding hepatocyte nuclear factor 1beta inhibits kidney formation in developing Xenopus embryos. Proc Natl Acad Sci USA 97:4695–4700PubMedPubMedCentralCrossRef Wild W, Pogge von Strandmann E, Nastos A, Senkel S, Lingott-Frieg A, Bulman M, Bingham C, Ellard S, Hattersley AT, Ryffel GU (2000) The mutated human gene encoding hepatocyte nuclear factor 1beta inhibits kidney formation in developing Xenopus embryos. Proc Natl Acad Sci USA 97:4695–4700PubMedPubMedCentralCrossRef
51.
go back to reference Wu G, Bohn S, Ryffel GU (2004) The HNF1beta transcription factor has several domains involved in nephrogenesis and partially rescues Pax8/lim1-induced kidney malformations. Eur J Biochem 271:3715–3728PubMedCrossRef Wu G, Bohn S, Ryffel GU (2004) The HNF1beta transcription factor has several domains involved in nephrogenesis and partially rescues Pax8/lim1-induced kidney malformations. Eur J Biochem 271:3715–3728PubMedCrossRef
52.
go back to reference Tena JJ, Neto A, de la Calle-Mustienes E, Bras-Pereira C, Casares F, Gomez-Skarmeta JL (2007) Odd-skipped genes encode repressors that control kidney development. Dev Biol 301:518–531PubMedCrossRef Tena JJ, Neto A, de la Calle-Mustienes E, Bras-Pereira C, Casares F, Gomez-Skarmeta JL (2007) Odd-skipped genes encode repressors that control kidney development. Dev Biol 301:518–531PubMedCrossRef
53.
go back to reference Van Campenhout C, Nichane M, Antoniou A, Pendeville H, Bronchain OJ, Marine JC, Mazabraud A, Voz ML, Bellefroid EJ (2006) Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation. Dev Biol 294:203–219PubMedCrossRef Van Campenhout C, Nichane M, Antoniou A, Pendeville H, Bronchain OJ, Marine JC, Mazabraud A, Voz ML, Bellefroid EJ (2006) Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation. Dev Biol 294:203–219PubMedCrossRef
54.
go back to reference Alarcon P, Rodriguez-Seguel E, Fernandez-Gonzalez A, Rubio R, Gomez-Skarmeta JL (2008) A dual requirement for Iroquois genes during Xenopus kidney development. Development 135:3197–3207PubMedCrossRef Alarcon P, Rodriguez-Seguel E, Fernandez-Gonzalez A, Rubio R, Gomez-Skarmeta JL (2008) A dual requirement for Iroquois genes during Xenopus kidney development. Development 135:3197–3207PubMedCrossRef
55.
go back to reference Weber H, Holewa B, Jones EA, Ryffel GU (1996) Mesoderm and endoderm differentiation in animal cap explants: identification of the HNF4-binding site as an activin A responsive element in the Xenopus HNF1alpha promoter. Development 122:1975–1984PubMedCrossRef Weber H, Holewa B, Jones EA, Ryffel GU (1996) Mesoderm and endoderm differentiation in animal cap explants: identification of the HNF4-binding site as an activin A responsive element in the Xenopus HNF1alpha promoter. Development 122:1975–1984PubMedCrossRef
56.
go back to reference Deconinck AE, Mead PE, Tevosian SG, Crispino JD, Katz SG, Zon LI, Orkin SH (2000) FOG acts as a repressor of red blood cell development in Xenopus. Development 127:2031–2040PubMedCrossRef Deconinck AE, Mead PE, Tevosian SG, Crispino JD, Katz SG, Zon LI, Orkin SH (2000) FOG acts as a repressor of red blood cell development in Xenopus. Development 127:2031–2040PubMedCrossRef
57.
go back to reference Rascle A, Suleiman H, Neumann T, Witzgall R (2007) Role of transcription factors in podocytes. Nephron Exp Nephrol 106:e60–e66PubMedCrossRef Rascle A, Suleiman H, Neumann T, Witzgall R (2007) Role of transcription factors in podocytes. Nephron Exp Nephrol 106:e60–e66PubMedCrossRef
58.
go back to reference Haldin CE, Nijjar S, Masse K, Barnett MW, Jones EA (2003) Isolation and growth factor inducibility of the Xenopus laevis Lmx1b gene. Int J Dev Biol 47:253–262PubMed Haldin CE, Nijjar S, Masse K, Barnett MW, Jones EA (2003) Isolation and growth factor inducibility of the Xenopus laevis Lmx1b gene. Int J Dev Biol 47:253–262PubMed
59.
go back to reference Simrick S, Masse K, Jones EA (2005) Developmental expression of Pod1 in Xenopus laevis. Int J Dev Biol 49:59–63PubMedCrossRef Simrick S, Masse K, Jones EA (2005) Developmental expression of Pod1 in Xenopus laevis. Int J Dev Biol 49:59–63PubMedCrossRef
60.
62.
go back to reference Agrawal R, Tran U, Wessely O (2009) The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 136:3927–3936PubMedPubMedCentralCrossRef Agrawal R, Tran U, Wessely O (2009) The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 136:3927–3936PubMedPubMedCentralCrossRef
63.
go back to reference Wessely O, Agrawal R, Tran U (2010) microRNAs in kidney development: Lessons from the frog. RNA Biol 7:1–4CrossRef Wessely O, Agrawal R, Tran U (2010) microRNAs in kidney development: Lessons from the frog. RNA Biol 7:1–4CrossRef
64.
go back to reference Tran U, Zakin L, Schweickert A, Agrawal R, Doger R, Blum M, De Robertis EM, Wessely O (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137:1107–1116PubMedPubMedCentralCrossRef Tran U, Zakin L, Schweickert A, Agrawal R, Doger R, Blum M, De Robertis EM, Wessely O (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137:1107–1116PubMedPubMedCentralCrossRef
66.
go back to reference Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065PubMedCrossRef Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065PubMedCrossRef
67.
go back to reference Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636PubMedPubMedCentralCrossRef Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636PubMedPubMedCentralCrossRef
68.
go back to reference Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Veenstra GJ (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17:425–434PubMedPubMedCentralCrossRef Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Veenstra GJ (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17:425–434PubMedPubMedCentralCrossRef
69.
go back to reference Vize PD, Seufert DW, Carroll TJ, Wallingford JB (1997) Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev Biol 188:189–204PubMedCrossRef Vize PD, Seufert DW, Carroll TJ, Wallingford JB (1997) Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev Biol 188:189–204PubMedCrossRef
Metadata
Title
Xenopus pronephros development—past, present, and future
Authors
Oliver Wessely
Uyen Tran
Publication date
01-09-2011
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 9/2011
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-011-1881-2

Other articles of this Issue 9/2011

Pediatric Nephrology 9/2011 Go to the issue