Skip to main content
Top
Published in: Pediatric Nephrology 9/2011

01-09-2011 | Review

Renin–angiotensin system in ureteric bud branching morphogenesis: insights into the mechanisms

Author: Ihor V. Yosypiv

Published in: Pediatric Nephrology | Issue 9/2011

Login to get access

Abstract

Branching morphogenesis of the ureteric bud (UB) is a key developmental process that controls organogenesis of the entire metanephros. Notably, aberrant UB branching may result in a spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). Genetic, biochemical and physiological studies have demonstrated that the renin–angiotensin system (RAS), a key regulator of the blood pressure and fluid/electrolyte homeostasis, also plays a critical role in kidney development. All the components of the RAS are expressed in the metanephros. Moreover, mutations in the genes encoding components of the RAS in mice or humans cause diverse types of CAKUT which include renal papillary hypoplasia, hydronephrosis, duplicated collecting system, renal tubular dysgenesis, renal vascular abnormalities, abnormal glomerulogenesis and urinary concentrating defect. Despite widely accepted role of the RAS in metanephric kidney and renal collecting system (ureter, pelvis, calyces and collecting ducts) development, the mechanisms by which an intact RAS exerts its morphogenetic actions are incompletely defined. Emerging evidence indicates that defects in UB branching morphogenesis may be causally linked to the pathogenesis of renal collecting system anomalies observed under conditions of aberrant RAS signaling. This review describes the role of the RAS in UB branching morphogenesis and highlights emerging insights into the cellular and molecular mechanisms whereby RAS regulates this critical morphogenetic process.
Literature
1.
go back to reference North American Pediatric Renal Trials and Collaborative Studies (2008) NAPRTCS Annual report North American Pediatric Renal Trials and Collaborative Studies (2008) NAPRTCS Annual report
2.
go back to reference Costantini F (2006) Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 74:402–421PubMed Costantini F (2006) Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 74:402–421PubMed
3.
go back to reference Bridgewater D, Rosenblum ND (2009) Stimulatory and inhibitory signaling molecules that regulate renal branching morphogenesis. Pediatr Nephrol 24:1611–1619CrossRefPubMed Bridgewater D, Rosenblum ND (2009) Stimulatory and inhibitory signaling molecules that regulate renal branching morphogenesis. Pediatr Nephrol 24:1611–1619CrossRefPubMed
4.
go back to reference Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanabe T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab invest 75:745–753PubMed Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanabe T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab invest 75:745–753PubMed
5.
go back to reference Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954CrossRefPubMedPubMedCentral Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954CrossRefPubMedPubMedCentral
6.
go back to reference Takahashi N, Lopez ML, JE Co whig Jr, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132CrossRefPubMed Takahashi N, Lopez ML, JE Co whig Jr, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132CrossRefPubMed
7.
go back to reference Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab invest 7:953–965 Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab invest 7:953–965
8.
go back to reference Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501CrossRefPubMedPubMedCentral Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501CrossRefPubMedPubMedCentral
9.
go back to reference Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760CrossRefPubMedPubMedCentral Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760CrossRefPubMedPubMedCentral
10.
go back to reference Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I (1999) The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int 55:1683–1695CrossRefPubMed Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I (1999) The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int 55:1683–1695CrossRefPubMed
11.
go back to reference Gribouval O, Gonzales M, Neuhaus T (2005) Mutations in genes in the renin–angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37:964–968CrossRefPubMed Gribouval O, Gonzales M, Neuhaus T (2005) Mutations in genes in the renin–angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37:964–968CrossRefPubMed
12.
go back to reference Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge
13.
go back to reference Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3:2141–2150PubMed Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3:2141–2150PubMed
14.
go back to reference Grobstein C (1953) Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse metanephros. Science 118:52–55PubMed Grobstein C (1953) Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse metanephros. Science 118:52–55PubMed
15.
go back to reference Cebrián C, Borodo K, Charles N, Herzlinger DA (2004) Morphometric index of the developing murine kidney. Dev Dyn 231:601–608CrossRefPubMed Cebrián C, Borodo K, Charles N, Herzlinger DA (2004) Morphometric index of the developing murine kidney. Dev Dyn 231:601–608CrossRefPubMed
16.
go back to reference Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A. Ret Nat Genet 32:109–115CrossRefPubMed Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A. Ret Nat Genet 32:109–115CrossRefPubMed
17.
go back to reference Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP, Carroll TJ, Mendelsohn CL (2005) Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 37:1082–1089CrossRefPubMed Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP, Carroll TJ, Mendelsohn CL (2005) Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 37:1082–1089CrossRefPubMed
18.
go back to reference Sakurai H, Nigam S (1998) In vitro branching tubulogenesis: implications for developmental and cystic disorders, nephron number, renal repair, and nephron engineering. Kidney Int 54:14–26CrossRefPubMed Sakurai H, Nigam S (1998) In vitro branching tubulogenesis: implications for developmental and cystic disorders, nephron number, renal repair, and nephron engineering. Kidney Int 54:14–26CrossRefPubMed
19.
go back to reference Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347CrossRefPubMed Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347CrossRefPubMed
20.
go back to reference Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90:33–39CrossRefPubMed Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90:33–39CrossRefPubMed
21.
go back to reference Rosenblum ND (2008) Developmental biology of the human kidney. Semin Fetal Neonatal Med 13:125–132CrossRefPubMed Rosenblum ND (2008) Developmental biology of the human kidney. Semin Fetal Neonatal Med 13:125–132CrossRefPubMed
23.
go back to reference Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756PubMed Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756PubMed
24.
go back to reference Cacalano G, Fariñas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62CrossRefPubMedPubMedCentral Cacalano G, Fariñas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62CrossRefPubMedPubMedCentral
25.
go back to reference Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumäe U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087PubMed Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumäe U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087PubMed
26.
go back to reference Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395PubMed Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395PubMed
27.
go back to reference Grieshammer U, Ma L, Plump AS, Wang F, Tessier-Lavigne M, Martin GR (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6:709–717CrossRefPubMed Grieshammer U, Ma L, Plump AS, Wang F, Tessier-Lavigne M, Martin GR (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6:709–717CrossRefPubMed
28.
go back to reference Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239CrossRefPubMed Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239CrossRefPubMed
29.
go back to reference Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, Carroll T, Bouchard M (2008) Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet 4:1–12CrossRef Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, Carroll T, Bouchard M (2008) Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet 4:1–12CrossRef
30.
31.
go back to reference Porteous S, Torban E, Cho NP, Cunliffe H, Chua L, McNoe L, Ward T, Souza C, Gus P, Giugliani R, Sato T, Yun K, Favor J, Sicotte M, Goodyer P, Eccles M (2000) Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/− mutant mice. Hum Mol Genet 9:1–11CrossRefPubMed Porteous S, Torban E, Cho NP, Cunliffe H, Chua L, McNoe L, Ward T, Souza C, Gus P, Giugliani R, Sato T, Yun K, Favor J, Sicotte M, Goodyer P, Eccles M (2000) Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/− mutant mice. Hum Mol Genet 9:1–11CrossRefPubMed
32.
go back to reference Miyazaki Y, Oshima K, Fogo A, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873CrossRefPubMedPubMedCentral Miyazaki Y, Oshima K, Fogo A, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873CrossRefPubMedPubMedCentral
33.
go back to reference Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, Schwesinger C, Qiao J, Nigam SK (2004) TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 266:285–298CrossRefPubMed Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, Schwesinger C, Qiao J, Nigam SK (2004) TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 266:285–298CrossRefPubMed
34.
go back to reference Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, Wilson PD, Mason IJ, Licht JD (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299:466–477CrossRefPubMed Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, Wilson PD, Mason IJ, Licht JD (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299:466–477CrossRefPubMed
35.
go back to reference Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM (2008) Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 64:592–598CrossRefPubMedPubMedCentral Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM (2008) Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 64:592–598CrossRefPubMedPubMedCentral
36.
go back to reference Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185CrossRefPubMed Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185CrossRefPubMed
37.
go back to reference Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D'Agati V, Licht JD, Martin GR, Costantini F (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6:1–11CrossRef Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D'Agati V, Licht JD, Martin GR, Costantini F (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6:1–11CrossRef
38.
go back to reference Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM (2004) Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276:403–415PubMedPubMedCentral Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM (2004) Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276:403–415PubMedPubMedCentral
39.
go back to reference Zhang Z, Pascuet E, Hueber PA, Chu L, Bichet DG, Lee TC, Threadgill DW, Goodyer P (2010) Targeted inactivation of EGF receptor inhibits renal collecting duct development and function. J Am Soc Nephrol 21:573–578CrossRefPubMedPubMedCentral Zhang Z, Pascuet E, Hueber PA, Chu L, Bichet DG, Lee TC, Threadgill DW, Goodyer P (2010) Targeted inactivation of EGF receptor inhibits renal collecting duct development and function. J Am Soc Nephrol 21:573–578CrossRefPubMedPubMedCentral
40.
go back to reference Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP (2009) A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136:161–171CrossRefPubMed Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP (2009) A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136:161–171CrossRefPubMed
42.
go back to reference Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394CrossRefPubMed Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394CrossRefPubMed
43.
go back to reference Jain S, Knoten A, Hoshi M, Wang H, Vohra B, Heuckeroth RO, Milbrandt J (2010) Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest 120:778–790CrossRefPubMedPubMedCentral Jain S, Knoten A, Hoshi M, Wang H, Vohra B, Heuckeroth RO, Milbrandt J (2010) Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest 120:778–790CrossRefPubMedPubMedCentral
44.
45.
go back to reference Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, Jain S, Asai N, Takahashi M, Schmidt-Ott KM, Barasch J, D'Agati V, Costantini F (2009) Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41:1295–1302CrossRefPubMedPubMedCentral Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, Jain S, Asai N, Takahashi M, Schmidt-Ott KM, Barasch J, D'Agati V, Costantini F (2009) Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41:1295–1302CrossRefPubMedPubMedCentral
46.
go back to reference Rozen EJ, Schmidt H, Dolcet X, Basson MA, Jain S, Encinas M (2009) Loss of Sprouty1 rescues renal agenesis caused by Ret mutation. J Am Soc Nephrol 20:255–259CrossRefPubMedPubMedCentral Rozen EJ, Schmidt H, Dolcet X, Basson MA, Jain S, Encinas M (2009) Loss of Sprouty1 rescues renal agenesis caused by Ret mutation. J Am Soc Nephrol 20:255–259CrossRefPubMedPubMedCentral
47.
go back to reference Melillo RM, Santoro M, Ong SH, Billaud M, Fusco A, Hadari YR, Schlessinger J, Lax I (2001) Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol 21:4177–4187CrossRefPubMedPubMedCentral Melillo RM, Santoro M, Ong SH, Billaud M, Fusco A, Hadari YR, Schlessinger J, Lax I (2001) Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol 21:4177–4187CrossRefPubMedPubMedCentral
48.
go back to reference Gotoh N (2008) Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 99:1319–1325CrossRefPubMed Gotoh N (2008) Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 99:1319–1325CrossRefPubMed
49.
go back to reference Tsang M, Dawid IB (2004) Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Science STKE 228:1–5 Tsang M, Dawid IB (2004) Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Science STKE 228:1–5
50.
go back to reference Sims-Lucas S, Cullen-McEwen L, Eswarakumar VP, Hains D, Kish K, Becknell B, Zhang J, Bertram JF, Wang F, Bates CM (2009) Deletion of Frs2alpha from the ureteric epithelium causes renal hypoplasia. Am J Physiol 297:F1208–F1219 Sims-Lucas S, Cullen-McEwen L, Eswarakumar VP, Hains D, Kish K, Becknell B, Zhang J, Bertram JF, Wang F, Bates CM (2009) Deletion of Frs2alpha from the ureteric epithelium causes renal hypoplasia. Am J Physiol 297:F1208–F1219
51.
go back to reference Pepicelli CV, Kispert A, Rowitch DH, McMahon AP (1997) GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol 192:193–198CrossRefPubMed Pepicelli CV, Kispert A, Rowitch DH, McMahon AP (1997) GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol 192:193–198CrossRefPubMed
52.
go back to reference Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 243:128–136CrossRefPubMed Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 243:128–136CrossRefPubMed
53.
go back to reference Kuure S, Chi X, Lu B, Costantini F (2010) The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development 137:1975–1979CrossRefPubMedPubMedCentral Kuure S, Chi X, Lu B, Costantini F (2010) The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development 137:1975–1979CrossRefPubMedPubMedCentral
54.
go back to reference MaassenVanDenBrink A, Vries R, Saxena PR, Schalekamp MA, Danser AH (1999) Vasoconstriction by in situ formed angiotensin II: role of ACE and chymase. Cardiovasc Res 44:407–415CrossRefPubMed MaassenVanDenBrink A, Vries R, Saxena PR, Schalekamp MA, Danser AH (1999) Vasoconstriction by in situ formed angiotensin II: role of ACE and chymase. Cardiovasc Res 44:407–415CrossRefPubMed
55.
go back to reference Kobori H, Ozawa Y, Suzaki Y, Prieto-Carrasquero MC, Nishiyama A, Shoji T, Cohen EP, Navar LG (2006) Intratubular angiotensinogen in hypertension and kidney diseases. Am J Hypertens 19:541–550CrossRefPubMed Kobori H, Ozawa Y, Suzaki Y, Prieto-Carrasquero MC, Nishiyama A, Shoji T, Cohen EP, Navar LG (2006) Intratubular angiotensinogen in hypertension and kidney diseases. Am J Hypertens 19:541–550CrossRefPubMed
56.
go back to reference Wolf G, Thaiss F, Schoeppe W, Stahl RA (1992) Angiotensin II-induced proliferation of cultured murine mesangial cells: inhibitory role of atrial natriuretic peptide. J Am Soc Nephrol 3:1270–1278PubMed Wolf G, Thaiss F, Schoeppe W, Stahl RA (1992) Angiotensin II-induced proliferation of cultured murine mesangial cells: inhibitory role of atrial natriuretic peptide. J Am Soc Nephrol 3:1270–1278PubMed
57.
go back to reference Goto M, Mukoyama M, Suga S, Matsumoto T, Nakagawa M, Ishibashi R, Kasahara M, Sugawara A, Tanaka I, Nakao K (1997) Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30:358–362CrossRefPubMed Goto M, Mukoyama M, Suga S, Matsumoto T, Nakagawa M, Ishibashi R, Kasahara M, Sugawara A, Tanaka I, Nakao K (1997) Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30:358–362CrossRefPubMed
58.
go back to reference Santos RA, Simoes E, Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263CrossRefPubMedPubMedCentral Santos RA, Simoes E, Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263CrossRefPubMedPubMedCentral
59.
go back to reference Darby IA, Sernia C (1995) In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys. Cell Tissue Res 281:197–206CrossRefPubMed Darby IA, Sernia C (1995) In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys. Cell Tissue Res 281:197–206CrossRefPubMed
60.
go back to reference Niimura F, Okubo S, Fogo A, Ichikawa I (1997) Temporal and spatial expression pattern of the angiotensinogen gene in mice and rats. Am J Physiol 272:R142–R147CrossRefPubMed Niimura F, Okubo S, Fogo A, Ichikawa I (1997) Temporal and spatial expression pattern of the angiotensinogen gene in mice and rats. Am J Physiol 272:R142–R147CrossRefPubMed
61.
go back to reference Prieto M, Dipp S, Meleg-Smith S, El-Dahr SS (2001) Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics 6:29–37CrossRefPubMed Prieto M, Dipp S, Meleg-Smith S, El-Dahr SS (2001) Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics 6:29–37CrossRefPubMed
62.
go back to reference Iosipiv SM (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol 285:F199–F207 Iosipiv SM (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol 285:F199–F207
63.
go back to reference Schutz S, Le Moullec J-M, Corvol P, Gasc JM (1996) Early expression of all the components of the renin–angiotensin system in human development. Am J Pathol 149:2067–2079PubMedPubMedCentral Schutz S, Le Moullec J-M, Corvol P, Gasc JM (1996) Early expression of all the components of the renin–angiotensin system in human development. Am J Pathol 149:2067–2079PubMedPubMedCentral
64.
go back to reference Jones CA, Sigmund CD, McGowan RA, Kane-Haas CM, Gross KW (1990) Expression of murine renin genes during fetal development. Mol Endocrinol 4:375–383CrossRefPubMed Jones CA, Sigmund CD, McGowan RA, Kane-Haas CM, Gross KW (1990) Expression of murine renin genes during fetal development. Mol Endocrinol 4:375–383CrossRefPubMed
65.
go back to reference Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, Peach MJ (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257:F850–F858PubMed Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, Peach MJ (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257:F850–F858PubMed
66.
go back to reference Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol 281:F345–F356 Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol 281:F345–F356
67.
go back to reference Jung FF, Bouyounes B, Barrio R, Tang SS, Diamant D, Ingelfinger JR (1993) Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles. Pediatr Nephrol 7:834–840CrossRefPubMed Jung FF, Bouyounes B, Barrio R, Tang SS, Diamant D, Ingelfinger JR (1993) Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles. Pediatr Nephrol 7:834–840CrossRefPubMed
68.
go back to reference Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension 23:369–374CrossRefPubMed Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension 23:369–374CrossRefPubMed
69.
go back to reference Yosipiv IV, El-Dahr SS (1996) Activation of angiotensin-generating systems in the developing rat kidney. Hypertension 27:281–286CrossRefPubMed Yosipiv IV, El-Dahr SS (1996) Activation of angiotensin-generating systems in the developing rat kidney. Hypertension 27:281–286CrossRefPubMed
70.
go back to reference Norwood VF, Craig MR, Harris JM, Gomez RA (1997) Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol 272:R662–R668PubMed Norwood VF, Craig MR, Harris JM, Gomez RA (1997) Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol 272:R662–R668PubMed
71.
go back to reference Kakuchi J, Ichiki T, Kiyama S, Hogan BL, Fogo A, Inagami T, Ichikawa I (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47:140–147CrossRefPubMed Kakuchi J, Ichiki T, Kiyama S, Hogan BL, Fogo A, Inagami T, Ichikawa I (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47:140–147CrossRefPubMed
72.
go back to reference Garcia-Villalba P, Denkers ND, Wittwer CT, Wittwer CT, Hoff C, Nelson RD, Mauch TJ (2003) Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron Exp Nephrol 94:e154–e159CrossRefPubMed Garcia-Villalba P, Denkers ND, Wittwer CT, Wittwer CT, Hoff C, Nelson RD, Mauch TJ (2003) Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron Exp Nephrol 94:e154–e159CrossRefPubMed
73.
go back to reference Song R, Spera M, Garrett C, El-Dahr SS, Yosypiv IV (2010) Angiotensin II AT2 Receptor Regulates Ureteric Bud Morphogenesis. Am J Physiol 298:F807–F817CrossRef Song R, Spera M, Garrett C, El-Dahr SS, Yosypiv IV (2010) Angiotensin II AT2 Receptor Regulates Ureteric Bud Morphogenesis. Am J Physiol 298:F807–F817CrossRef
74.
go back to reference Miyazaki Y, Tsuchida S, Nishimura H, Pope JC 4th, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102:1489–1497CrossRefPubMedPubMedCentral Miyazaki Y, Tsuchida S, Nishimura H, Pope JC 4th, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102:1489–1497CrossRefPubMedPubMedCentral
75.
go back to reference Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H, Wickman A, Gustafsson H, Petersen J, Adams MA (1994) Renin–angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int 45:485–492CrossRefPubMed Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H, Wickman A, Gustafsson H, Petersen J, Adams MA (1994) Renin–angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int 45:485–492CrossRefPubMed
76.
go back to reference Guron G, Adams MA, Sundelin B, Friberg P (1997) Neonatal angiotensin-converting enzyme inhibition in the rat induces persistent abnormalities in renal function and histology. Hypertension 29:91–97CrossRefPubMed Guron G, Adams MA, Sundelin B, Friberg P (1997) Neonatal angiotensin-converting enzyme inhibition in the rat induces persistent abnormalities in renal function and histology. Hypertension 29:91–97CrossRefPubMed
77.
go back to reference Tufro-McReddie A, Romano LM, Harris JM, Ferder L, Gomez RA (1995) Angiotensin II regulates nephrogenesis and renal vascular development. Am J Physiol 38:F110–F115 Tufro-McReddie A, Romano LM, Harris JM, Ferder L, Gomez RA (1995) Angiotensin II regulates nephrogenesis and renal vascular development. Am J Physiol 38:F110–F115
78.
go back to reference Yoo KH, Wolstenholme JT, Chevalier RL (1997) Angiotensin-converting enzyme inhibition decreases growth factor expression in the neonatal rat kidney. Pediatr Res 42:588–592CrossRefPubMed Yoo KH, Wolstenholme JT, Chevalier RL (1997) Angiotensin-converting enzyme inhibition decreases growth factor expression in the neonatal rat kidney. Pediatr Res 42:588–592CrossRefPubMed
79.
go back to reference Guron G, Marcussen N, Nilsson A, Sundelin B, Friberg P (1999) Postnatal time frame for renal vulnerability to enalapril in rats. J Am Soc Nephrol 10:1550–1560PubMed Guron G, Marcussen N, Nilsson A, Sundelin B, Friberg P (1999) Postnatal time frame for renal vulnerability to enalapril in rats. J Am Soc Nephrol 10:1550–1560PubMed
80.
go back to reference Guron G, Nilsson A, Nitescu N, Nielsen S, Sundelin B, Frøkiaer J, Friberg P (1999) Mechanisms of impaired urinary concentrating ability in adult rats treated neonatally with enalapril. Acta Physiol Scand 165:103–112CrossRefPubMed Guron G, Nilsson A, Nitescu N, Nielsen S, Sundelin B, Frøkiaer J, Friberg P (1999) Mechanisms of impaired urinary concentrating ability in adult rats treated neonatally with enalapril. Acta Physiol Scand 165:103–112CrossRefPubMed
81.
go back to reference Cupples WA, Sakai T, Marsh DJ (1988) Angiotensin II and prostaglandins in control of vasa recta blood flow. Am J Physiol 254:F417–F424CrossRefPubMed Cupples WA, Sakai T, Marsh DJ (1988) Angiotensin II and prostaglandins in control of vasa recta blood flow. Am J Physiol 254:F417–F424CrossRefPubMed
82.
go back to reference Moore LC, Marsh DJ (1980) How descending limb of Henle’s loop permeability affects hypertonic urine formation. Am J Physiol 239:F57–F71PubMed Moore LC, Marsh DJ (1980) How descending limb of Henle’s loop permeability affects hypertonic urine formation. Am J Physiol 239:F57–F71PubMed
83.
go back to reference Brooks HL, Allred AJ, Beutler KT, Coffman TM, Knepper MA (2002) Targeted proteomic profiling of renal Na(+) transporter and channel abundances in angiotensin II type 1a receptor knockout mice. Hypertension 39:470–473CrossRefPubMed Brooks HL, Allred AJ, Beutler KT, Coffman TM, Knepper MA (2002) Targeted proteomic profiling of renal Na(+) transporter and channel abundances in angiotensin II type 1a receptor knockout mice. Hypertension 39:470–473CrossRefPubMed
84.
go back to reference Weiner ID, New AR, Milton AE, Tisher CC (1995) Regulation of luminal alkalinization and acidification in the cortical collecting duct by angiotensin II. Am J Physiol 269:F730–F738PubMed Weiner ID, New AR, Milton AE, Tisher CC (1995) Regulation of luminal alkalinization and acidification in the cortical collecting duct by angiotensin II. Am J Physiol 269:F730–F738PubMed
85.
go back to reference Tojo A, Tisher CC, Madsen KM (1994) Angiotensin II regulates H+−ATPase activity in rat cortical collecting duct. Am J Physiol 267:F1045–F1051CrossRefPubMed Tojo A, Tisher CC, Madsen KM (1994) Angiotensin II regulates H+−ATPase activity in rat cortical collecting duct. Am J Physiol 267:F1045–F1051CrossRefPubMed
86.
go back to reference Wei Y, Wang W (2003) Angiotensin II stimulates basolateral K channels in rat cortical collecting ducts. Am J Physiol 284:F175–F181 Wei Y, Wang W (2003) Angiotensin II stimulates basolateral K channels in rat cortical collecting ducts. Am J Physiol 284:F175–F181
87.
go back to reference Gembardt F, Heringer-Walther S, van Esch JH, Sterner-Kock A, van Veghel R, Le TH, Garrelds IM, Coffman TM, Danser AH, Schultheiss HP, Walther T (2008) Cardiovascular phenotype of mice lacking all three subtypes of angiotensin II receptors. FASEB J 22:3068–3077CrossRefPubMed Gembardt F, Heringer-Walther S, van Esch JH, Sterner-Kock A, van Veghel R, Le TH, Garrelds IM, Coffman TM, Danser AH, Schultheiss HP, Walther T (2008) Cardiovascular phenotype of mice lacking all three subtypes of angiotensin II receptors. FASEB J 22:3068–3077CrossRefPubMed
88.
go back to reference Oliverio MI, Delnomdedieu M, Best CF, Li P, Morris M, Callahan MF, Johnson GA, Smithies O, Coffman TM (2000) Abnormal water metabolism in mice lacking the type 1A receptor for ANG II. Am J Physiol 278:F75–F82 Oliverio MI, Delnomdedieu M, Best CF, Li P, Morris M, Callahan MF, Johnson GA, Smithies O, Coffman TM (2000) Abnormal water metabolism in mice lacking the type 1A receptor for ANG II. Am J Physiol 278:F75–F82
89.
go back to reference Marcorelles P, Gasc JM, Corvol P, Gubler MC (2006) Renal tubular dysgenesis, a not uncommon autosomal recessive disorder leading to oligohydramnios: role of the renin–angiotensin system. J Am Soc Nephrol 17:2253–2263CrossRefPubMed Marcorelles P, Gasc JM, Corvol P, Gubler MC (2006) Renal tubular dysgenesis, a not uncommon autosomal recessive disorder leading to oligohydramnios: role of the renin–angiotensin system. J Am Soc Nephrol 17:2253–2263CrossRefPubMed
90.
go back to reference MacDonald MS, Emery JL (1959) The late intrauterine and postnatal development of human renal glomeruli. J Anat 93:331–340PubMedPubMedCentral MacDonald MS, Emery JL (1959) The late intrauterine and postnatal development of human renal glomeruli. J Anat 93:331–340PubMedPubMedCentral
91.
go back to reference Davies JA, Bard JB (1996) Inductive interactions between the mesenchyme and the ureteric bud. Exp Nephrol 4:77–85PubMed Davies JA, Bard JB (1996) Inductive interactions between the mesenchyme and the ureteric bud. Exp Nephrol 4:77–85PubMed
92.
go back to reference Aperia A, Herin P (1975) Development of glomerular perfusion rate and nephron filtration rate in rats 17–60 days old. Am J Physiol 228:1319–1325CrossRefPubMed Aperia A, Herin P (1975) Development of glomerular perfusion rate and nephron filtration rate in rats 17–60 days old. Am J Physiol 228:1319–1325CrossRefPubMed
93.
go back to reference Vize PD, Woolf AS, Bard JBL (2003) The Kidney. Elsevier Science, London Vize PD, Woolf AS, Bard JBL (2003) The Kidney. Elsevier Science, London
94.
go back to reference Oshima K, Miyazaki Y, Brock JW, Adams MC, Ichikawa I, Pope JC (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852CrossRefPubMed Oshima K, Miyazaki Y, Brock JW, Adams MC, Ichikawa I, Pope JC (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852CrossRefPubMed
95.
go back to reference Yosypiv IV, Schroeder M, El-Dahr SS (2006) AT1R-EGFR crosstalk regulates ureteric bud branching morphogenesis. J Am Soc Nephrol 17:1005–1014CrossRefPubMed Yosypiv IV, Schroeder M, El-Dahr SS (2006) AT1R-EGFR crosstalk regulates ureteric bud branching morphogenesis. J Am Soc Nephrol 17:1005–1014CrossRefPubMed
96.
go back to reference Song R, Van Buren T, Yosypiv IV (2010) Histone deacetylases are critical regulators of the renin–angiotensin system during ureteric bud branching morphogenesis. Pediatr Res 67:573–578CrossRefPubMedPubMedCentral Song R, Van Buren T, Yosypiv IV (2010) Histone deacetylases are critical regulators of the renin–angiotensin system during ureteric bud branching morphogenesis. Pediatr Res 67:573–578CrossRefPubMedPubMedCentral
97.
go back to reference Zhang SL, Moini B, Ingelfinger JR (2004) Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 15:1452–1465CrossRefPubMed Zhang SL, Moini B, Ingelfinger JR (2004) Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 15:1452–1465CrossRefPubMed
98.
go back to reference Yosypiv IV, Boh MK, Spera M, El-Dahr SS (2008) Downregulation of Spry-1, an inhibitor of GDNF/Ret, as a mechanism for angiotensin II-induced ureteric bud branching. Kidney Int 74:1287–1293CrossRefPubMedPubMedCentral Yosypiv IV, Boh MK, Spera M, El-Dahr SS (2008) Downregulation of Spry-1, an inhibitor of GDNF/Ret, as a mechanism for angiotensin II-induced ureteric bud branching. Kidney Int 74:1287–1293CrossRefPubMedPubMedCentral
99.
go back to reference Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73CrossRefPubMed Sánchez MP, Silos-Santiago I, Frisén J, He B, Lira SA, Barbacid M (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73CrossRefPubMed
100.
go back to reference Schuchardt A, D'Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 122:1919–1929PubMed Schuchardt A, D'Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 122:1919–1929PubMed
101.
go back to reference Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82:344–351CrossRefPubMedPubMedCentral Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82:344–351CrossRefPubMedPubMedCentral
102.
go back to reference AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U (2001) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 276:39721–39726CrossRefPubMed AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U (2001) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 276:39721–39726CrossRefPubMed
103.
go back to reference Miura S, Matsuo Y, Kiya Y, Karnik SS, Saku K (2010) Molecular mechanisms of the antagonistic action between AT1 and AT2 receptors. Biochem Biophys Res Commun 391:85–90CrossRefPubMed Miura S, Matsuo Y, Kiya Y, Karnik SS, Saku K (2010) Molecular mechanisms of the antagonistic action between AT1 and AT2 receptors. Biochem Biophys Res Commun 391:85–90CrossRefPubMed
104.
go back to reference Song R, Spera M, Garrett C, Yosypiv IV (2010) Angiotensin II-induced activation of c-Ret signaling is critical in ureteric bud branching morphogenesis. Mech Dev 127:21–27CrossRefPubMed Song R, Spera M, Garrett C, Yosypiv IV (2010) Angiotensin II-induced activation of c-Ret signaling is critical in ureteric bud branching morphogenesis. Mech Dev 127:21–27CrossRefPubMed
105.
go back to reference Besset V, Scott RP, Ibáñez CF (2000) Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 275:39159–39166CrossRefPubMed Besset V, Scott RP, Ibáñez CF (2000) Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 275:39159–39166CrossRefPubMed
106.
107.
go back to reference Fisher CE, Michael L, Barnett MW, Davies JA (2001) Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development 128:4329–4338PubMed Fisher CE, Michael L, Barnett MW, Davies JA (2001) Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development 128:4329–4338PubMed
108.
go back to reference Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, Harris RC (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234CrossRefPubMed Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, Harris RC (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234CrossRefPubMed
109.
go back to reference Sakaguchi K, Okabayashi Y, Kido Y, Kimura S, Matsumura Y, Inushima K, Kasuga M (1998) Shc phosphotyrosine-binding domain dominantly interacts with epidermal growth factor receptors and mediates Ras activation in intact cells. Mol Endocrinol 12:536–543CrossRefPubMed Sakaguchi K, Okabayashi Y, Kido Y, Kimura S, Matsumura Y, Inushima K, Kasuga M (1998) Shc phosphotyrosine-binding domain dominantly interacts with epidermal growth factor receptors and mediates Ras activation in intact cells. Mol Endocrinol 12:536–543CrossRefPubMed
110.
go back to reference Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888CrossRefPubMed Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888CrossRefPubMed
111.
go back to reference Arnould C, Lelièvre-Pégorier M, Ronco P, Lelongt B (2009) MMP9 limits apoptosis and stimulates branching morphogenesis during kidney development. J Am Soc Nephrol 20:2171–2180CrossRefPubMedPubMedCentral Arnould C, Lelièvre-Pégorier M, Ronco P, Lelongt B (2009) MMP9 limits apoptosis and stimulates branching morphogenesis during kidney development. J Am Soc Nephrol 20:2171–2180CrossRefPubMedPubMedCentral
112.
go back to reference Ushio-Fukai M, Hilenski L, Santanam N, Becker PL, Ma Y, Criendling KK, Alexander RW (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem 276:48269–48275CrossRefPubMed Ushio-Fukai M, Hilenski L, Santanam N, Becker PL, Ma Y, Criendling KK, Alexander RW (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem 276:48269–48275CrossRefPubMed
114.
go back to reference Watanabe G, Lee RJ, Albanese C, Rainey WE, Batle D, Pestell RG (1996) Angiotensin II activation of cyclin D1-dependent kinase activity. J Biol Chem 271:22570–22577CrossRefPubMed Watanabe G, Lee RJ, Albanese C, Rainey WE, Batle D, Pestell RG (1996) Angiotensin II activation of cyclin D1-dependent kinase activity. J Biol Chem 271:22570–22577CrossRefPubMed
115.
go back to reference Smith CL (2008) A shifting paradigm: histone deacetylases and transcriptional activation. BioEssays 30:15–24CrossRefPubMed Smith CL (2008) A shifting paradigm: histone deacetylases and transcriptional activation. BioEssays 30:15–24CrossRefPubMed
117.
go back to reference Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13:580–592CrossRefPubMedPubMedCentral Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13:580–592CrossRefPubMedPubMedCentral
118.
go back to reference Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42CrossRefPubMedPubMedCentral Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42CrossRefPubMedPubMedCentral
119.
go back to reference Pentz ES, Lopez ML, Cordaillat M, Gomez RA (2008) Identity of the renin cell is mediated by cAMP and chromatin remodeling: an in vitro model for studying cell recruitment and plasticity. Am J Physiol 294:H699–H707 Pentz ES, Lopez ML, Cordaillat M, Gomez RA (2008) Identity of the renin cell is mediated by cAMP and chromatin remodeling: an in vitro model for studying cell recruitment and plasticity. Am J Physiol 294:H699–H707
120.
go back to reference Ogryzko VV, Schiltz RL, Russanova V, Hioward BH (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959CrossRefPubMed Ogryzko VV, Schiltz RL, Russanova V, Hioward BH (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959CrossRefPubMed
121.
go back to reference Gomez RA, Pentz ES, Jin X, Cordaillat M, Sequeira Lopez ML (2009) CBP and p300 are essential for renin cell identity and morphological integrity of the kidney. Am J Physiol 296:H1255–H1262 Gomez RA, Pentz ES, Jin X, Cordaillat M, Sequeira Lopez ML (2009) CBP and p300 are essential for renin cell identity and morphological integrity of the kidney. Am J Physiol 296:H1255–H1262
Metadata
Title
Renin–angiotensin system in ureteric bud branching morphogenesis: insights into the mechanisms
Author
Ihor V. Yosypiv
Publication date
01-09-2011
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 9/2011
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-011-1820-2

Other articles of this Issue 9/2011

Pediatric Nephrology 9/2011 Go to the issue

Abstracts

Abstract

Abstracts

ORAL SESSION