Skip to main content
Top
Published in: Pediatric Nephrology 9/2011

01-09-2011 | Review

Kidney repair and stem cells: a complex and controversial process

Authors: Brian A. Yeagy, Stephanie Cherqui

Published in: Pediatric Nephrology | Issue 9/2011

Login to get access

Abstract

Over the last decade, stem cells have been the topic of much debate and investigation for their regenerative potential in the case of renal injury. This review focuses on bone marrow stem cells (BMSC) for renal repair and the potential origins of the controversial results between studies. Some authors have shown that BMSC can differentiate into renal cells and reverse renal dysfunction while others obtained contradictory results. One significant variation between these studies is the choice of BMSC used. According to the literature and our own experience, unfractionated bone marrow cells and hematopoietic stem cells are able to lead to long-term cell tissue engraftment and repair, whereas mesenchymal stem cells have a short-term paracrine effect. Detection of the bone-marrow-derived cells is also an important source of error. However, the major difference between studies is the model of kidney injury used. Two categories of models have to be distinguished: acute and chronic kidney disease. However, variation within these categories also exists. The outcomes of various strategies for BMSC transplantation after injury to the kidney must be compared within a single model and cannot be transposed from one model to another.
Literature
1.
go back to reference Hopkins C, Li J, Rae F, Little MH (2009) Stem cell options for kidney disease. J Pathol 217:265–281CrossRefPubMed Hopkins C, Li J, Rae F, Little MH (2009) Stem cell options for kidney disease. J Pathol 217:265–281CrossRefPubMed
2.
4.
go back to reference Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95CrossRefPubMed Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95CrossRefPubMed
5.
go back to reference Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918CrossRefPubMed Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918CrossRefPubMed
6.
go back to reference Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313CrossRefPubMed Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313CrossRefPubMed
7.
go back to reference Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C, Pastore I, Marasso R, Madon E (2003) Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord 4:158–161CrossRefPubMed Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C, Pastore I, Marasso R, Madon E (2003) Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord 4:158–161CrossRefPubMed
8.
go back to reference Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222CrossRefPubMed Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222CrossRefPubMed
9.
go back to reference Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235CrossRefPubMed Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235CrossRefPubMed
10.
go back to reference De Broe ME (2005) Tubular regeneration and the role of bone marrow cells: 'stem cell therapy'–a panacea? Nephrol Dial Transplant 20:2318–2320CrossRefPubMed De Broe ME (2005) Tubular regeneration and the role of bone marrow cells: 'stem cell therapy'–a panacea? Nephrol Dial Transplant 20:2318–2320CrossRefPubMed
11.
go back to reference Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12:2625–2635PubMed Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12:2625–2635PubMed
12.
go back to reference Li B, Morioka T, Uchiyama M, Oite T (2006) Bone marrow cell infusion ameliorates progressive glomerulosclerosis in an experimental rat model. Kidney Int 69:323–330CrossRefPubMed Li B, Morioka T, Uchiyama M, Oite T (2006) Bone marrow cell infusion ameliorates progressive glomerulosclerosis in an experimental rat model. Kidney Int 69:323–330CrossRefPubMed
13.
go back to reference Syres K, Harrison F, Tadlock M, Jester JV, Simpson J, Roy S, Salomon DR, Cherqui S (2009) Successful treatment of the murine model of cystinosis using bone marrow cell transplantation. Blood 114:2542–2552CrossRefPubMed Syres K, Harrison F, Tadlock M, Jester JV, Simpson J, Roy S, Salomon DR, Cherqui S (2009) Successful treatment of the murine model of cystinosis using bone marrow cell transplantation. Blood 114:2542–2552CrossRefPubMed
14.
go back to reference Li B, Cohen A, Hudson TE, Motlagh D, Amrani DL, Duffield JS (2010) Mobilized human hematopoietic stem/progenitor cells promote kidney repair after ischemia/reperfusion injury. Circulation 121:2211–2220CrossRefPubMedPubMedCentral Li B, Cohen A, Hudson TE, Motlagh D, Amrani DL, Duffield JS (2010) Mobilized human hematopoietic stem/progenitor cells promote kidney repair after ischemia/reperfusion injury. Circulation 121:2211–2220CrossRefPubMedPubMedCentral
15.
go back to reference Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804CrossRefPubMed Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804CrossRefPubMed
16.
go back to reference Semedo P, Wang PM, Andreucci TH, Cenedeze MA, Teixeira VP, Reis MA, Pacheco-Silva A, Camara NO (2007) Mesenchymal stem cells ameliorate tissue damages triggered by renal ischemia and reperfusion injury. Transplant Proc 39:421–423CrossRefPubMed Semedo P, Wang PM, Andreucci TH, Cenedeze MA, Teixeira VP, Reis MA, Pacheco-Silva A, Camara NO (2007) Mesenchymal stem cells ameliorate tissue damages triggered by renal ischemia and reperfusion injury. Transplant Proc 39:421–423CrossRefPubMed
17.
go back to reference Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755CrossRefPubMedPubMedCentral Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755CrossRefPubMedPubMedCentral
18.
go back to reference Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115:1756–1764CrossRefPubMedPubMedCentral Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115:1756–1764CrossRefPubMedPubMedCentral
19.
go back to reference Stokman G, Leemans JC, Claessen N, Weening JJ, Florquin S (2005) Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution. J Am Soc Nephrol 16:1684–1692CrossRefPubMed Stokman G, Leemans JC, Claessen N, Weening JJ, Florquin S (2005) Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution. J Am Soc Nephrol 16:1684–1692CrossRefPubMed
20.
go back to reference Stokman G, Leemans JC, Stroo I, Hoedemaeker I, Claessen N, Teske GJ, Weening JJ, Florquin S (2008) Enhanced mobilization of bone marrow cells does not ameliorate renal fibrosis. Nephrol Dial Transplant 23:483–491CrossRefPubMed Stokman G, Leemans JC, Stroo I, Hoedemaeker I, Claessen N, Teske GJ, Weening JJ, Florquin S (2008) Enhanced mobilization of bone marrow cells does not ameliorate renal fibrosis. Nephrol Dial Transplant 23:483–491CrossRefPubMed
22.
go back to reference Quesenberry PJ, Aliotta JM (2008) The paradoxical dynamism of marrow stem cells: considerations of stem cells, niches, and microvesicles. Stem Cell Rev 4:137–147CrossRefPubMedPubMedCentral Quesenberry PJ, Aliotta JM (2008) The paradoxical dynamism of marrow stem cells: considerations of stem cells, niches, and microvesicles. Stem Cell Rev 4:137–147CrossRefPubMedPubMedCentral
23.
go back to reference Quesenberry PJ, Colvin G, Dooner G, Dooner M, Aliotta JM, Johnson K (2007) The stem cell continuum: cell cycle, injury, and phenotype lability. Ann NY Acad Sci 1106:20–29CrossRefPubMed Quesenberry PJ, Colvin G, Dooner G, Dooner M, Aliotta JM, Johnson K (2007) The stem cell continuum: cell cycle, injury, and phenotype lability. Ann NY Acad Sci 1106:20–29CrossRefPubMed
24.
go back to reference Gupta S, Verfaillie C, Chmielewski D, Kim Y, Rosenberg ME (2002) A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int 62:1285–1290CrossRefPubMed Gupta S, Verfaillie C, Chmielewski D, Kim Y, Rosenberg ME (2002) A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int 62:1285–1290CrossRefPubMed
25.
go back to reference Cornacchia F, Fornoni A, Plati AR, Thomas A, Wang Y, Inverardi L, Striker LJ, Striker GE (2001) Glomerulosclerosis is transmitted by bone marrow-derived mesangial cell progenitors. J Clin Invest 108:1649–1656CrossRefPubMedPubMedCentral Cornacchia F, Fornoni A, Plati AR, Thomas A, Wang Y, Inverardi L, Striker LJ, Striker GE (2001) Glomerulosclerosis is transmitted by bone marrow-derived mesangial cell progenitors. J Clin Invest 108:1649–1656CrossRefPubMedPubMedCentral
26.
go back to reference Rookmaaker MB, Smits AM, Tolboom H, Van 't Wout K, Martens AC, Goldschmeding R, Joles JA, Van Zonneveld AJ, Grone HJ, Rabelink TJ, Verhaar MC (2003) Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am J Pathol 163:553–562CrossRefPubMedPubMedCentral Rookmaaker MB, Smits AM, Tolboom H, Van 't Wout K, Martens AC, Goldschmeding R, Joles JA, Van Zonneveld AJ, Grone HJ, Rabelink TJ, Verhaar MC (2003) Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am J Pathol 163:553–562CrossRefPubMedPubMedCentral
27.
go back to reference Szczypka MS, Westover AJ, Clouthier SG, Ferrara JL, Humes HD (2005) Rare incorporation of bone marrow-derived cells into kidney after folic acid-induced injury. Stem Cells 23:44–54CrossRefPubMed Szczypka MS, Westover AJ, Clouthier SG, Ferrara JL, Humes HD (2005) Rare incorporation of bone marrow-derived cells into kidney after folic acid-induced injury. Stem Cells 23:44–54CrossRefPubMed
28.
go back to reference Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112:42–49CrossRefPubMedPubMedCentral Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112:42–49CrossRefPubMedPubMedCentral
29.
go back to reference Fang TC, Otto WR, Rao J, Jeffery R, Hunt T, Alison MR, Cook HT, Wright NA, Poulsom R (2008) Haematopoietic lineage-committed bone marrow cells, but not cloned cultured mesenchymal stem cells, contribute to regeneration of renal tubular epithelium after HgCl 2-induced acute tubular injury. Cell Prolif 41:575–591CrossRefPubMed Fang TC, Otto WR, Rao J, Jeffery R, Hunt T, Alison MR, Cook HT, Wright NA, Poulsom R (2008) Haematopoietic lineage-committed bone marrow cells, but not cloned cultured mesenchymal stem cells, contribute to regeneration of renal tubular epithelium after HgCl 2-induced acute tubular injury. Cell Prolif 41:575–591CrossRefPubMed
30.
go back to reference Haq M, Norman J, Saba SR, Ramirez G, Rabb H (1998) Role of IL-1 in renal ischemic reperfusion injury. J Am Soc Nephrol 9:614–619PubMed Haq M, Norman J, Saba SR, Ramirez G, Rabb H (1998) Role of IL-1 in renal ischemic reperfusion injury. J Am Soc Nephrol 9:614–619PubMed
31.
go back to reference Ysebaert DK, De Greef KE, De Beuf A, Van Rompay AR, Vercauteren S, Persy VP, De Broe ME (2004) T cells as mediators in renal ischemia/reperfusion injury. Kidney Int 66:491–496CrossRefPubMed Ysebaert DK, De Greef KE, De Beuf A, Van Rompay AR, Vercauteren S, Persy VP, De Broe ME (2004) T cells as mediators in renal ischemia/reperfusion injury. Kidney Int 66:491–496CrossRefPubMed
32.
go back to reference Patel NS, Chatterjee PK, Di Paola R, Mazzon E, Britti D, De Sarro A, Cuzzocrea S, Thiemermann C (2005) Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J Pharmacol Exp Ther 312:1170–1178CrossRefPubMed Patel NS, Chatterjee PK, Di Paola R, Mazzon E, Britti D, De Sarro A, Cuzzocrea S, Thiemermann C (2005) Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J Pharmacol Exp Ther 312:1170–1178CrossRefPubMed
33.
go back to reference Bonventre JV, Zuk A (2004) Ischemic acute renal failure: an inflammatory disease? Kidney Int 66:480–485CrossRefPubMed Bonventre JV, Zuk A (2004) Ischemic acute renal failure: an inflammatory disease? Kidney Int 66:480–485CrossRefPubMed
34.
go back to reference Bensidhoum M, Chapel A, Francois S, Demarquay C, Mazurier C, Fouillard L, Bouchet S, Bertho JM, Gourmelon P, Aigueperse J, Charbord P, Gorin NC, Thierry D, Lopez M (2004) Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103:3313–3319CrossRefPubMed Bensidhoum M, Chapel A, Francois S, Demarquay C, Mazurier C, Fouillard L, Bouchet S, Bertho JM, Gourmelon P, Aigueperse J, Charbord P, Gorin NC, Thierry D, Lopez M (2004) Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103:3313–3319CrossRefPubMed
35.
go back to reference Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32:414–425CrossRefPubMed Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32:414–425CrossRefPubMed
36.
go back to reference Baer PC, Geiger H (2010) Mesenchymal stem cell interactions with growth factors on kidney repair. Curr Opin Nephrol Hypertens 19:1–6CrossRefPubMed Baer PC, Geiger H (2010) Mesenchymal stem cell interactions with growth factors on kidney repair. Curr Opin Nephrol Hypertens 19:1–6CrossRefPubMed
37.
go back to reference Kunter U, Rong S, Djuric Z, Boor P, Muller-Newen G, Yu D, Floege J (2006) Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17:2202–2212CrossRefPubMed Kunter U, Rong S, Djuric Z, Boor P, Muller-Newen G, Yu D, Floege J (2006) Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17:2202–2212CrossRefPubMed
38.
go back to reference Togel F, Cohen A, Zhang P, Yang Y, Hu Z, Westenfelder C (2009) Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev 18:475–485CrossRefPubMed Togel F, Cohen A, Zhang P, Yang Y, Hu Z, Westenfelder C (2009) Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem Cells Dev 18:475–485CrossRefPubMed
39.
go back to reference Schrijvers BF, Flyvbjerg A, De Vriese AS (2004) The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int 65:2003–2017CrossRefPubMed Schrijvers BF, Flyvbjerg A, De Vriese AS (2004) The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int 65:2003–2017CrossRefPubMed
40.
go back to reference Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496CrossRefPubMed Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG (2007) Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 18:2486–2496CrossRefPubMed
41.
go back to reference Vanikar AV, Trivedi HL, Feroze A, Kanodia KV, Dave SD, Shah PR (2010) Effect of co-transplantation of mesenchymal stem cells and hematopoietic stem cells as compared to hematopoietic stem cell transplantation alone in renal transplantation to achieve donor hypo-responsiveness. Int Urol Nephrol. doi:https://doi.org/10.1007/s11255-009-9659-1O Vanikar AV, Trivedi HL, Feroze A, Kanodia KV, Dave SD, Shah PR (2010) Effect of co-transplantation of mesenchymal stem cells and hematopoietic stem cells as compared to hematopoietic stem cell transplantation alone in renal transplantation to achieve donor hypo-responsiveness. Int Urol Nephrol. doi:https://​doi.​org/​10.​1007/​s11255-009-9659-1O
42.
go back to reference Huls M, Russel FG, Masereeuw R (2008) Insights into the role of bone marrow-derived stem cells in renal repair. Kidney Blood Press Res 31:104–110CrossRefPubMed Huls M, Russel FG, Masereeuw R (2008) Insights into the role of bone marrow-derived stem cells in renal repair. Kidney Blood Press Res 31:104–110CrossRefPubMed
43.
go back to reference Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L, Parente E, Becherucci F, Gacci M, Carini M, Maggi E, Serio M, Vannelli GB, Lasagni L, Romagnani S, Romagnani P (2009) Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 20:322–332CrossRefPubMedPubMedCentral Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L, Parente E, Becherucci F, Gacci M, Carini M, Maggi E, Serio M, Vannelli GB, Lasagni L, Romagnani S, Romagnani P (2009) Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 20:322–332CrossRefPubMedPubMedCentral
44.
go back to reference Maeshima A, Yamashita S, Nojima Y (2003) Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 14:3138–3146CrossRefPubMed Maeshima A, Yamashita S, Nojima Y (2003) Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol 14:3138–3146CrossRefPubMed
45.
46.
go back to reference Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, Camussi G (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555CrossRefPubMedPubMedCentral Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, Camussi G (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555CrossRefPubMedPubMedCentral
47.
go back to reference Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, Elger M, Kriz W, Floege J, Moeller MJ (2009) Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 20:333–343CrossRefPubMedPubMedCentral Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, Elger M, Kriz W, Floege J, Moeller MJ (2009) Recruitment of podocytes from glomerular parietal epithelial cells. J Am Soc Nephrol 20:333–343CrossRefPubMedPubMedCentral
48.
go back to reference Sequeira Lopez ML, Chernavvsky DR, Nomasa T, Wall L, Yanagisawa M, Gomez RA (2003) The embryo makes red blood cell progenitors in every tissue simultaneously with blood vessel morphogenesis. Am J Physiol Regul Integr Comp Physiol 284:R1126–1137CrossRefPubMed Sequeira Lopez ML, Chernavvsky DR, Nomasa T, Wall L, Yanagisawa M, Gomez RA (2003) The embryo makes red blood cell progenitors in every tissue simultaneously with blood vessel morphogenesis. Am J Physiol Regul Integr Comp Physiol 284:R1126–1137CrossRefPubMed
49.
go back to reference Spyridonidis A, Schmitt-Graff A, Tomann T, Dwenger A, Follo M, Behringer D, Finke J (2004) Epithelial tissue chimerism after human hematopoietic cell transplantation is a real phenomenon. Am J Pathol 164:1147–1155CrossRefPubMedPubMedCentral Spyridonidis A, Schmitt-Graff A, Tomann T, Dwenger A, Follo M, Behringer D, Finke J (2004) Epithelial tissue chimerism after human hematopoietic cell transplantation is a real phenomenon. Am J Pathol 164:1147–1155CrossRefPubMedPubMedCentral
50.
51.
go back to reference Anjos-Afonso F, Siapati EK, Bonnet D (2004) In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 117:5655–5664CrossRefPubMed Anjos-Afonso F, Siapati EK, Bonnet D (2004) In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 117:5655–5664CrossRefPubMed
52.
go back to reference Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) 'Green mice' as a source of ubiquitous green cells. FEBS Lett 407:313–319CrossRefPubMed Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) 'Green mice' as a source of ubiquitous green cells. FEBS Lett 407:313–319CrossRefPubMed
53.
go back to reference Swenson ES, Price JG, Brazelton T, Krause DS (2007) Limitations of green fluorescent protein as a cell lineage marker. Stem Cells 25:2593–2600CrossRefPubMed Swenson ES, Price JG, Brazelton T, Krause DS (2007) Limitations of green fluorescent protein as a cell lineage marker. Stem Cells 25:2593–2600CrossRefPubMed
54.
go back to reference Broekema M, Harmsen MC, Koerts JA, Petersen AH, van Luyn MJ, Navis G, Popa ER (2005) Determinants of tubular bone marrow-derived cell engraftment after renal ischemia/reperfusion in rats. Kidney Int 68:2572–2581CrossRefPubMed Broekema M, Harmsen MC, Koerts JA, Petersen AH, van Luyn MJ, Navis G, Popa ER (2005) Determinants of tubular bone marrow-derived cell engraftment after renal ischemia/reperfusion in rats. Kidney Int 68:2572–2581CrossRefPubMed
55.
go back to reference St-Louis M, Tanguay RM (1997) Mutations in the fumarylacetoacetate hydrolase gene causing hereditary tyrosinemia type I: overview. Hum Mutat 9:291–299CrossRefPubMed St-Louis M, Tanguay RM (1997) Mutations in the fumarylacetoacetate hydrolase gene causing hereditary tyrosinemia type I: overview. Hum Mutat 9:291–299CrossRefPubMed
56.
go back to reference Grompe M (2001) The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin Liver Dis 21:563–571CrossRefPubMed Grompe M (2001) The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin Liver Dis 21:563–571CrossRefPubMed
57.
go back to reference Grompe M, Lindstedt S, al-Dhalimy M, Kennaway NG, Papaconstantinou J, Torres-Ramos CA, Ou CN, Finegold M (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 10:453–460CrossRefPubMed Grompe M, Lindstedt S, al-Dhalimy M, Kennaway NG, Papaconstantinou J, Torres-Ramos CA, Ou CN, Finegold M (1995) Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 10:453–460CrossRefPubMed
58.
go back to reference Held PK, Al-Dhalimy M, Willenbring H, Akkari Y, Jiang S, Torimaru Y, Olson S, Fleming WH, Finegold M, Grompe M (2006) In vivo genetic selection of renal proximal tubules. Mol Ther 13:49–58CrossRefPubMed Held PK, Al-Dhalimy M, Willenbring H, Akkari Y, Jiang S, Torimaru Y, Olson S, Fleming WH, Finegold M, Grompe M (2006) In vivo genetic selection of renal proximal tubules. Mol Ther 13:49–58CrossRefPubMed
59.
go back to reference Cosgrove D, Meehan DT, Grunkemeyer JA, Kornak JM, Sayers R, Hunter WJ, Samuelson GC (1996) Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes Dev 10:2981–2992CrossRefPubMed Cosgrove D, Meehan DT, Grunkemeyer JA, Kornak JM, Sayers R, Hunter WJ, Samuelson GC (1996) Collagen COL4A3 knockout: a mouse model for autosomal Alport syndrome. Genes Dev 10:2981–2992CrossRefPubMed
60.
go back to reference Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R (2006) Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA 103:7321–7326CrossRefPubMedPubMedCentral Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R (2006) Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA 103:7321–7326CrossRefPubMedPubMedCentral
61.
go back to reference Prodromidi EI, Poulsom R, Jeffery R, Roufosse CA, Pollard PJ, Pusey CD, Cook HT (2006) Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells 24:2448–2455CrossRefPubMed Prodromidi EI, Poulsom R, Jeffery R, Roufosse CA, Pollard PJ, Pusey CD, Cook HT (2006) Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells 24:2448–2455CrossRefPubMed
62.
go back to reference Katayama K, Kawano M, Naito I, Ishikawa H, Sado Y, Asakawa N, Murata T, Oosugi K, Kiyohara M, Ishikawa E, Ito M, Nomura S (2008) Irradiation prolongs survival of Alport mice. J Am Soc Nephrol 19:1692–1700CrossRefPubMedPubMedCentral Katayama K, Kawano M, Naito I, Ishikawa H, Sado Y, Asakawa N, Murata T, Oosugi K, Kiyohara M, Ishikawa E, Ito M, Nomura S (2008) Irradiation prolongs survival of Alport mice. J Am Soc Nephrol 19:1692–1700CrossRefPubMedPubMedCentral
63.
go back to reference Andrews KL, Mudd JL, Li C, Miner JH (2002) Quantitative trait loci influence renal disease progression in a mouse model of Alport syndrome. Am J Pathol 160:721–730CrossRefPubMedPubMedCentral Andrews KL, Mudd JL, Li C, Miner JH (2002) Quantitative trait loci influence renal disease progression in a mouse model of Alport syndrome. Am J Pathol 160:721–730CrossRefPubMedPubMedCentral
64.
go back to reference Cherqui S, Sevin C, Hamard G, Kalatzis V, Sich M, Pequignot MO, Gogat K, Abitbol M, Broyer M, Gubler MC, Antignac C (2002) Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis. Mol Cell Biol 22:7622–7632CrossRefPubMedPubMedCentral Cherqui S, Sevin C, Hamard G, Kalatzis V, Sich M, Pequignot MO, Gogat K, Abitbol M, Broyer M, Gubler MC, Antignac C (2002) Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis. Mol Cell Biol 22:7622–7632CrossRefPubMedPubMedCentral
65.
go back to reference Nevo N, Chol M, Bailleux A, Kalatzis V, Morisset L, Devuyst O, Gubler MC, Antignac C (2010) Renal phenotype of the cystinosis mouse model is dependent upon genetic background. Nephrol Dial Transplant 25:1059–1066CrossRefPubMed Nevo N, Chol M, Bailleux A, Kalatzis V, Morisset L, Devuyst O, Gubler MC, Antignac C (2010) Renal phenotype of the cystinosis mouse model is dependent upon genetic background. Nephrol Dial Transplant 25:1059–1066CrossRefPubMed
Metadata
Title
Kidney repair and stem cells: a complex and controversial process
Authors
Brian A. Yeagy
Stephanie Cherqui
Publication date
01-09-2011
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 9/2011
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-011-1789-x

Other articles of this Issue 9/2011

Pediatric Nephrology 9/2011 Go to the issue

Abstracts

Abstract