Skip to main content
Top
Published in: Pediatric Nephrology 11/2007

01-11-2007 | Educational Feature

Glomerular filtration rate measurement and estimation in chronic kidney disease

Authors: George J. Schwartz, Susan L. Furth

Published in: Pediatric Nephrology | Issue 11/2007

Login to get access

Abstract

Glomerular filtration rate (GFR) assesses kidney function. GFR is measured by renal clearance techniques; inulin clearance is the gold standard but is not easily measured. Thus, other methods to determine GFR have been utilized. Endogenous creatinine clearance (CrCl) is the most widely used, but creatinine secretion falsely elevates GFR. Cimetidine inhibits creatinine secretion, such that CrCl equals GFR, provided there are no difficulties with bladder emptying. Estimation of GFR from serum creatinine (e.g. Schwartz formula) is useful clinically; however, such formulae have not been updated for enzymatic creatinine autoanalyzers. Cystatin C, a small protein, is produced at a relatively constant rate and is reabsorbed in the proximal tubule. Cystatin C may be more sensitive than creatinine in detecting a reduction in GFR, but further studies are needed to prove this. Single injection (plasma) clearance techniques are the most precise measures of GFR. Iohexol is an exogenous marker that is comparable to inulin and 51Cr-EDTA and can be measured by high-performance liquid chromatography (HPLC). Our pilot and the Chronic Kidney Disease in Children (CKiD) North American studies show that iohexol can accurately measure GFR using a four-point plasma disappearance curve national studies show that iohexol can accurately measure GFR using a four-point plasma disappearance curve (10, 30, 120, and 300 min) or, in most cases, a two-point disappearance time (120 and 300 min).
Literature
1.
go back to reference Smith HW (1951) The kidney. Structure and function in health and disease. Oxford University Press, New York, pp 492–519 Smith HW (1951) The kidney. Structure and function in health and disease. Oxford University Press, New York, pp 492–519
2.
go back to reference McCance RA, Widdowson EM (1952) The correct physiological basis on which to compare infant and adult renal function. Lancet 2:860–862PubMed McCance RA, Widdowson EM (1952) The correct physiological basis on which to compare infant and adult renal function. Lancet 2:860–862PubMed
3.
go back to reference Peters AM, Gordon I, Sixt R (1994) Normalization of glomerular filtration rate in children: body surface area, body weight or extracellular fluid volume? J Nucl Med 35:438–444PubMed Peters AM, Gordon I, Sixt R (1994) Normalization of glomerular filtration rate in children: body surface area, body weight or extracellular fluid volume? J Nucl Med 35:438–444PubMed
4.
go back to reference Kanwar YS, Venkatachalam MA (1992) Ultrastructure of glomerulus and juxtaglomerular apparatus, chap. 1. In: Windhager EE (ed) Handbook of physiology, section 8: Physiology vol 1. Oxford University Press, NY, pp 3–40 Kanwar YS, Venkatachalam MA (1992) Ultrastructure of glomerulus and juxtaglomerular apparatus, chap. 1. In: Windhager EE (ed) Handbook of physiology, section 8: Physiology vol 1. Oxford University Press, NY, pp 3–40
5.
go back to reference Hoy WE, Douglas-Denton RN, Hughson MD, Cass A, Johnson K, Bertram JF (2003) A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int Suppl 83:S31–S37 Hoy WE, Douglas-Denton RN, Hughson MD, Cass A, Johnson K, Bertram JF (2003) A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int Suppl 83:S31–S37
6.
go back to reference Hughson MD, Douglas-Denton R, Bertram JF, Hoy WE (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69:671–678PubMed Hughson MD, Douglas-Denton R, Bertram JF, Hoy WE (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69:671–678PubMed
7.
go back to reference Rose BD, Post TW (2001) Renal circulation and glomerular filtration rate, chap. 2. In: Wonsiewicz M, McCullough K, Davis K (eds) Clinical physiology of acid–base and electrolyte disorders, 5th edn. McGraw-Hill, NY, pp 21–70 Rose BD, Post TW (2001) Renal circulation and glomerular filtration rate, chap. 2. In: Wonsiewicz M, McCullough K, Davis K (eds) Clinical physiology of acid–base and electrolyte disorders, 5th edn. McGraw-Hill, NY, pp 21–70
8.
go back to reference Kanwar YS (1984) Biophysiology of glomerular filtration and proteinuria. Lab Invest 51:7–21PubMed Kanwar YS (1984) Biophysiology of glomerular filtration and proteinuria. Lab Invest 51:7–21PubMed
9.
go back to reference Addis T, Myers BA, Oliver J (1924) The regulation of renal activity. IX. The effect of unilateral nephrectomy on the function and structure of the remaining kidney. Arch Intern Med 34:243–257 Addis T, Myers BA, Oliver J (1924) The regulation of renal activity. IX. The effect of unilateral nephrectomy on the function and structure of the remaining kidney. Arch Intern Med 34:243–257
10.
go back to reference Dalton RN, Haycock GB (1999) Laboratory investigation, chap. 20. In: Barratt TM, Avner ED, Harmon WE (eds) Pediatric nephrology, 4th edn. Lippincott Williams & Wilkins, Baltimore, pp 343–364 Dalton RN, Haycock GB (1999) Laboratory investigation, chap. 20. In: Barratt TM, Avner ED, Harmon WE (eds) Pediatric nephrology, 4th edn. Lippincott Williams & Wilkins, Baltimore, pp 343–364
11.
go back to reference Arant BS Jr, Edelmann CM Jr, Spitzer A (1972) The congruence of creatinine and inulin clearances in children: Use of the Technicon autoanalyzer. J Pediatr 81:559–561PubMed Arant BS Jr, Edelmann CM Jr, Spitzer A (1972) The congruence of creatinine and inulin clearances in children: Use of the Technicon autoanalyzer. J Pediatr 81:559–561PubMed
12.
go back to reference Cole BR, Giangiacomo J, Ingelfinger JR, Robson AM (1972) Measurement of renal function without urine collection. N Engl J Med 287:1109–1114PubMed Cole BR, Giangiacomo J, Ingelfinger JR, Robson AM (1972) Measurement of renal function without urine collection. N Engl J Med 287:1109–1114PubMed
13.
go back to reference U.S. Renal Data System, USRDS 2002 Annual data report (2002) Atlas of end-stage renal disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD U.S. Renal Data System, USRDS 2002 Annual data report (2002) Atlas of end-stage renal disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
14.
go back to reference Talbot NB (1938) Measurement of obesity by the creatinine coefficient. Am J Dis Child 55:42–50 Talbot NB (1938) Measurement of obesity by the creatinine coefficient. Am J Dis Child 55:42–50
15.
go back to reference Doolan PD, Alpen EL, Theil GB (1962) A clinical appraisal of the plasma concentration and endogenous clearance of creatinine. Am J Med 32:65–79PubMed Doolan PD, Alpen EL, Theil GB (1962) A clinical appraisal of the plasma concentration and endogenous clearance of creatinine. Am J Med 32:65–79PubMed
16.
go back to reference Schutte JE, Longhurst JC, Gaffney FA, Bastian BC, Blomqvist CG (1981) Total plasma creatinine: an accurate measure of total striated muscle mass. J Appl Physiol 51:762–766PubMed Schutte JE, Longhurst JC, Gaffney FA, Bastian BC, Blomqvist CG (1981) Total plasma creatinine: an accurate measure of total striated muscle mass. J Appl Physiol 51:762–766PubMed
17.
go back to reference Schwartz GJ, Gauthier B (1985) A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 106:522–526PubMed Schwartz GJ, Gauthier B (1985) A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 106:522–526PubMed
18.
go back to reference Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104:849–854PubMed Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104:849–854PubMed
19.
go back to reference Hellerstein S, Berenbom M, Erwin P, Wilson N, DiMaggio S (2006) Timed-urine collections for renal clearance studies. Pediatr Nephrol 21:96–101PubMed Hellerstein S, Berenbom M, Erwin P, Wilson N, DiMaggio S (2006) Timed-urine collections for renal clearance studies. Pediatr Nephrol 21:96–101PubMed
20.
go back to reference National Kidney Foundation. K/DOQI Clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification, part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease guideline 4. Estimation of GFR. Website. 2002 6-23-2006, electronic citation National Kidney Foundation. K/DOQI Clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification, part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease guideline 4. Estimation of GFR. Website. 2002 6-23-2006, electronic citation
21.
go back to reference Greenblatt DJ, Ransil BJ, Harmatz JS, Smith TW, Duhme DW, Koch-Weser J (1976) Variability of 24-hour urinary creatinine excretion by normal subjects. J Clin Pharmacol 16:321–328PubMed Greenblatt DJ, Ransil BJ, Harmatz JS, Smith TW, Duhme DW, Koch-Weser J (1976) Variability of 24-hour urinary creatinine excretion by normal subjects. J Clin Pharmacol 16:321–328PubMed
22.
go back to reference Richardson JA, Philbin PE (1971) The one-hour creatinine clearance rate in healthy men. JAMA 216:987–990PubMed Richardson JA, Philbin PE (1971) The one-hour creatinine clearance rate in healthy men. JAMA 216:987–990PubMed
23.
go back to reference van Acker BAC, Koomen GCM, Koopman MG, de Waart DR, Arisz L (1992) Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet 340:1326–1329PubMed van Acker BAC, Koomen GCM, Koopman MG, de Waart DR, Arisz L (1992) Creatinine clearance during cimetidine administration for measurement of glomerular filtration rate. Lancet 340:1326–1329PubMed
24.
go back to reference Hellerstein S, Berenbom M, Alon US, Warady BA (1998) Creatinine clearance following cimetidine for estimation of glomerular filtration rate. Pediatr Nephrol 12:49–54PubMed Hellerstein S, Berenbom M, Alon US, Warady BA (1998) Creatinine clearance following cimetidine for estimation of glomerular filtration rate. Pediatr Nephrol 12:49–54PubMed
25.
go back to reference Hellerstein S, Erwin P, Warady BA (2003) The cimetidine protocol: a convenient, accurate, and inexpensive way to measure glomerular filtration rate. Pediatr Nephrol 18:71–72PubMed Hellerstein S, Erwin P, Warady BA (2003) The cimetidine protocol: a convenient, accurate, and inexpensive way to measure glomerular filtration rate. Pediatr Nephrol 18:71–72PubMed
26.
go back to reference Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263PubMed Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263PubMed
27.
go back to reference Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590PubMed Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590PubMed
28.
go back to reference Zappitelli M, Parvex P, Joseph L, Paradis G, Grey V, Lau S, Bell L (2006) Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis 48:221–230PubMed Zappitelli M, Parvex P, Joseph L, Paradis G, Grey V, Lau S, Bell L (2006) Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis 48:221–230PubMed
29.
go back to reference Filler G, Priem F, Lepage N, Sinha P, Vollmer I, Clark H, Keely E, Matzinger M, Akbari A, Altaus H, Jung K (2002) β-Trace protein, cystatin C, β2-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children. Clin Chem 48:729–736PubMed Filler G, Priem F, Lepage N, Sinha P, Vollmer I, Clark H, Keely E, Matzinger M, Akbari A, Altaus H, Jung K (2002) β-Trace protein, cystatin C, β2-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children. Clin Chem 48:729–736PubMed
30.
go back to reference Schwartz GJ, Furth S, Cole S, Warady B, Munoz A (2006) Glomerular filtration rate via plasma iohexol disappearance: Pilot study for chronic kidney disease in children. Kidney Int 69:2070–2077PubMed Schwartz GJ, Furth S, Cole S, Warady B, Munoz A (2006) Glomerular filtration rate via plasma iohexol disappearance: Pilot study for chronic kidney disease in children. Kidney Int 69:2070–2077PubMed
31.
go back to reference Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM (1976) Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 51:875–878PubMedPubMedCentral Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM (1976) Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 51:875–878PubMedPubMedCentral
32.
go back to reference Fong J, Johnston S, Valentino T, Notterman D (1995) Length/serum creatinine ratio does not predict measured creatinine clearance in critically ill children. Clin Pharmacol Ther 58:192–197PubMed Fong J, Johnston S, Valentino T, Notterman D (1995) Length/serum creatinine ratio does not predict measured creatinine clearance in critically ill children. Clin Pharmacol Ther 58:192–197PubMed
33.
go back to reference Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMed Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMed
34.
go back to reference Pierrat A, Gravier E, Saunders C, Caira MV, Ait-Djafer Z, Legras B, Mallie JP (2003) Predicting GFR in children and adults: a comparison of the Cockcroft-Gault, Schwartz, and Modification of Diet in Renal Disease formulas. Kidney Int 64:1425–1436PubMed Pierrat A, Gravier E, Saunders C, Caira MV, Ait-Djafer Z, Legras B, Mallie JP (2003) Predicting GFR in children and adults: a comparison of the Cockcroft-Gault, Schwartz, and Modification of Diet in Renal Disease formulas. Kidney Int 64:1425–1436PubMed
35.
go back to reference Finney H, Newman DJ, Thakkar H, Fell JM, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75PubMedPubMedCentral Finney H, Newman DJ, Thakkar H, Fell JM, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75PubMedPubMedCentral
36.
go back to reference Bökenkamp A, Domanetzki M, Zinck R, Schumann G, Brodehl J (1998) Reference values for cystatin C serum concentrations in children. Pediatr Nephrol 12:125–129PubMed Bökenkamp A, Domanetzki M, Zinck R, Schumann G, Brodehl J (1998) Reference values for cystatin C serum concentrations in children. Pediatr Nephrol 12:125–129PubMed
37.
go back to reference Grubb A (1992) Diagnostic value of analysis of cystatin C and protein HC in biological fluids. Clin Nephrol 38:S20–S27PubMed Grubb A (1992) Diagnostic value of analysis of cystatin C and protein HC in biological fluids. Clin Nephrol 38:S20–S27PubMed
38.
go back to reference Tenstad O, Roald AB, Grubb A, Aukland K (1996) Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 56:409–414PubMed Tenstad O, Roald AB, Grubb A, Aukland K (1996) Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 56:409–414PubMed
39.
go back to reference Keevil BG, Kilpatrick ES, Nichols SP, Maylor PW (1998) Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin Chem 44:1535–1539PubMed Keevil BG, Kilpatrick ES, Nichols SP, Maylor PW (1998) Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin Chem 44:1535–1539PubMed
40.
go back to reference Dworkin LD (2001) Serum cystatin C as a marker of glomerular filtration rate. Curr Opin Nephrol Hypertens 10:551–553PubMed Dworkin LD (2001) Serum cystatin C as a marker of glomerular filtration rate. Curr Opin Nephrol Hypertens 10:551–553PubMed
41.
go back to reference Coll E, Botey A, Alvarez L, Poch E, Quinto L, Saurina A, Vera M, Piera C, Darnell A (2000) Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis 36:29–34PubMed Coll E, Botey A, Alvarez L, Poch E, Quinto L, Saurina A, Vera M, Piera C, Darnell A (2000) Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis 36:29–34PubMed
42.
go back to reference Christensson A, Ekberg J, Grubb A, Ekberg H, Lindstrom V, Lilja H (2003) Serum cystatin C is a more sensitive and more accurate marker of glomerular filtration rate than enzymatic measurements of creatinine in renal transplantation. Nephron Physiol 94:19–27 Christensson A, Ekberg J, Grubb A, Ekberg H, Lindstrom V, Lilja H (2003) Serum cystatin C is a more sensitive and more accurate marker of glomerular filtration rate than enzymatic measurements of creatinine in renal transplantation. Nephron Physiol 94:19–27
43.
go back to reference Stickle D, Cole B, Hock K, Hruska KA, Scott MG (1998) Correlation of plasma concentrations of cystatin C and creatinine to inulin clearance in a pediatric population. Clin Chem 44:1334–1338PubMed Stickle D, Cole B, Hock K, Hruska KA, Scott MG (1998) Correlation of plasma concentrations of cystatin C and creatinine to inulin clearance in a pediatric population. Clin Chem 44:1334–1338PubMed
44.
go back to reference Filler G, Priem F, Vollmer I, Gellermann J, Jung K (1999) Diagnostic sensitivity of serum cystatin for impaired glomerular filtration rate. Pediatr Nephrol 13:501–505PubMed Filler G, Priem F, Vollmer I, Gellermann J, Jung K (1999) Diagnostic sensitivity of serum cystatin for impaired glomerular filtration rate. Pediatr Nephrol 13:501–505PubMed
45.
go back to reference Ylinen EA, Ala-Houhala M, Harmoinen APT, Knip M (1999) Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatr Nephrol 13:506–509PubMed Ylinen EA, Ala-Houhala M, Harmoinen APT, Knip M (1999) Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatr Nephrol 13:506–509PubMed
46.
go back to reference Laterza OF, Price CP, Scott MG (2002) Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 48:699–707PubMed Laterza OF, Price CP, Scott MG (2002) Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 48:699–707PubMed
47.
go back to reference Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985PubMed Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985PubMed
48.
go back to reference Martini S, Prévot A, Mosig D, Werner D, van Melle G, Guignard JP (2003) Glomerular filtration rate: measure creatinine and height rather than cystatin C! Acta Paediatr 92:1052–1057PubMed Martini S, Prévot A, Mosig D, Werner D, van Melle G, Guignard JP (2003) Glomerular filtration rate: measure creatinine and height rather than cystatin C! Acta Paediatr 92:1052–1057PubMed
49.
go back to reference Bökenkamp A, Domanetzki M, Zinck R, Schumann G, Byrd D, Brodehl J (1999) Cystatin C serum concentrations underestimate glomerular filtration rate in renal transplant recipients. Clin Chem 45:1866–1868PubMed Bökenkamp A, Domanetzki M, Zinck R, Schumann G, Byrd D, Brodehl J (1999) Cystatin C serum concentrations underestimate glomerular filtration rate in renal transplant recipients. Clin Chem 45:1866–1868PubMed
50.
go back to reference Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, de Jong PE (2004) Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65:1416–1421PubMed Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, de Jong PE (2004) Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65:1416–1421PubMed
51.
go back to reference Tkaczyk M, Nowicki M, Lukamowicz J (2004) Increased cystatin C concentration in urine of nephrotic children. Pediatr Nephrol 19:1278–1280PubMed Tkaczyk M, Nowicki M, Lukamowicz J (2004) Increased cystatin C concentration in urine of nephrotic children. Pediatr Nephrol 19:1278–1280PubMed
52.
go back to reference Uchida K, Gotoh A (2002) Measurement of cystatin-C and creatinine in urine. Clin Chim Acta 323:121–128PubMed Uchida K, Gotoh A (2002) Measurement of cystatin-C and creatinine in urine. Clin Chim Acta 323:121–128PubMed
53.
go back to reference Sapirstein LA, Vidt DG, Mandel MJ, Hanusek G (1955) Volumes of distribution and clearances of intravenously injected creatinine in the dog. Am J Physiol 181:330–336PubMed Sapirstein LA, Vidt DG, Mandel MJ, Hanusek G (1955) Volumes of distribution and clearances of intravenously injected creatinine in the dog. Am J Physiol 181:330–336PubMed
54.
go back to reference Brochner-Mortensen J (1972) A simple method for the determination of glomerular filtration rate. Scand J Clin Lab Invest 30:271–274PubMed Brochner-Mortensen J (1972) A simple method for the determination of glomerular filtration rate. Scand J Clin Lab Invest 30:271–274PubMed
55.
go back to reference Brochner-Mortensen J, Haahr J, Christoffersen J (1974) A simple method for accurate assessment of the glomerular filtration rate in children. Scand J Clin Lab Invest 33:139–143 Brochner-Mortensen J, Haahr J, Christoffersen J (1974) A simple method for accurate assessment of the glomerular filtration rate in children. Scand J Clin Lab Invest 33:139–143
56.
go back to reference Piepsz A, Denis R, Ham HR, Dobbeleir A, Schulman C, Erbsmann F (1978) A simple method for measuring separate glomerular filtration rate using a single injection of 99mTc-DTPA and the scintillation camera. J Pediatr 93:769–774PubMed Piepsz A, Denis R, Ham HR, Dobbeleir A, Schulman C, Erbsmann F (1978) A simple method for measuring separate glomerular filtration rate using a single injection of 99mTc-DTPA and the scintillation camera. J Pediatr 93:769–774PubMed
57.
go back to reference LaFrance ND, Drew HH, Walser M (1988) Radioisotopic measurement of glomerular filtration rate in severe chronic renal failure. J Nucl Med 29:1927–1930PubMed LaFrance ND, Drew HH, Walser M (1988) Radioisotopic measurement of glomerular filtration rate in severe chronic renal failure. J Nucl Med 29:1927–1930PubMed
58.
go back to reference Rehling M, Moller ML, Thamdrup B, Lund JO, Trap-Jensen J (1984) Simultaneous measurement of renal clearance and plasma clearance of 99mTc-labelled diethylenetriaminepenta-acetate, 51Cr-labelled ethylenediaminetetra-acetate and inulin in man. Clin Sci 66:613–619 Rehling M, Moller ML, Thamdrup B, Lund JO, Trap-Jensen J (1984) Simultaneous measurement of renal clearance and plasma clearance of 99mTc-labelled diethylenetriaminepenta-acetate, 51Cr-labelled ethylenediaminetetra-acetate and inulin in man. Clin Sci 66:613–619
59.
go back to reference Carlsen JE, Moller ML, Lund JO, Trap-Jensen J (1980) Comparison of four commercial Tc-99m(Sn)DTPA preparations used for the measurement of glomerular filtration rate: concise communication. J Nucl Med 21:126–129PubMed Carlsen JE, Moller ML, Lund JO, Trap-Jensen J (1980) Comparison of four commercial Tc-99m(Sn)DTPA preparations used for the measurement of glomerular filtration rate: concise communication. J Nucl Med 21:126–129PubMed
60.
go back to reference Odlind B, Hällgren R, Sohtell M, Lindström B (1985) Is 125I iothalamate an ideal marker for glomerular filtration? Kidney Int 27:9–16PubMed Odlind B, Hällgren R, Sohtell M, Lindström B (1985) Is 125I iothalamate an ideal marker for glomerular filtration? Kidney Int 27:9–16PubMed
61.
go back to reference Perrone RD, Steinman TI, Beck GJ, Skibinski CI, Royal HD, Lawlor M, Hunsicker LG (1990) Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. Am J Kidney Dis 16:224–235PubMed Perrone RD, Steinman TI, Beck GJ, Skibinski CI, Royal HD, Lawlor M, Hunsicker LG (1990) Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. Am J Kidney Dis 16:224–235PubMed
62.
go back to reference Guignard J-P, Santos F (2004) Laboratory investigations, chap. 21. In: Avner ED, Harmon WE, Niaudet P (eds) Pediatric nephrology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 399–424 Guignard J-P, Santos F (2004) Laboratory investigations, chap. 21. In: Avner ED, Harmon WE, Niaudet P (eds) Pediatric nephrology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 399–424
63.
go back to reference Back SE, Krutzen E, Nilsson-Ehle P (1988) Contrast media as markers for glomerular filtration: a pharmacokinetic comparison of four agents. Scand J Clin Lab Invest 48:247–253PubMed Back SE, Krutzen E, Nilsson-Ehle P (1988) Contrast media as markers for glomerular filtration: a pharmacokinetic comparison of four agents. Scand J Clin Lab Invest 48:247–253PubMed
64.
go back to reference Krutzen E, Back SE, Nilsson-Ehle I, Nilsson-Ehle P (1984) Plasma clearance of a new contrast agent, iohexol: a method for the assessment of glomerular filtration rate. J Lab Clin Med 104:955–961PubMed Krutzen E, Back SE, Nilsson-Ehle I, Nilsson-Ehle P (1984) Plasma clearance of a new contrast agent, iohexol: a method for the assessment of glomerular filtration rate. J Lab Clin Med 104:955–961PubMed
65.
go back to reference Olsson B, Aulie A, Sveen K, Andrew E (1983) Human pharmacokinetics of iohexol: a new nonionic contrast medium. Invest Radiol 18:177–182PubMed Olsson B, Aulie A, Sveen K, Andrew E (1983) Human pharmacokinetics of iohexol: a new nonionic contrast medium. Invest Radiol 18:177–182PubMed
66.
go back to reference Nilsson-Ehle P, Grubb A (1994) New markers for the determination of GFR: Iohexol clearance and cystatin C serum concentration. Kidney Int 46:S-17–S-19 Nilsson-Ehle P, Grubb A (1994) New markers for the determination of GFR: Iohexol clearance and cystatin C serum concentration. Kidney Int 46:S-17–S-19
67.
go back to reference Krutzen E, Back SE, Nilsson-Ehle P (1990) Determination of glomerular filtration rate using iohexol clearance and capillary sampling. Scand J Clin Lab Invest 50:279–283PubMed Krutzen E, Back SE, Nilsson-Ehle P (1990) Determination of glomerular filtration rate using iohexol clearance and capillary sampling. Scand J Clin Lab Invest 50:279–283PubMed
68.
go back to reference Niculescu-Duvaz I, D’Mello L, Maan Z, Barron JL, Newman DJ, Dockrell ME, Kwan JT (2006) Development of an outpatient finger-prick glomerular filtration rate procedure suitable for epidemiological studies. Kidney Int 69:1272–1275PubMed Niculescu-Duvaz I, D’Mello L, Maan Z, Barron JL, Newman DJ, Dockrell ME, Kwan JT (2006) Development of an outpatient finger-prick glomerular filtration rate procedure suitable for epidemiological studies. Kidney Int 69:1272–1275PubMed
69.
go back to reference Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, Daina E, Remuzzi G (1995) Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol 6:257–263PubMed Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, Daina E, Remuzzi G (1995) Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol 6:257–263PubMed
70.
go back to reference Brown SCW, O’Reilly PH (1991) Iohexol clearance for the determination of glomerular filtration rate in clinical practice: evidence for a new gold standard. J Urol 146:675–679PubMed Brown SCW, O’Reilly PH (1991) Iohexol clearance for the determination of glomerular filtration rate in clinical practice: evidence for a new gold standard. J Urol 146:675–679PubMed
71.
go back to reference Erley CM, Bader BD, Berger ED, Vochazer A, Jorzik JJ, Dietz K, Risler T (2001) Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients. Crit Care Med 29:1544–1550PubMed Erley CM, Bader BD, Berger ED, Vochazer A, Jorzik JJ, Dietz K, Risler T (2001) Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients. Crit Care Med 29:1544–1550PubMed
72.
go back to reference Rahn KH, Heidenreich S, Bruckner D (1999) How to assess glomerular function and damage in humans. J Hypertens 17:309–317PubMed Rahn KH, Heidenreich S, Bruckner D (1999) How to assess glomerular function and damage in humans. J Hypertens 17:309–317PubMed
73.
go back to reference Brändström E, Grzegorczyk A, Jacobsson L, Friberg P, Lindahl A, Aurell M (1998) GFR measurement with iohexol and 51Cr-EDTA. A comparison of the two favoured GFR markers in Europe. Nephrol Dial Transplant 13:1176–1182PubMed Brändström E, Grzegorczyk A, Jacobsson L, Friberg P, Lindahl A, Aurell M (1998) GFR measurement with iohexol and 51Cr-EDTA. A comparison of the two favoured GFR markers in Europe. Nephrol Dial Transplant 13:1176–1182PubMed
74.
go back to reference Chantler C, Barratt TM (1972) Estimation of glomerular filtration rate from plasma clearance of 51-chromium edetic acid. Arch Dis Child 47:613–617PubMedPubMedCentral Chantler C, Barratt TM (1972) Estimation of glomerular filtration rate from plasma clearance of 51-chromium edetic acid. Arch Dis Child 47:613–617PubMedPubMedCentral
75.
go back to reference Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS, British Nuclear Medicine Society (2004) Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nucl Med Commun 25:759–769PubMed Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS, British Nuclear Medicine Society (2004) Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nucl Med Commun 25:759–769PubMed
76.
go back to reference Brion LP, Fleischman AR, McCarton C, Schwartz GJ (1986) A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr 109:698–707PubMed Brion LP, Fleischman AR, McCarton C, Schwartz GJ (1986) A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr 109:698–707PubMed
77.
go back to reference Guignard JP, Torrado A, Da Cunha O, Gautier E (1975) Glomerular filtration rate in the first three weeks of life. J Pediatr 87:268–272PubMed Guignard JP, Torrado A, Da Cunha O, Gautier E (1975) Glomerular filtration rate in the first three weeks of life. J Pediatr 87:268–272PubMed
78.
go back to reference Barnett HL, McNamara H, Shultz S, Tompsett R (1949) Renal clearances of sodium penicillin G, procaine penicillin G, and inulin in infants and children. Pediatrics 3:418–422PubMed Barnett HL, McNamara H, Shultz S, Tompsett R (1949) Renal clearances of sodium penicillin G, procaine penicillin G, and inulin in infants and children. Pediatrics 3:418–422PubMed
79.
go back to reference Barnett HL, Hare WK, McNamara H, Hare RS (1948) Influence of postnatal age on kidney function of premature infants. Proc Soc Exp Biol Med 69:55–57PubMed Barnett HL, Hare WK, McNamara H, Hare RS (1948) Influence of postnatal age on kidney function of premature infants. Proc Soc Exp Biol Med 69:55–57PubMed
80.
go back to reference Richmond JB, Kravitz H, Segar W, Waisman HA (1951) Renal clearance of endogenous phosphate in infants and children. Proc Soc Exp Biol Med 77:83–87PubMed Richmond JB, Kravitz H, Segar W, Waisman HA (1951) Renal clearance of endogenous phosphate in infants and children. Proc Soc Exp Biol Med 77:83–87PubMed
81.
go back to reference Broberger U (1973) Determination of glomerular filtration rate in the newborn. Comparison between results obtained by the single injection technique without collection of urine and the standard clearance technique. Acta Paediatr Scand 62:625–629PubMed Broberger U (1973) Determination of glomerular filtration rate in the newborn. Comparison between results obtained by the single injection technique without collection of urine and the standard clearance technique. Acta Paediatr Scand 62:625–629PubMed
82.
go back to reference McCrory WW, Forman CW, McNamara H, Barnett HL (1952) Renal excretion of inorganic phosphate in newborn infants. J Clin Invest 31:357–366PubMedPubMedCentral McCrory WW, Forman CW, McNamara H, Barnett HL (1952) Renal excretion of inorganic phosphate in newborn infants. J Clin Invest 31:357–366PubMedPubMedCentral
83.
go back to reference Brodehl J, Gellissen K, Weber HP (1982) Postnatal development of tubular phosphate reabsorption. Clin Nephrol 17:163–171PubMed Brodehl J, Gellissen K, Weber HP (1982) Postnatal development of tubular phosphate reabsorption. Clin Nephrol 17:163–171PubMed
84.
go back to reference Gibb DM, Dalton NR, Barratt MT (1989) Measurement of glomerular filtration rate in children with insulin-dependent diabetes mellitus. Clin Chim Acta 182:131–139PubMed Gibb DM, Dalton NR, Barratt MT (1989) Measurement of glomerular filtration rate in children with insulin-dependent diabetes mellitus. Clin Chim Acta 182:131–139PubMed
Metadata
Title
Glomerular filtration rate measurement and estimation in chronic kidney disease
Authors
George J. Schwartz
Susan L. Furth
Publication date
01-11-2007
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 11/2007
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-006-0358-1

Other articles of this Issue 11/2007

Pediatric Nephrology 11/2007 Go to the issue