Skip to main content
Top

01-09-2005 | Review

Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system

Authors: Ihor V. Yosypiv, Samir S. El-Dahr

Published in: Pediatric Nephrology | Issue 9/2005

Login to get access

Abstract

Genetic, biochemical and physiological studies have demonstrated that the renin-angiotensin system (RAS) plays a fundamental role in kidney development. All of the components of the RAS are expressed in the metanephros. Mutations in the genes encoding components of the RAS in mice or pharmacological inhibition of RAS in animals or humans cause diverse congenital abnormalities of the kidney and lower urinary tract. The latter include renal vascular abnormalities, abnormal glomerulogenesis, renal papillary hypoplasia, hydronephrosis, aberrant UB budding, duplicated collecting system, and urinary concentrating defect. Thus, the actions of angiotensin (ANG) II during kidney development are pleiotropic both spatially and temporally. Whereas the role of ANG II in renovascular and glomerular development has received much attention, little is known about the potential role of ANG II and its receptors in the morphogenesis of the collecting system. In this review, we discuss recent genetic and functional evidence gathered from transgenic knockout mice and in vitro organ and cell culture implicating the RAS in the development of the ureteric bud and collecting ducts. A novel conceptual framework has emerged from this body of work which states that stroma-derived ANG II elicits activation of AT1/AT2 receptors expressed on the ureteric bud to stimulate branching morphogenesis as well as collecting duct elongation and papillogenesis.
Literature
1.
go back to reference Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge
2.
go back to reference Al-Awqati Q, Goldberg MR (1998) Architectural patterns in branching morphogenesis in the kidney. Kidney Int 54:832–1842CrossRef Al-Awqati Q, Goldberg MR (1998) Architectural patterns in branching morphogenesis in the kidney. Kidney Int 54:832–1842CrossRef
3.
go back to reference Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3:2141–2150PubMed Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3:2141–2150PubMed
4.
go back to reference Grobstein C (1953) Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse metanephros. Science 118:52–55PubMed Grobstein C (1953) Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse metanephros. Science 118:52–55PubMed
5.
go back to reference Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347PubMed Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347PubMed
6.
go back to reference Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90:33–39CrossRefPubMed Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90:33–39CrossRefPubMed
7.
go back to reference Sainio K, Nonclercq D, Saarma M, Palgi J, Saxen L, Sariola H (1994) Neuronal characteristics in embryonic renal stroma. Int J Dev Biol 38:77–84PubMed Sainio K, Nonclercq D, Saarma M, Palgi J, Saxen L, Sariola H (1994) Neuronal characteristics in embryonic renal stroma. Int J Dev Biol 38:77–84PubMed
8.
go back to reference Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J (1999) Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126:1139–1148PubMed Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J (1999) Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126:1139–1148PubMed
9.
go back to reference Hatini A, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10:1467–1478PubMed Hatini A, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10:1467–1478PubMed
10.
go back to reference Koseki C, Herzlinger D, Al-Awqati Q (1992) Apoptosis in metanephric development. J Cell Biol 119:1327–1333CrossRefPubMed Koseki C, Herzlinger D, Al-Awqati Q (1992) Apoptosis in metanephric development. J Cell Biol 119:1327–1333CrossRefPubMed
11.
go back to reference Yang J, Blum A, Novak T, Levinson R, Lai E, Barasch J (2002) An epithelial precursor is regulated by the ureteric bud and by the renal stroma. Dev Biol 246:296–310CrossRefPubMed Yang J, Blum A, Novak T, Levinson R, Lai E, Barasch J (2002) An epithelial precursor is regulated by the ureteric bud and by the renal stroma. Dev Biol 246:296–310CrossRefPubMed
12.
go back to reference Arima S, Kohagura K, Abe M, Ito S (2001) Mechanisms that control glomerular hemodynamics. Clin Exp Nephrol 5:55–61CrossRef Arima S, Kohagura K, Abe M, Ito S (2001) Mechanisms that control glomerular hemodynamics. Clin Exp Nephrol 5:55–61CrossRef
13.
go back to reference Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol 281:H2337-H2365 Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol 281:H2337-H2365
14.
go back to reference Wolf G, Haberstroh U, Neilson EG (1992) Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am J Pathol 140:95–107PubMed Wolf G, Haberstroh U, Neilson EG (1992) Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am J Pathol 140:95–107PubMed
15.
go back to reference Goto M, Mukoyama M, Suga, Matsumoto T, Nakagawa M, Ishibashi R, Kasahara M, Sugawara A, Tanaka I, Nakao K (1997) Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30:358–362PubMed Goto M, Mukoyama M, Suga, Matsumoto T, Nakagawa M, Ishibashi R, Kasahara M, Sugawara A, Tanaka I, Nakao K (1997) Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30:358–362PubMed
16.
go back to reference Gross V, Schunck WH, Honeck H, Milia AF, Kargel E, Walther T, Bader M, Inagami T, Schneider W, Luft FC (2000) Inhibition of pressure natriuresis in mice lacking the AT2 receptor. Kidney Int 57:191–202CrossRefPubMed Gross V, Schunck WH, Honeck H, Milia AF, Kargel E, Walther T, Bader M, Inagami T, Schneider W, Luft FC (2000) Inhibition of pressure natriuresis in mice lacking the AT2 receptor. Kidney Int 57:191–202CrossRefPubMed
17.
go back to reference Siragy HM, Carey RM (1997) The subtype-2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 100:264–269PubMed Siragy HM, Carey RM (1997) The subtype-2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 100:264–269PubMed
18.
go back to reference Liang P, Jones CA, Bisgrove BW, Song L, Glenn ST, Yost HJ, Gross KW (2004) Genomic characterization and expression analysis of the first nonmammalian renin genes from zebrafish and pufferfish. Physiol Genomics 16:314–322CrossRefPubMed Liang P, Jones CA, Bisgrove BW, Song L, Glenn ST, Yost HJ, Gross KW (2004) Genomic characterization and expression analysis of the first nonmammalian renin genes from zebrafish and pufferfish. Physiol Genomics 16:314–322CrossRefPubMed
19.
go back to reference Wintour EM, Alcorn D, Butkus A, Congiu M, Earnest L, Pompolo S, Potocnik SJ (1996) Ontogeny of hormonal and excretory function of the meso and metanephros in the ovine fetus. Kidney Int 50:1624–1633PubMed Wintour EM, Alcorn D, Butkus A, Congiu M, Earnest L, Pompolo S, Potocnik SJ (1996) Ontogeny of hormonal and excretory function of the meso and metanephros in the ovine fetus. Kidney Int 50:1624–1633PubMed
20.
go back to reference Celio MR, Groscurth P, Inagami T (1985) Ontogeny of renin immunoreactive cells in the human kidney. Anat Embryol (Berl) 173:49–55 Celio MR, Groscurth P, Inagami T (1985) Ontogeny of renin immunoreactive cells in the human kidney. Anat Embryol (Berl) 173:49–55
21.
go back to reference Egerer G, Taugner R, Tiedemann K (1984) Renin immunohistochemistry in the mesonephros and metanephros of the pig embryo. Histochemistry 81:385–390CrossRefPubMed Egerer G, Taugner R, Tiedemann K (1984) Renin immunohistochemistry in the mesonephros and metanephros of the pig embryo. Histochemistry 81:385–390CrossRefPubMed
22.
go back to reference Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795PubMed Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795PubMed
23.
go back to reference Zhang SL, Moini B, Ingelfinger JR (2004) Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 15:1452–1465CrossRefPubMed Zhang SL, Moini B, Ingelfinger JR (2004) Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 15:1452–1465CrossRefPubMed
24.
go back to reference Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065PubMed Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065PubMed
25.
go back to reference Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, Peach MJ (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257: F850-F858PubMed Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, Peach MJ (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257: F850-F858PubMed
26.
go back to reference Norwood VF, Craig MR, Harris JM, Gomez RA (1997) Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol 272:R662-R668PubMed Norwood VF, Craig MR, Harris JM, Gomez RA (1997) Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol 272:R662-R668PubMed
27.
go back to reference Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension 23:369–374PubMed Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension 23:369–374PubMed
28.
go back to reference Yosipiv IV, El-Dahr SS (1996) Activation of angiotensin-generating systems in the developing rat kidney. Hypertension 27:281–286PubMed Yosipiv IV, El-Dahr SS (1996) Activation of angiotensin-generating systems in the developing rat kidney. Hypertension 27:281–286PubMed
29.
go back to reference Jung FF, Bouyounes B, Barrio R, Tang SS, Diamant D, Ingelfinger JR (1993) Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles. Pediatr Nephrol 7:834–840CrossRefPubMed Jung FF, Bouyounes B, Barrio R, Tang SS, Diamant D, Ingelfinger JR (1993) Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles. Pediatr Nephrol 7:834–840CrossRefPubMed
30.
go back to reference Prieto M, Dipp S, Meleg-Smith S, El-Dahr SS (2001) Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics 6:29–37PubMed Prieto M, Dipp S, Meleg-Smith S, El-Dahr SS (2001) Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics 6:29–37PubMed
31.
go back to reference Iosipiv IV, Schroeder M (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol 285:F199-F207 Iosipiv IV, Schroeder M (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol 285:F199-F207
32.
go back to reference Iosipiv IV (2002) Cellular expression of the angiotensin type 2 receptor (AT2) during murine organogenesis. J Invest Medicine 50:134A Iosipiv IV (2002) Cellular expression of the angiotensin type 2 receptor (AT2) during murine organogenesis. J Invest Medicine 50:134A
33.
go back to reference Yosypiv IV, Schroeder M (2004) Role of angiotensin type 2 (AT2) receptor in ureteric bud cell branching morphogenesis in vitro. J Am Soc Nephrol 15:419A Yosypiv IV, Schroeder M (2004) Role of angiotensin type 2 (AT2) receptor in ureteric bud cell branching morphogenesis in vitro. J Am Soc Nephrol 15:419A
34.
go back to reference Kakuchi J, Ichiki T, Kiyama S, Hogan BL, Fogo A, Inagami T, Ichikawa I (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47:140–147PubMed Kakuchi J, Ichiki T, Kiyama S, Hogan BL, Fogo A, Inagami T, Ichikawa I (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47:140–147PubMed
35.
go back to reference Garcia-Villalba P, Denkers ND, Wittwer CT, Wittwer CT, Hoff C, Nelson RD, Mauch TJ (2003) Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron. Exp Nephrol 94:e154–159CrossRef Garcia-Villalba P, Denkers ND, Wittwer CT, Wittwer CT, Hoff C, Nelson RD, Mauch TJ (2003) Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron. Exp Nephrol 94:e154–159CrossRef
36.
go back to reference Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol 281:F345-F356 Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol 281:F345-F356
37.
go back to reference Yoo KH, Wolstenholme JT, Chevalier RL (1997) Angiotensin-converting enzyme inhibition decreases growth factor expression in the neonatal rat kidney. Pediatr Res 42:588–592PubMed Yoo KH, Wolstenholme JT, Chevalier RL (1997) Angiotensin-converting enzyme inhibition decreases growth factor expression in the neonatal rat kidney. Pediatr Res 42:588–592PubMed
38.
go back to reference Tufro-McReddie A, Romano LM, Harris JM, Ferder L, Gomez RA (1995) Angiotensin II regulates nephrogenesis and renal vascular development. Am J Physiol 38:F110-F115 Tufro-McReddie A, Romano LM, Harris JM, Ferder L, Gomez RA (1995) Angiotensin II regulates nephrogenesis and renal vascular development. Am J Physiol 38:F110-F115
39.
go back to reference Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H, Wickman A, Gustafsson H, Petersen J, Adams MA (1994) Renin-angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int 45:485–492PubMed Friberg P, Sundelin B, Bohman SO, Bobik A, Nilsson H, Wickman A, Gustafsson H, Petersen J, Adams MA (1994) Renin-angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int 45:485–492PubMed
40.
go back to reference Schaefer C (2003) Angiotensin II-receptor-antagonists: further evidence of fetotoxicity but not teratogenicity. Birth Defects Res A Clin Mol Teratol 67:591–594CrossRefPubMed Schaefer C (2003) Angiotensin II-receptor-antagonists: further evidence of fetotoxicity but not teratogenicity. Birth Defects Res A Clin Mol Teratol 67:591–594CrossRefPubMed
41.
go back to reference Tabacova S, Little R, Tsong Y, Vega A, Kimmel CA (2003) Adverse pregnancy outcomes associated with maternal enalapril antihypertensive treatment. Pharmacoepidemiol Drug Saf 12:633–646CrossRefPubMed Tabacova S, Little R, Tsong Y, Vega A, Kimmel CA (2003) Adverse pregnancy outcomes associated with maternal enalapril antihypertensive treatment. Pharmacoepidemiol Drug Saf 12:633–646CrossRefPubMed
42.
go back to reference Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanabe T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 75:745–753PubMed Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanabe T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 75:745–753PubMed
43.
go back to reference Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954PubMed Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954PubMed
44.
go back to reference Takahashi N, Lopez ML, Cowhig JE Jr, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16125–132 Takahashi N, Lopez ML, Cowhig JE Jr, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16125–132
45.
go back to reference Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 7:953–965 Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 7:953–965
46.
go back to reference Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501CrossRefPubMed Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501CrossRefPubMed
47.
go back to reference Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760PubMed Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760PubMed
48.
go back to reference Okubo S, Niimura F, Matsusaka T, Fogo A, Hogan BL, Ichikawa I (1998) Angiotensinogen gene null-mutant mice lack homeostatic regulation of glomerular filtration and tubular reabsorption. Kidney Int 53:617–625CrossRefPubMed Okubo S, Niimura F, Matsusaka T, Fogo A, Hogan BL, Ichikawa I (1998) Angiotensinogen gene null-mutant mice lack homeostatic regulation of glomerular filtration and tubular reabsorption. Kidney Int 53:617–625CrossRefPubMed
49.
go back to reference Oshima K, Miyazaki Y, Brock JW, Adams MC, Ichikawa I, Pope JC 4th (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852CrossRefPubMed Oshima K, Miyazaki Y, Brock JW, Adams MC, Ichikawa I, Pope JC 4th (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852CrossRefPubMed
50.
go back to reference Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA 3rd, Hogan BM, Fogo A, Brock JW 3rd, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10CrossRefPubMed Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA 3rd, Hogan BM, Fogo A, Brock JW 3rd, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10CrossRefPubMed
51.
52.
go back to reference Ray S, Sherman CT, Lu M, Brasier AR (2002) Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acetyltransferase activity. Mol Endocrinol 16:824–836CrossRefPubMed Ray S, Sherman CT, Lu M, Brasier AR (2002) Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acetyltransferase activity. Mol Endocrinol 16:824–836CrossRefPubMed
53.
go back to reference Guo Y, Mascareno E, Siddiqui MA (2004) Distinct components of Janus kinase/signal transducer and activator of transcription signaling pathway mediate the regulation of systemic and tissue localized renin-angiotensin system. Mol Endocrinol 18:1033–1041CrossRefPubMed Guo Y, Mascareno E, Siddiqui MA (2004) Distinct components of Janus kinase/signal transducer and activator of transcription signaling pathway mediate the regulation of systemic and tissue localized renin-angiotensin system. Mol Endocrinol 18:1033–1041CrossRefPubMed
54.
go back to reference Date S, Nibu Y, Yanai K, Hirata J, Yagami K, Fukamizu A (2004) Finb, a multiple zinc finger protein, represses transcription of the human angiotensinogen gene. Int J Mol Med 13:637–642PubMed Date S, Nibu Y, Yanai K, Hirata J, Yagami K, Fukamizu A (2004) Finb, a multiple zinc finger protein, represses transcription of the human angiotensinogen gene. Int J Mol Med 13:637–642PubMed
55.
go back to reference Jamaluddin M, Meng T, Sun J, Boldogh I, Han Y, Brasier AR (2000) Angiotensin II induces nuclear factor (NF)-kappaB1 isoforms to bind the angiotensinogen gene acute-phase response element: a stimulus-specific pathway for NF-kappaB activation. Mol Endocrinol 14:99–113CrossRefPubMed Jamaluddin M, Meng T, Sun J, Boldogh I, Han Y, Brasier AR (2000) Angiotensin II induces nuclear factor (NF)-kappaB1 isoforms to bind the angiotensinogen gene acute-phase response element: a stimulus-specific pathway for NF-kappaB activation. Mol Endocrinol 14:99–113CrossRefPubMed
56.
go back to reference Philippe J, Drucker DJ, Habener JF (1987) Glucagon gene transcription in an islet cell line is regulated via a protein kinase C-activated pathway. J Biol Chem 262:1823–1828 Philippe J, Drucker DJ, Habener JF (1987) Glucagon gene transcription in an islet cell line is regulated via a protein kinase C-activated pathway. J Biol Chem 262:1823–1828
57.
go back to reference Wang TT, Chen X, Wu XH, Zhang SL, Chan JS (1999) Molecular mechanism(s) of action of isoproterenol on the expression of the angiotensinogen gene in opossum kidney proximal tubular cells. Kidney Int 55:1713–1723CrossRefPubMed Wang TT, Chen X, Wu XH, Zhang SL, Chan JS (1999) Molecular mechanism(s) of action of isoproterenol on the expression of the angiotensinogen gene in opossum kidney proximal tubular cells. Kidney Int 55:1713–1723CrossRefPubMed
58.
go back to reference Lin KH, Lee HY, Shih CH, Yen CC, Chen SL, Yang RC, Wang CS (2003) Plasma protein regulation by thyroid hormone. J Endocrinol 179:367–377CrossRefPubMed Lin KH, Lee HY, Shih CH, Yen CC, Chen SL, Yang RC, Wang CS (2003) Plasma protein regulation by thyroid hormone. J Endocrinol 179:367–377CrossRefPubMed
59.
go back to reference Harte AL, McTernan PG, McTernan CL, Crocker J, Starcynski J, Barnett AH, Matyka K, Kumar S (2003) Insulin increases angiotensinogen expression in human abdominal subcutaneous adipocytes. Diabetes Obes Metab 5:462–467CrossRefPubMed Harte AL, McTernan PG, McTernan CL, Crocker J, Starcynski J, Barnett AH, Matyka K, Kumar S (2003) Insulin increases angiotensinogen expression in human abdominal subcutaneous adipocytes. Diabetes Obes Metab 5:462–467CrossRefPubMed
60.
go back to reference Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP (2002) 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 110:229–238CrossRefPubMed Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP (2002) 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 110:229–238CrossRefPubMed
61.
go back to reference Shi Q, Gross KW, Sigmund CD (2001) Retinoic acid-mediated activation of the mouse renin enhancer. J Biol Chem 276:3597–3603 Shi Q, Gross KW, Sigmund CD (2001) Retinoic acid-mediated activation of the mouse renin enhancer. J Biol Chem 276:3597–3603
62.
go back to reference Klar J, Vitzthum H, Kurtz A (2004) Aldosterone enhances renin gene expression in juxtaglomerular cells. Am J Physiol 286:F349-F355CrossRef Klar J, Vitzthum H, Kurtz A (2004) Aldosterone enhances renin gene expression in juxtaglomerular cells. Am J Physiol 286:F349-F355CrossRef
63.
go back to reference Takeda K, Ichiki T, Funakoshi Y, Ito K, Takeshita A (2000) Downregulation of angiotensin II type 1 receptor by all-trans retinoic acid in vascular smooth muscle cells. Hypertension 35:297–302PubMed Takeda K, Ichiki T, Funakoshi Y, Ito K, Takeshita A (2000) Downregulation of angiotensin II type 1 receptor by all-trans retinoic acid in vascular smooth muscle cells. Hypertension 35:297–302PubMed
64.
go back to reference Vilar J, Gilbert T, Moreau E, Merlet-Benichou C (1996) Metanephros organogenesis is highly stimulated by vitamin A derivatives in organ culture. Kidney Int 49:1478–1487PubMed Vilar J, Gilbert T, Moreau E, Merlet-Benichou C (1996) Metanephros organogenesis is highly stimulated by vitamin A derivatives in organ culture. Kidney Int 49:1478–1487PubMed
65.
go back to reference Zhang H, Palmer R, Gao X, Kreidberg J, Gerald W, Hsiao L, Jensen RV, Gullans SR, Haber DA (2003) Transcriptional activation of placental growth factor by the forkhead/winged helix transcription factor FoxD1. Curr Biol 13:1625–1629CrossRefPubMed Zhang H, Palmer R, Gao X, Kreidberg J, Gerald W, Hsiao L, Jensen RV, Gullans SR, Haber DA (2003) Transcriptional activation of placental growth factor by the forkhead/winged helix transcription factor FoxD1. Curr Biol 13:1625–1629CrossRefPubMed
66.
go back to reference Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I (1999) The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int 55:1683–1695CrossRefPubMed Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I (1999) The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int 55:1683–1695CrossRefPubMed
67.
go back to reference Qiao J, Uzzo R, Obara-Ishohara T, Degenstein L, Fuchs E, Herzlinger D (1999) FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126:547–554PubMed Qiao J, Uzzo R, Obara-Ishohara T, Degenstein L, Fuchs E, Herzlinger D (1999) FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126:547–554PubMed
68.
go back to reference Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, Nigam SK (2001) Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev 109:123–135CrossRefPubMed Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, Nigam SK (2001) Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev 109:123–135CrossRefPubMed
69.
go back to reference Stirling D, Magness RR, Stone R, Waterman MR, Simpson ER (1990) Angiotensin II inhibits luteinizing hormone-stimulated cholesterol side chain cleavage expression and stimulates basic fibroblast growth factor expression in bovine luteal cells in primary culture. J Biol Chem 265:5–8 Stirling D, Magness RR, Stone R, Waterman MR, Simpson ER (1990) Angiotensin II inhibits luteinizing hormone-stimulated cholesterol side chain cleavage expression and stimulates basic fibroblast growth factor expression in bovine luteal cells in primary culture. J Biol Chem 265:5–8
70.
go back to reference Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649 Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649
71.
go back to reference Cano-Gauci DF, Song H, Yang H, McKerlie C, Choo B, Shi W, Pullano R, Piscione TD, Grisaru S, Soon S, Sedlackova L, Tanswell AK, Mak TW, Yeger H, Lockwood GA, Rosenblum ND, Filmus J (1999) Glypican 3-deficient mice exhibit developmental overgrowth and some of the renal abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 146:255–264PubMed Cano-Gauci DF, Song H, Yang H, McKerlie C, Choo B, Shi W, Pullano R, Piscione TD, Grisaru S, Soon S, Sedlackova L, Tanswell AK, Mak TW, Yeger H, Lockwood GA, Rosenblum ND, Filmus J (1999) Glypican 3-deficient mice exhibit developmental overgrowth and some of the renal abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 146:255–264PubMed
72.
go back to reference Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387:151–158CrossRefPubMed Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387:151–158CrossRefPubMed
73.
go back to reference Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T (1995) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651–657PubMed Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T (1995) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651–657PubMed
74.
go back to reference AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U (2001) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 276:39721–39726 AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U (2001) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 276:39721–39726
75.
go back to reference Gendron L, Payet MD, Gallo-Payet N (2003) The angiotensin type 2 receptor of angiotensin II and neuronal differentiation: from observations to mechanisms. J Mol Endocrinol 31:359–372CrossRefPubMed Gendron L, Payet MD, Gallo-Payet N (2003) The angiotensin type 2 receptor of angiotensin II and neuronal differentiation: from observations to mechanisms. J Mol Endocrinol 31:359–372CrossRefPubMed
76.
go back to reference Huwiler A, Stabel S, Fabbro D, Pfeilschifter (1995) Platelet-derived growth factor and angiotensin II stimulate the mitogen-activated protein kinase cascade in renal mesangial cells: comparison of hypertrophic and hyperplastic agonists. Biochem J 305:777–784PubMed Huwiler A, Stabel S, Fabbro D, Pfeilschifter (1995) Platelet-derived growth factor and angiotensin II stimulate the mitogen-activated protein kinase cascade in renal mesangial cells: comparison of hypertrophic and hyperplastic agonists. Biochem J 305:777–784PubMed
77.
go back to reference Saward, L, Zahradka P (1997) Angiotensin II activates phosphatidylinositol 3-kinase in vascular smooth muscle cells. Circ Res 81:249–257PubMed Saward, L, Zahradka P (1997) Angiotensin II activates phosphatidylinositol 3-kinase in vascular smooth muscle cells. Circ Res 81:249–257PubMed
78.
go back to reference Schorb W, Peeler TC, Madigan NN, Conrad KM, Baker KM (1994) Angiotensin II-induced protein tyrosine phosphorylation in neonatal rat cardiac fibroblasts. J Biol Chem 269:19626–19632 Schorb W, Peeler TC, Madigan NN, Conrad KM, Baker KM (1994) Angiotensin II-induced protein tyrosine phosphorylation in neonatal rat cardiac fibroblasts. J Biol Chem 269:19626–19632
79.
go back to reference Karihaloo A, O’Rourke DA, Nickel C, Spokes K, Cantley LG (2001) Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis. J Biol Chem 276:9166–9173 Karihaloo A, O’Rourke DA, Nickel C, Spokes K, Cantley LG (2001) Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis. J Biol Chem 276:9166–9173
80.
go back to reference Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 243:128–136CrossRefPubMed Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol 243:128–136CrossRefPubMed
81.
go back to reference Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273:8890–8896 Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273:8890–8896
82.
go back to reference Seta K, Sadoshima J (2003) Phosphorylation of tyrosine 319 of the angiotensin II type 1 receptor mediates angiotensin II-induced trans-activation of the epidermal growth factor receptor. J Biol Chem 278:9019–9026 Seta K, Sadoshima J (2003) Phosphorylation of tyrosine 319 of the angiotensin II type 1 receptor mediates angiotensin II-induced trans-activation of the epidermal growth factor receptor. J Biol Chem 278:9019–9026
83.
go back to reference Yosypiv IV, Schroeder M (2003) Angiotensin (ANG) II stimulates ureteric bud (UB) cell branching morphogenesis in vitro via transactivation of epidermal growth factor receptor (EGFR). J Am Soc Nephrol 14:98ACrossRef Yosypiv IV, Schroeder M (2003) Angiotensin (ANG) II stimulates ureteric bud (UB) cell branching morphogenesis in vitro via transactivation of epidermal growth factor receptor (EGFR). J Am Soc Nephrol 14:98ACrossRef
84.
go back to reference Rocic P, Govindarajan G, Sabri A, Lucchesi PA (2001) A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. Am J Physiol 280:C90–99PubMed Rocic P, Govindarajan G, Sabri A, Lucchesi PA (2001) A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. Am J Physiol 280:C90–99PubMed
85.
go back to reference Schafer B, Gschwind A, Ullrich A (2004) Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23:991–999CrossRefPubMed Schafer B, Gschwind A, Ullrich A (2004) Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23:991–999CrossRefPubMed
86.
go back to reference Horiuchi M, Akishita M, Dzau VJ (1998) Molecular and cellular mechanism of angiotensin II-mediated apoptosis. Endocr Res 24:307–314PubMed Horiuchi M, Akishita M, Dzau VJ (1998) Molecular and cellular mechanism of angiotensin II-mediated apoptosis. Endocr Res 24:307–314PubMed
87.
go back to reference Fukizawa J, Booz GW, Hunt RA, Shimizu N, Karoor V, Baker KM, Dostal DE (2000) Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3: an autocrine loop for hypertrophy. Hypertension 35:1191–1196PubMed Fukizawa J, Booz GW, Hunt RA, Shimizu N, Karoor V, Baker KM, Dostal DE (2000) Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3: an autocrine loop for hypertrophy. Hypertension 35:1191–1196PubMed
Metadata
Title
Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system
Authors
Ihor V. Yosypiv
Samir S. El-Dahr
Publication date
01-09-2005
Publisher
Springer-Verlag
Published in
Pediatric Nephrology / Issue 9/2005
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-005-1944-3