Skip to main content
Top
Published in: Surgical Endoscopy 8/2008

01-08-2008

Carbon dioxide directly suppresses spontaneous migration, chemotaxis, and free radical production of human neutrophils

Authors: Akihiro Shimotakahara, Joachim F. Kuebler, Gertrud Vieten, Marcin Kos, Martin L. Metzelder, Benno M. Ure

Published in: Surgical Endoscopy | Issue 8/2008

Login to get access

Abstract

Background

Carbon dioxide (CO2) insufflation during laparoscopy has been shown to dampen the systemic stress response to surgery. This is related to a suppression of peritoneal macrophage functions. In vivo data suggest that CO2 can also affect neutrophils (polymorphonuclear cells, PMNs), the most abundant cell type in the inflamed peritoneal cavity. Nonetheless, the direct effects of CO2 on PMNs have not yet been investigated.

Method

PMNs were isolated from peripheral blood of healthy volunteers and incubated with (1) CO2 (100% CO2, pH 6.2), (2) hypoxic control (95% helium/5% CO2, pH 7.4), and (3) control (95% air/5% CO2, pH 7.4). Spontaneous and IL-8-induced migrations (chemokinesis and chemotaxis) during 2 h of exposure to different gases were measured with a transwell chamber system. The release of reactive oxygen species (ROS, luminometry) was determined after 15-min and 2-h exposures. In other sets of experiments, PMNs were exposed for 2 h or 4 h and kept under normal conditions for 18 h with lipopolysaccharide (LPS) stimulation thereafter. Final viability and apoptosis were assessed with fluorometry.

Results

Exposure to 100% CO2 completely blocked spontaneous and IL-8 induced migration of PMNs (p < 0.001 vs. controls). Neutrophil migration was slightly diminished in the hypoxic control group. PMA-stimulated ROS production was reduced even after short exposure to 100% CO2 (p < 0.05). We observed a slight increase of caspase-3/7 activity after exposure to 100% CO2 and/or hypoxia; however, total viability was not affected.

Conclusions

CO2 incubation directly and temporarily suppresses the proinflammatory functions of PMNs; this is caused only partially by the concomitant hypoxia. This effect will contribute to the dampened inflammatory response to laparoscopic surgery. Further studies are needed to investigate whether the temporary suppression of neutrophil functions could affect the clearance of bacterial contaminations.
Literature
1.
go back to reference Jesch NK, Kuebler JF, Nguyen H, Nave H, Bottlaender M, Teichmann B, Braun A, Vieten G, Ure BM (2006) Laparoscopy vs minilaparotomy and full laparotomy preserves circulatory but not peritoneal and pulmonary immune responses. J Pediatr Surg 41(6):1085–1092PubMedCrossRef Jesch NK, Kuebler JF, Nguyen H, Nave H, Bottlaender M, Teichmann B, Braun A, Vieten G, Ure BM (2006) Laparoscopy vs minilaparotomy and full laparotomy preserves circulatory but not peritoneal and pulmonary immune responses. J Pediatr Surg 41(6):1085–1092PubMedCrossRef
2.
go back to reference Ure BM, Niewold TA, Bax NM, Ham M, van der Zee DC, Essen GJ (2002) Peritoneal, systemic, and distant organ inflammatory responses are reduced by a laparoscopic approach and carbon dioxide versus air. Surg Endosc 16(5):836–842PubMedCrossRef Ure BM, Niewold TA, Bax NM, Ham M, van der Zee DC, Essen GJ (2002) Peritoneal, systemic, and distant organ inflammatory responses are reduced by a laparoscopic approach and carbon dioxide versus air. Surg Endosc 16(5):836–842PubMedCrossRef
3.
go back to reference Rotstein OD (2001) Peritoneal host defenses: modulation by carbon dioxide insufflation. Surg Infect (Larchmt) 2(2):163–170CrossRef Rotstein OD (2001) Peritoneal host defenses: modulation by carbon dioxide insufflation. Surg Infect (Larchmt) 2(2):163–170CrossRef
4.
go back to reference Sylla P, Kirman I, Whelan RL (2005) Immunological advantages of advanced laparoscopy. Surg Clin North Am 85(1):1–18PubMedCrossRef Sylla P, Kirman I, Whelan RL (2005) Immunological advantages of advanced laparoscopy. Surg Clin North Am 85(1):1–18PubMedCrossRef
5.
go back to reference Neuhaus SJ, Watson DI (2004) Pneumoperitoneum and peritoneal surface changes: a review. Surg Endosc 18(9):1316–1322PubMedCrossRef Neuhaus SJ, Watson DI (2004) Pneumoperitoneum and peritoneal surface changes: a review. Surg Endosc 18(9):1316–1322PubMedCrossRef
6.
go back to reference Sietses C, Wiezer MJ, Eijsbouts QA, van Leeuwen PA, Beelen RH, Meijer S, Cuesta MA (2000) The influence of laparoscopic surgery on postoperative polymorphonuclear leukocyte function. Surg Endosc 14(9):812–816PubMedCrossRef Sietses C, Wiezer MJ, Eijsbouts QA, van Leeuwen PA, Beelen RH, Meijer S, Cuesta MA (2000) The influence of laparoscopic surgery on postoperative polymorphonuclear leukocyte function. Surg Endosc 14(9):812–816PubMedCrossRef
7.
go back to reference Neuhaus SJ, Gupta A, Watson DI (2001) Helium and other alternative insufflation gases for laparoscopy. Surg Endosc 15(6):553–560PubMedCrossRef Neuhaus SJ, Gupta A, Watson DI (2001) Helium and other alternative insufflation gases for laparoscopy. Surg Endosc 15(6):553–560PubMedCrossRef
8.
go back to reference Kopernik G, Avinoach E, Grossman Y, Levy R, Yulzari R, Rogachev B, Douvdevani A (1998) The effect of a high partial pressure of carbon dioxide environment on metabolism and immune functions of human peritoneal cells-relevance to carbon dioxide pneumoperitoneum. Am J Obstet Gynecol 179(6):1503–1510PubMedCrossRef Kopernik G, Avinoach E, Grossman Y, Levy R, Yulzari R, Rogachev B, Douvdevani A (1998) The effect of a high partial pressure of carbon dioxide environment on metabolism and immune functions of human peritoneal cells-relevance to carbon dioxide pneumoperitoneum. Am J Obstet Gynecol 179(6):1503–1510PubMedCrossRef
9.
go back to reference Neuhaus SJ, Watson DI, Ellis T, Rofe AM, Mathew G, Jamieson GG (2000) Influence of gases on intraperitoneal immunity during laparoscopy in tumor-bearing rats. World J Surg 24(10):1227–1231PubMedCrossRef Neuhaus SJ, Watson DI, Ellis T, Rofe AM, Mathew G, Jamieson GG (2000) Influence of gases on intraperitoneal immunity during laparoscopy in tumor-bearing rats. World J Surg 24(10):1227–1231PubMedCrossRef
10.
go back to reference Kos M, Kuebler JF, Jesch NK, Vieten G, Bax NM, van der Zee DC, Busche R, Ure BM (2006) Carbon dioxide differentially affects the cytokine release of macrophage subpopulations exclusively via alteration of extracellular pH. Surg Endosc 20:570–576PubMedCrossRef Kos M, Kuebler JF, Jesch NK, Vieten G, Bax NM, van der Zee DC, Busche R, Ure BM (2006) Carbon dioxide differentially affects the cytokine release of macrophage subpopulations exclusively via alteration of extracellular pH. Surg Endosc 20:570–576PubMedCrossRef
11.
go back to reference Kuebler JF, Kos M, Jesch NK, Metzelder ML, van der Zee DC, Bax KM, Vieten G, Ure BM (2007) Carbon dioxide suppresses macrophage superoxide anion production independent of extracellular pH and mitochondrial activity. J Pediatr Surg 42:244–248PubMedCrossRef Kuebler JF, Kos M, Jesch NK, Metzelder ML, van der Zee DC, Bax KM, Vieten G, Ure BM (2007) Carbon dioxide suppresses macrophage superoxide anion production independent of extracellular pH and mitochondrial activity. J Pediatr Surg 42:244–248PubMedCrossRef
12.
go back to reference Menger MD, Vollmar B (2004) Surgical trauma: hyperinflammation versus immunosuppression? Langenbecks Arch Surg 389:475–484PubMedCrossRef Menger MD, Vollmar B (2004) Surgical trauma: hyperinflammation versus immunosuppression? Langenbecks Arch Surg 389:475–484PubMedCrossRef
13.
go back to reference Moehrlen U, Ziegler U, Boneberg E, Reichmann E, Gitzelmann CA, Meuli M, Hamacher J (2006) Impact of carbon dioxide versus air pneumoperitoneum on peritoneal cell migration and cell fate. Surg Endosc 20:1607–1613PubMedCrossRef Moehrlen U, Ziegler U, Boneberg E, Reichmann E, Gitzelmann CA, Meuli M, Hamacher J (2006) Impact of carbon dioxide versus air pneumoperitoneum on peritoneal cell migration and cell fate. Surg Endosc 20:1607–1613PubMedCrossRef
14.
go back to reference Fukatsu K, Hiraide H (2003) [Role of polymorphonuclear neutrophils and macrophages in the prevention of postoperative infections] Nippon Geka Gakkai Zasshi 104:506–510 (in Japanese)PubMed Fukatsu K, Hiraide H (2003) [Role of polymorphonuclear neutrophils and macrophages in the prevention of postoperative infections] Nippon Geka Gakkai Zasshi 104:506–510 (in Japanese)PubMed
15.
go back to reference Mercer-Jones MA, Shrotri MS, Heinzelmann M, Peyton JC, Cheadle WG (1999) Regulation of early peritoneal neutrophil migration by macrophage inflammatory protein-2 and mast cells in experimental peritonitis. J Leukoc Biol 65(2):249–255PubMed Mercer-Jones MA, Shrotri MS, Heinzelmann M, Peyton JC, Cheadle WG (1999) Regulation of early peritoneal neutrophil migration by macrophage inflammatory protein-2 and mast cells in experimental peritonitis. J Leukoc Biol 65(2):249–255PubMed
16.
go back to reference Knall C, Young S, Nick JA, Buhl AM, Worthen GS, Johnson GL (1996) Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem 271(5):2832–2838PubMedCrossRef Knall C, Young S, Nick JA, Buhl AM, Worthen GS, Johnson GL (1996) Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem 271(5):2832–2838PubMedCrossRef
17.
go back to reference Maianski NA, Maianski AN, Kuijpers TW, Roos D (2004) Apoptosis of neutrophils. Acta Haematol 111(1–2):56–66PubMedCrossRef Maianski NA, Maianski AN, Kuijpers TW, Roos D (2004) Apoptosis of neutrophils. Acta Haematol 111(1–2):56–66PubMedCrossRef
18.
go back to reference Sawatzky DA, Willoughby DA, Colville-Nash PR, Rossi AG (2006) The involvement of the apoptosis-modulating proteins ERK 1/2, Bcl-xL and Bax in the resolution of acute inflammation in vivo. Am J Pathol 168(1):33–41PubMedCrossRef Sawatzky DA, Willoughby DA, Colville-Nash PR, Rossi AG (2006) The involvement of the apoptosis-modulating proteins ERK 1/2, Bcl-xL and Bax in the resolution of acute inflammation in vivo. Am J Pathol 168(1):33–41PubMedCrossRef
19.
go back to reference Rotstein OD, Fiegel VD, Simmons RL, Knighton DR (1988) The deleterious effect of reduced pH and hypoxia on neutrophil migration in vitro. J Surg Res 45(3):298–303PubMedCrossRef Rotstein OD, Fiegel VD, Simmons RL, Knighton DR (1988) The deleterious effect of reduced pH and hypoxia on neutrophil migration in vitro. J Surg Res 45(3):298–303PubMedCrossRef
20.
go back to reference Cailhier JF, Partolina M, Vuthoori S, Wu S, Ko K, Watson S, Savill J, Hughes J, Lang RA (2005) Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol 174:2336–2342PubMed Cailhier JF, Partolina M, Vuthoori S, Wu S, Ko K, Watson S, Savill J, Hughes J, Lang RA (2005) Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol 174:2336–2342PubMed
21.
go back to reference Ajuebor MN, Das AM, Virag L, Flower RJ, Szabo C, Perretti M (1999) Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J Immunol 162(3):1685–1691PubMed Ajuebor MN, Das AM, Virag L, Flower RJ, Szabo C, Perretti M (1999) Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J Immunol 162(3):1685–1691PubMed
22.
go back to reference Colgan SP, Dzus AL, Parkos CA (1996) Epithelial exposure to hypoxia modulates neutrophil transepithelial migration. J Exp Med 184(3):1003–1015PubMedCrossRef Colgan SP, Dzus AL, Parkos CA (1996) Epithelial exposure to hypoxia modulates neutrophil transepithelial migration. J Exp Med 184(3):1003–1015PubMedCrossRef
23.
go back to reference Stein BN, Gamble JR, Pitson SM, Vadas MA, Khew-Goodall Y (2003) Activation of endothelial extracellular signal-regulated kinase is essential for neutrophil transmigration: potential involvement of a soluble neutrophil factor in endothelial activation. J Immunol 171(11):6097–6104PubMed Stein BN, Gamble JR, Pitson SM, Vadas MA, Khew-Goodall Y (2003) Activation of endothelial extracellular signal-regulated kinase is essential for neutrophil transmigration: potential involvement of a soluble neutrophil factor in endothelial activation. J Immunol 171(11):6097–6104PubMed
24.
go back to reference Kuebler JF, Vieten G, Shimotakahara A, Metzelder ML, Jesch NK, Ure BM (2006) Acidification during carbon dioxide pneumoperitoneum is restricted to the gas-exposed peritoneal surface: effects of pressure, gas flow, and additional intraperitoneal fluids. J Laparoendosc Adv Surg Tech A 16(6):654–658PubMedCrossRef Kuebler JF, Vieten G, Shimotakahara A, Metzelder ML, Jesch NK, Ure BM (2006) Acidification during carbon dioxide pneumoperitoneum is restricted to the gas-exposed peritoneal surface: effects of pressure, gas flow, and additional intraperitoneal fluids. J Laparoendosc Adv Surg Tech A 16(6):654–658PubMedCrossRef
Metadata
Title
Carbon dioxide directly suppresses spontaneous migration, chemotaxis, and free radical production of human neutrophils
Authors
Akihiro Shimotakahara
Joachim F. Kuebler
Gertrud Vieten
Marcin Kos
Martin L. Metzelder
Benno M. Ure
Publication date
01-08-2008
Publisher
Springer-Verlag
Published in
Surgical Endoscopy / Issue 8/2008
Print ISSN: 0930-2794
Electronic ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-007-9703-0

Other articles of this Issue 8/2008

Surgical Endoscopy 8/2008 Go to the issue