Skip to main content
Top
Published in: Dysphagia 1/2010

01-03-2010 | Original Article

Tongue Pressure Patterns During Water Swallowing

Authors: Daniel Kennedy, Jules Kieser, Chris Bolter, Michael Swain, Bhavia Singh, J. Neil Waddell

Published in: Dysphagia | Issue 1/2010

Login to get access

Abstract

Bolus propulsion during the normal oral phase of swallowing is thought to be characterised by the sequential elevation of the front, middle, and posterior regions of the dorsum of the tongue. However, the coordinated orchestration of lingual movement is still poorly understood. This study examined how pressures generated by the tongue against the hard palate differed between three points along the midline of the tongue. Specifically, we tested three hypotheses: (1) that there are defined individual patterns of pressure change within the mouth during liquid swallowing; (2) that there are significant negative pressures generated at defined moments during normal swallowing; and, (3) that liquid swallowing is governed by the interplay of pressures generated in an anteroposterior direction in the mouth. Using a metal appliance described previously, we measured absolute pressures during water swallows in six healthy volunteers (4 male, 2 female) with an age range of 25–35 years. Participants performed three 10-ml water swallows from a small cup on five separate days, thus providing data for a total of 15 separate water swallows. There was a distinct pattern to the each of the pressure signals, and this pattern was preserved in the mean obtained when the data were pooled. Furthermore, raw signals from the same subjects presented consistent patterns at each of the five testing sessions. In all subjects, pressure at the anterior and hind palate tended to be negative relative to the preswallow value; at mid–palate, however, pressure changes were less consistent between individuals. When the pressure differences between the sites were calculated, we found that during the swallow a net negative pressure difference developed between anterior and mid-palate and a net positive pressure difference developed between mid-palate and hind palate. Large, rapid fluctuations in pressure occurred at all sites and these varied several-fold between subjects. When the brief sharp reduction in pressure that occurred early in each swallow was used to determine the sequence of events, we found that activity occurred first at the anterior of the palate followed by the mid-palate and then the hind palate. There was a considerably longer and more variable delay between the start of activity at the front of the palate than at the rear of the palate. To obtain an index of the “effort” involved in generating the pressures at each site regardless of direction (positive or negative), we obtained the product of the root mean square (RMS) pressure change during each swallow (kPa) and its duration (s). Overall, the most effort appears to have occurred at the front of the palate and the least at mid-palate. Our results also showed that some participants exerted a small amount of midline pressure when swallowing, while others used a relatively large amount of tongue pressure. We conclude that while tongue behaviour during swallowing follows a classical sequence of rapid shape changes intended to contain and then propel the bolus from the oral cavity to the pharynx, there is a large range of individual variability in how this process is accomplished.
Literature
1.
go back to reference Felton SM, Gaige TA, Reese TG, Wedeen VJ, Gilbert R. Mechanical basis for lingual deformation during the propulsive phase of swallowing as determined by phase-contrast magnetic resonance imaging. J Appl Physiol. 2007;103:255–65.CrossRefPubMed Felton SM, Gaige TA, Reese TG, Wedeen VJ, Gilbert R. Mechanical basis for lingual deformation during the propulsive phase of swallowing as determined by phase-contrast magnetic resonance imaging. J Appl Physiol. 2007;103:255–65.CrossRefPubMed
2.
go back to reference Nicosia MA, Hind JA, Roecker EB, Carnes M, Doyle J, Dengel GA, et al. Age effects on the temporal evolution of isometric and swallowing pressure. J Gerontol. 2000;55A:634–40. Nicosia MA, Hind JA, Roecker EB, Carnes M, Doyle J, Dengel GA, et al. Age effects on the temporal evolution of isometric and swallowing pressure. J Gerontol. 2000;55A:634–40.
3.
go back to reference Kydd WL, Toda JM. Maximum forces exerted on the hard palate during swallowing. J Dent Res. 1962;65:319–30. Kydd WL, Toda JM. Maximum forces exerted on the hard palate during swallowing. J Dent Res. 1962;65:319–30.
4.
go back to reference Pouderoux P, Kahrilas PJ. Deglutitive tongue force modulation by volition, volume and viscosity in humans. Gastroenterology. 1995;108:1418–26.CrossRefPubMed Pouderoux P, Kahrilas PJ. Deglutitive tongue force modulation by volition, volume and viscosity in humans. Gastroenterology. 1995;108:1418–26.CrossRefPubMed
5.
go back to reference Robbins JA, Levine R, Wood J, Roecker EB, Luschei E. Age effects on lingual pressure generation as a risk factor for dysphagia. J Gastroenterol. 1995;50:257–62. Robbins JA, Levine R, Wood J, Roecker EB, Luschei E. Age effects on lingual pressure generation as a risk factor for dysphagia. J Gastroenterol. 1995;50:257–62.
6.
go back to reference Robbins J, Gangnon RE, Theis SM, Kays SA, Hewitt AL, Hind JA. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc. 2005;53:1483–9.CrossRefPubMed Robbins J, Gangnon RE, Theis SM, Kays SA, Hewitt AL, Hind JA. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc. 2005;53:1483–9.CrossRefPubMed
7.
go back to reference Crow HC, Ship JA. Tongue strength and endurance in different aged individuals. J Gerontol. 1996;51:247–50. Crow HC, Ship JA. Tongue strength and endurance in different aged individuals. J Gerontol. 1996;51:247–50.
8.
go back to reference Clark HM, Henson PA, Barber WD, Stierwalt JAG, Sherrill M. Relationship among subjective and objective measures of tongue strength and oral phase swallowing impairments. Am J Speech Lang Pathol. 2003;12:40–50.CrossRefPubMed Clark HM, Henson PA, Barber WD, Stierwalt JAG, Sherrill M. Relationship among subjective and objective measures of tongue strength and oral phase swallowing impairments. Am J Speech Lang Pathol. 2003;12:40–50.CrossRefPubMed
9.
go back to reference Stierwalt JAG, Youmans SR. Tongue measures in individuals with normal and impaired swallowing. Am J Speech Lang Pathol. 2007;16:148–56.CrossRefPubMed Stierwalt JAG, Youmans SR. Tongue measures in individuals with normal and impaired swallowing. Am J Speech Lang Pathol. 2007;16:148–56.CrossRefPubMed
10.
go back to reference Lazarus CL, Langemann JA, Pauloski BR, Rademaker AW, Larson CR, Mittal BB, et al. Swallowing and tongue function following treatment for oral and oropharyngeal cancer. J Speech Lang Hear Res. 2000;43:1011–23.PubMed Lazarus CL, Langemann JA, Pauloski BR, Rademaker AW, Larson CR, Mittal BB, et al. Swallowing and tongue function following treatment for oral and oropharyngeal cancer. J Speech Lang Hear Res. 2000;43:1011–23.PubMed
11.
go back to reference Ono T, Hori K, Nokubi T. Pattern of tongue pressure on hard palate during swallowing. Dysphagia. 2004;19:259–64.PubMed Ono T, Hori K, Nokubi T. Pattern of tongue pressure on hard palate during swallowing. Dysphagia. 2004;19:259–64.PubMed
12.
go back to reference Hori K, Ono T, Nokubi T. Coordination of tongue pressure and jaw movement in mastication. J Dent Res. 2006;85:187–91.CrossRefPubMed Hori K, Ono T, Nokubi T. Coordination of tongue pressure and jaw movement in mastication. J Dent Res. 2006;85:187–91.CrossRefPubMed
13.
go back to reference Kieser JA, Singh B, Swain MV, Ichim I, Waddell JN, Kennedy D, et al. Measuring intra-oral pressure: adaptation of a dental appliance allows measurement during function. Dysphagia. 2008;23:237–43.CrossRefPubMed Kieser JA, Singh B, Swain MV, Ichim I, Waddell JN, Kennedy D, et al. Measuring intra-oral pressure: adaptation of a dental appliance allows measurement during function. Dysphagia. 2008;23:237–43.CrossRefPubMed
14.
go back to reference Steele CM, Van Lieshout PHM. The dynamics of lingual-mandibular coordination during liquid swallowing. Dysphagia. 2008;23:33–46.CrossRefPubMed Steele CM, Van Lieshout PHM. The dynamics of lingual-mandibular coordination during liquid swallowing. Dysphagia. 2008;23:33–46.CrossRefPubMed
15.
go back to reference Tasko SM, Kent RD, Westbury JR. Variability in tongue movement kinematics during normal liquid swallowing. Dysphagia. 2002;17:126–38.CrossRefPubMed Tasko SM, Kent RD, Westbury JR. Variability in tongue movement kinematics during normal liquid swallowing. Dysphagia. 2002;17:126–38.CrossRefPubMed
16.
go back to reference Chi-Fishman G, Stone M, McCall GN. Lingual action in normal sequential swallowing. J Speech Lang Hear Res. 1998;41:771–85.PubMed Chi-Fishman G, Stone M, McCall GN. Lingual action in normal sequential swallowing. J Speech Lang Hear Res. 1998;41:771–85.PubMed
17.
go back to reference Shaker R, Cook IJS, Dodds WJ, Hogan WJ. Pressure-flow dynamics of the oral phase of swallowing. Dysphagia. 1988;3:79–84.CrossRefPubMed Shaker R, Cook IJS, Dodds WJ, Hogan WJ. Pressure-flow dynamics of the oral phase of swallowing. Dysphagia. 1988;3:79–84.CrossRefPubMed
18.
go back to reference Youmans SR, Stierwalt JAG. Measures of tongue function related to normal swallowing. Dysphagia. 2006;21:102–11.CrossRefPubMed Youmans SR, Stierwalt JAG. Measures of tongue function related to normal swallowing. Dysphagia. 2006;21:102–11.CrossRefPubMed
19.
go back to reference Wilson EM, Green JR. Coordinative organization of lingual propulsion during the normal adult swallow. Dysphagia. 2006;21:226–36.CrossRefPubMed Wilson EM, Green JR. Coordinative organization of lingual propulsion during the normal adult swallow. Dysphagia. 2006;21:226–36.CrossRefPubMed
20.
go back to reference Shawker TH, Sonies B, Stone M, Baum BJ. Real-time ultrasound visualization of tongue movement during swallowing. J Clin Ultrasound. 1989;11:485–90.CrossRef Shawker TH, Sonies B, Stone M, Baum BJ. Real-time ultrasound visualization of tongue movement during swallowing. J Clin Ultrasound. 1989;11:485–90.CrossRef
21.
go back to reference Gould MSE, Picton DCA. Sub-atmospheric pressure and forces recorded from the labio-buccal surfaces of teeth during swallowing in adult males. Br J Orthod. 1975;2:121–5.PubMed Gould MSE, Picton DCA. Sub-atmospheric pressure and forces recorded from the labio-buccal surfaces of teeth during swallowing in adult males. Br J Orthod. 1975;2:121–5.PubMed
22.
go back to reference Hamlet SL. Dynamic aspects of lingual propulsive activity in swallowing. Dysphagia. 1989;4:136–45.CrossRefPubMed Hamlet SL. Dynamic aspects of lingual propulsive activity in swallowing. Dysphagia. 1989;4:136–45.CrossRefPubMed
23.
go back to reference Miller JL, Watkin KL. The influence of bolus volume and viscosity on anterior lingual force during the oral phase of swallowing. Dysphagia. 1996;11:117–24.CrossRefPubMed Miller JL, Watkin KL. The influence of bolus volume and viscosity on anterior lingual force during the oral phase of swallowing. Dysphagia. 1996;11:117–24.CrossRefPubMed
Metadata
Title
Tongue Pressure Patterns During Water Swallowing
Authors
Daniel Kennedy
Jules Kieser
Chris Bolter
Michael Swain
Bhavia Singh
J. Neil Waddell
Publication date
01-03-2010
Publisher
Springer-Verlag
Published in
Dysphagia / Issue 1/2010
Print ISSN: 0179-051X
Electronic ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-009-9223-2

Other articles of this Issue 1/2010

Dysphagia 1/2010 Go to the issue