Skip to main content
Top
Published in: Dysphagia 2/2009

01-06-2009 | Original Article

An Animal Model of Oral Dysphagia in Amyotrophic Lateral Sclerosis

Authors: Teresa E. Lever, Ambre Gorsek, Kathleen T. Cox, Kevin F. O’Brien, Norman F. Capra, Monica S. Hough, Alexander K. Murashov

Published in: Dysphagia | Issue 2/2009

Login to get access

Abstract

Relatively little is known about the underlying neuropathology of dysphagia in amyotrophic lateral sclerosis (ALS); thus, effective treatments remain elusive. Tremendous progress toward understanding and treating dysphagia in ALS may be possible through the use of an animal model of dysphagia in ALS research; however, no such animal model currently exists. The most logical candidate to consider is the SOD1-G93A transgenic mouse, the most widely investigated animal model of ALS. To investigate whether this animal model develops dysphagia, oral behaviors (lick and mastication rates) of SOD1-G93A transgenic mice (n = 30) were evaluated at three time points based on hind limb motor function: asymptomatic (60 days), disease onset (~110 days), and disease end-stage (~140 days). Age-matched nontransgenic littermates (n = 30) served as controls. At each time point, lick and mastication rates were significantly lower (p < 0.05) for transgenic mice compared with controls. Histologic analysis of the brainstem showed marked neurodegeneration (vacuolation) of the trigeminal and hypoglossal nuclei, two key motor components involved in mastication and licking behaviors. These results demonstrate a clinicopathologic correlation of oral dysfunction in SOD1-G93A transgenic mice, thereby establishing the SOD1-G93A transgenic mouse as a bona fide animal model of oral dysphagia in ALS.
Literature
1.
go back to reference Brownell B, Oppenheimer DR, Hughes JT. The central nervous system in motor neurone disease. J Neurol Neurosurg Psychiatry. 1970;33:338–57.PubMedCrossRef Brownell B, Oppenheimer DR, Hughes JT. The central nervous system in motor neurone disease. J Neurol Neurosurg Psychiatry. 1970;33:338–57.PubMedCrossRef
2.
go back to reference Charles T, Swash M. Amyotrophic lateral sclerosis: current understanding. J Neurosci Nurs. 2001;33:245–53.PubMed Charles T, Swash M. Amyotrophic lateral sclerosis: current understanding. J Neurosci Nurs. 2001;33:245–53.PubMed
4.
go back to reference Lawyer T Jr, Netsky MG. Amyotrophic lateral sclerosis. AMA Arch Neurol Psychiatry. 1953;69:171–92.PubMed Lawyer T Jr, Netsky MG. Amyotrophic lateral sclerosis. AMA Arch Neurol Psychiatry. 1953;69:171–92.PubMed
5.
go back to reference Rowland LP. Ten central themes in a decade of amyotrophic lateral sclerosis research. New York: Raven Press; 1991. Rowland LP. Ten central themes in a decade of amyotrophic lateral sclerosis research. New York: Raven Press; 1991.
9.
go back to reference Walling AD. Amyotrophic lateral sclerosis: Lou Gehrig’s disease. Am Fam Physician. 1999;59:1489–96.PubMed Walling AD. Amyotrophic lateral sclerosis: Lou Gehrig’s disease. Am Fam Physician. 1999;59:1489–96.PubMed
10.
11.
go back to reference Gurney ME. Transgenic animal models of familial amyotrophic lateral sclerosis. J Neurol. 1997;244(Suppl 2):S15–20.PubMedCrossRef Gurney ME. Transgenic animal models of familial amyotrophic lateral sclerosis. J Neurol. 1997;244(Suppl 2):S15–20.PubMedCrossRef
13.
go back to reference Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 1995;92:689–93. doi:10.1073/pnas.92.3.689.PubMedCrossRef Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 1995;92:689–93. doi:10.​1073/​pnas.​92.​3.​689.PubMedCrossRef
14.
go back to reference Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995;14:1105–16. doi:10.1016/0896-6273(95)90259-7.PubMedCrossRef Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995;14:1105–16. doi:10.​1016/​0896-6273(95)90259-7.PubMedCrossRef
15.
go back to reference Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med. 2005;11:423–8. doi:10.1038/nm1207.PubMedCrossRef Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med. 2005;11:423–8. doi:10.​1038/​nm1207.PubMedCrossRef
16.
go back to reference Sasaki S, Warita H, Abe K, Iwata M. Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. 2005;110:48–56. doi:10.1007/s00401-005-1021-9.PubMedCrossRef Sasaki S, Warita H, Abe K, Iwata M. Impairment of axonal transport in the axon hillock and the initial segment of anterior horn neurons in transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol. 2005;110:48–56. doi:10.​1007/​s00401-005-1021-9.PubMedCrossRef
17.
go back to reference Zald DH, Pardo JV, The functional neuroanatomy of voluntary swallowing. Ann Neurol. 1999; 46:281–6. doi :10.1002/1531-8249(199909)46:3<281::AID-ANA2>3.0.CO;2-L. Zald DH, Pardo JV, The functional neuroanatomy of voluntary swallowing. Ann Neurol. 1999; 46:281–6. doi :10.1002/1531-8249(199909)46:3<281::AID-ANA2>3.0.CO;2-L.
20.
go back to reference Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci USA. 2002;99:1604–9. doi:10.1073/pnas.032539299.PubMedCrossRef Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci USA. 2002;99:1604–9. doi:10.​1073/​pnas.​032539299.PubMedCrossRef
22.
go back to reference Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med. 2005;11:429–33. doi:10.1038/nm1205.PubMedCrossRef Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med. 2005;11:429–33. doi:10.​1038/​nm1205.PubMedCrossRef
25.
go back to reference Hillel AD, Miller RM. Management of bulbar symptoms in amyotrophic lateral sclerosis. Adv Exp Med Biol. 1987;209:201–21.PubMed Hillel AD, Miller RM. Management of bulbar symptoms in amyotrophic lateral sclerosis. Adv Exp Med Biol. 1987;209:201–21.PubMed
26.
go back to reference Tayama N. Dysphagia in amyotrophic lateral sclerosis–the mechanism and managements. Rinsho Shinkeigaku. 1995;35:1557–9.PubMed Tayama N. Dysphagia in amyotrophic lateral sclerosis–the mechanism and managements. Rinsho Shinkeigaku. 1995;35:1557–9.PubMed
27.
go back to reference Ohkubo H. Dysphagia in amyotrophic lateral sclerosis–electromyographic and radiological investigations. Otol Fukuoka. 1980;26:44–78. Ohkubo H. Dysphagia in amyotrophic lateral sclerosis–electromyographic and radiological investigations. Otol Fukuoka. 1980;26:44–78.
29.
33.
go back to reference Okayasu I, Yamada Y, Kohno S, Yoshida N. New animal model for studying mastication in oral motor disorders. J Dent Res. 2003;82:318–21.PubMedCrossRef Okayasu I, Yamada Y, Kohno S, Yoshida N. New animal model for studying mastication in oral motor disorders. J Dent Res. 2003;82:318–21.PubMedCrossRef
37.
go back to reference Genotyping Protocol for SOD. Bar Harbor, ME: The Jackson Laboratory, 2005. Genotyping Protocol for SOD. Bar Harbor, ME: The Jackson Laboratory, 2005.
40.
go back to reference Kong J, Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci. 1998;18:3241–50.PubMed Kong J, Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci. 1998;18:3241–50.PubMed
42.
go back to reference Hamadeh MJ, Rodriguez MC, Kaczor JJ, Tarnopolsky MA. Caloric restriction transiently improves motor performance but hastens clinical onset of disease in the Cu/Zn-superoxide dismutase mutant G93A mouse. Muscle Nerve. 2005;31:214–20. doi:10.1002/mus.20255.PubMedCrossRef Hamadeh MJ, Rodriguez MC, Kaczor JJ, Tarnopolsky MA. Caloric restriction transiently improves motor performance but hastens clinical onset of disease in the Cu/Zn-superoxide dismutase mutant G93A mouse. Muscle Nerve. 2005;31:214–20. doi:10.​1002/​mus.​20255.PubMedCrossRef
43.
46.
go back to reference Silani V, Kasarskis EJ, Yanagisawa N. Nutritional management in amyotrophic lateral sclerosis: a worldwide perspective. J Neurol. 1998;245(Suppl 2):S13–9. discussion S29.PubMedCrossRef Silani V, Kasarskis EJ, Yanagisawa N. Nutritional management in amyotrophic lateral sclerosis: a worldwide perspective. J Neurol. 1998;245(Suppl 2):S13–9. discussion S29.PubMedCrossRef
47.
go back to reference Hillel A, Dray T, Miller R, Yorkston K, Konikow N, Strande E, et al. Presentation of ALS to the otolaryngologist/head and neck surgeon: getting to the neurologist. Neurology. 1999;53:S22–5. discussion S35–S26.PubMed Hillel A, Dray T, Miller R, Yorkston K, Konikow N, Strande E, et al. Presentation of ALS to the otolaryngologist/head and neck surgeon: getting to the neurologist. Neurology. 1999;53:S22–5. discussion S35–S26.PubMed
49.
go back to reference Allen TC. AFIP laboratory methods in histotechnology. Washington, DC: American Registry of Pathology; 1992. Allen TC. AFIP laboratory methods in histotechnology. Washington, DC: American Registry of Pathology; 1992.
50.
go back to reference Bucher S, Braunstein KE, Niessen HG, Kaulisch T, Neumaier M, Boeckers TM, et al. Vacuolization correlates with spin-spin relaxation time in motor brainstem nuclei and behavioural tests in the transgenic G93A-SOD1 mouse model of ALS. Eur J Neurosci. 2007;26:1895–901. doi:10.1111/j.1460-9568.2007.05831.x.PubMedCrossRef Bucher S, Braunstein KE, Niessen HG, Kaulisch T, Neumaier M, Boeckers TM, et al. Vacuolization correlates with spin-spin relaxation time in motor brainstem nuclei and behavioural tests in the transgenic G93A-SOD1 mouse model of ALS. Eur J Neurosci. 2007;26:1895–901. doi:10.​1111/​j.​1460-9568.​2007.​05831.​x.PubMedCrossRef
51.
go back to reference Paxinos G, Franklin K. The mouse brain in sterotaxic coordinates. 2nd ed. Sydney, Australia: Academic Press; 2001. Paxinos G, Franklin K. The mouse brain in sterotaxic coordinates. 2nd ed. Sydney, Australia: Academic Press; 2001.
52.
go back to reference Little RJA, Rubin DB. Statistical analysis with missing data. 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc.; 2002. Little RJA, Rubin DB. Statistical analysis with missing data. 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc.; 2002.
53.
go back to reference Singer J. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. J Educ Behav Stat. 1998;24:323–55. Singer J. Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. J Educ Behav Stat. 1998;24:323–55.
55.
go back to reference Littell RC, Milliken GA, Stroup WW, Wolfinger RD. SAS systems for mixed models. Cary, NC: SAS Institute, Inc.; 1996. Littell RC, Milliken GA, Stroup WW, Wolfinger RD. SAS systems for mixed models. Cary, NC: SAS Institute, Inc.; 1996.
56.
go back to reference Forthofer RN, Lee ES, Hernandez M. Biostatistics: a guide to design, analysis, and discovery. 2nd ed. Burlington, MA: Elsevier; 2007. Forthofer RN, Lee ES, Hernandez M. Biostatistics: a guide to design, analysis, and discovery. 2nd ed. Burlington, MA: Elsevier; 2007.
58.
go back to reference Lowry KS, Murray SS, McLean CA, Talman P, Mathers S, Lopes EC, et al. A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2:127–34. doi:10.1080/146608201753275463.PubMedCrossRef Lowry KS, Murray SS, McLean CA, Talman P, Mathers S, Lopes EC, et al. A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2:127–34. doi:10.​1080/​1466082017532754​63.PubMedCrossRef
59.
go back to reference Azari MF, Lopes EC, Stubna C, Turner BJ, Zang D, Nicola NA, et al. Behavioural and anatomical effects of systemically administered leukemia inhibitory factor in the SOD1(G93A G1H) mouse model of familial amyotrophic lateral sclerosis. Brain Res. 2003;982:92–7. doi:10.1016/S0006-8993(03)02989-5.PubMedCrossRef Azari MF, Lopes EC, Stubna C, Turner BJ, Zang D, Nicola NA, et al. Behavioural and anatomical effects of systemically administered leukemia inhibitory factor in the SOD1(G93A G1H) mouse model of familial amyotrophic lateral sclerosis. Brain Res. 2003;982:92–7. doi:10.​1016/​S0006-8993(03)02989-5.PubMedCrossRef
60.
62.
go back to reference Kasarskis EJ, Berryman S, Vanderleest JG, Schneider AR, McClain CJ. Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am J Clin Nutr. 1996;63:130–7.PubMed Kasarskis EJ, Berryman S, Vanderleest JG, Schneider AR, McClain CJ. Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am J Clin Nutr. 1996;63:130–7.PubMed
63.
go back to reference Dal Canto MC, Gurney ME. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu, Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 1995;676:25–40. doi:10.1016/0006-8993(95)00063-V.PubMedCrossRef Dal Canto MC, Gurney ME. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu, Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 1995;676:25–40. doi:10.​1016/​0006-8993(95)00063-V.PubMedCrossRef
Metadata
Title
An Animal Model of Oral Dysphagia in Amyotrophic Lateral Sclerosis
Authors
Teresa E. Lever
Ambre Gorsek
Kathleen T. Cox
Kevin F. O’Brien
Norman F. Capra
Monica S. Hough
Alexander K. Murashov
Publication date
01-06-2009
Publisher
Springer-Verlag
Published in
Dysphagia / Issue 2/2009
Print ISSN: 0179-051X
Electronic ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-008-9190-z

Other articles of this Issue 2/2009

Dysphagia 2/2009 Go to the issue