Skip to main content
Top
Published in: Brain Structure and Function 5/2022

Open Access 01-06-2022 | Original Article

Properties of the epileptiform activity in the cingulate cortex of a mouse model of LIS1 dysfunction

Authors: E. Domínguez-Sala, A. Andreu-Cervera, P. Martín-Climent, R. Murcia-Ramón, S. Martínez, Emilio Geijo-Barrientos

Published in: Brain Structure and Function | Issue 5/2022

Login to get access

Abstract

Dysfunction of the LIS1 gene causes lissencephaly, a drastic neurological disorder characterized by a deep disruption of the cortical structure. We aim to uncover alterations of the cortical neuronal networks related with the propagation of epileptiform activity in the Lis1/sLis1 mouse, a model lacking the LisH domain in heterozygosis. We did extracellular field-potential and intracellular recordings in brain slices of the anterior cingulate cortex (ACC) or the retrosplenial cortex (RSC) to study epileptiform activity evoked in the presence of bicuculline (10 µM), a blocker of GABAA receptors. The sensitivity to bicuculline of the generation of epileptiform discharges was similar in wild type (WT) and Lis1/sLis1 cortex (EC50 1.99 and 2.24 µM, respectively). In the Lis1/sLis1 cortex, we observed a decreased frequency of the oscillatory post-discharges of the epileptiform events; also, the propagation of epileptiform events along layer 2/3 was slower in the Lis1/sLis1 cortex (WT 47.69 ± 2.16 mm/s, n = 25; Lis1/sLis1 37.34 ± 2.43 mm/s, n = 15; p = 0.004). The intrinsic electrophysiological properties of layer 2/3 pyramidal neurons were similar in WT and Lis1/sLis1 cortex, but the frequency of the spontaneous EPSCs was lower and their peak amplitude higher in Lis1/sLis1 pyramidal neurons. Finally, the propagation of epileptiform activity was differently affected by AMPA receptor blockers: CNQX had a larger effect in both ACC and RSC while GYKI53655 had a larger effect only in the ACC in the WT and Lis1/sLis1 cortex. All these changes indicate that the dysfunction of the LIS1 gene causes abnormalities in the properties of epileptiform discharges and in their propagation along the layer 2/3 in the anterior cingulate cortex and in the restrosplenial cortex.
Literature
go back to reference Alefeld M, Sutor B, Luhmann HJ (1998) Pattern and pharmacology of propagating epileptiform activity in mouse cerebral cortex. Exp Neurol 153(1):113–122PubMed Alefeld M, Sutor B, Luhmann HJ (1998) Pattern and pharmacology of propagating epileptiform activity in mouse cerebral cortex. Exp Neurol 153(1):113–122PubMed
go back to reference Avoli M, D’Antuono M, Louvel J, Köhling R, Biagini G, Pumain R, D’Arcangelo G, Tancredi V (2002) Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol 68(3):167–207PubMed Avoli M, D’Antuono M, Louvel J, Köhling R, Biagini G, Pumain R, D’Arcangelo G, Tancredi V (2002) Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol 68(3):167–207PubMed
go back to reference Bonnot A, Chub N, Pujala A, O’Donnovan MJ (2009) Excitatory actions of ventral root stimulation during network activity generated by the disinhibited neonatal mouse spinal cord. J Neurophysiol 101(6):2995–3011PubMedPubMedCentral Bonnot A, Chub N, Pujala A, O’Donnovan MJ (2009) Excitatory actions of ventral root stimulation during network activity generated by the disinhibited neonatal mouse spinal cord. J Neurophysiol 101(6):2995–3011PubMedPubMedCentral
go back to reference Cahana A, Escamez T, Nowakowski RS, Hayes NL, Giacobini MB, Von Holst A, Shmueli O, Sapir T, McConnell SK, Wurst W, Martinez S, Reiner O (2001) Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. PNAS 98(11):6429–6434PubMedPubMedCentral Cahana A, Escamez T, Nowakowski RS, Hayes NL, Giacobini MB, Von Holst A, Shmueli O, Sapir T, McConnell SK, Wurst W, Martinez S, Reiner O (2001) Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. PNAS 98(11):6429–6434PubMedPubMedCentral
go back to reference Cardoso C, Leventer RJ, Matsumoto N et al (2000) The location and type of mutation predict malformation severity in isolated lissencephaly caused by abnormalities within the LIS1 gene. Hum Mol Genet 9(20):3019–3028PubMed Cardoso C, Leventer RJ, Matsumoto N et al (2000) The location and type of mutation predict malformation severity in isolated lissencephaly caused by abnormalities within the LIS1 gene. Hum Mol Genet 9(20):3019–3028PubMed
go back to reference Castro-Alamancos A, Rigas P (2002) Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors. J Physiol 542:567–581PubMedPubMedCentral Castro-Alamancos A, Rigas P (2002) Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors. J Physiol 542:567–581PubMedPubMedCentral
go back to reference Chagnac-Amitai Y, Connors BW (1989) Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 61:747–758PubMed Chagnac-Amitai Y, Connors BW (1989) Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol 61:747–758PubMed
go back to reference Chong SS, Pack SD, Roschke AV et al (1997) A revision of the lissencephaly and Miller-Dieker Syndrome critical regions in chromosome 17p13.3. Hum Mol Genet 6(2):147–155PubMed Chong SS, Pack SD, Roschke AV et al (1997) A revision of the lissencephaly and Miller-Dieker Syndrome critical regions in chromosome 17p13.3. Hum Mol Genet 6(2):147–155PubMed
go back to reference Clark GD, Happel LT, Zorumski CF et al (1992) Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron 9:1211–1216PubMed Clark GD, Happel LT, Zorumski CF et al (1992) Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron 9:1211–1216PubMed
go back to reference De Curtis M, Jefferys JGR, Avoli M (2012) Interictal epileptiform discharges in partial epilepsy. In: Noebels JL, Avoli M, Ragawski MA, Olsen RW, Delgado-Escueta AV (eds) “Jasper’s basic mechanisms of the epilepsies” (internet), 4th edn. National Center for Biotechnology Information (US), Bethesda De Curtis M, Jefferys JGR, Avoli M (2012) Interictal epileptiform discharges in partial epilepsy. In: Noebels JL, Avoli M, Ragawski MA, Olsen RW, Delgado-Escueta AV (eds) “Jasper’s basic mechanisms of the epilepsies” (internet), 4th edn. National Center for Biotechnology Information (US), Bethesda
go back to reference Dinday MT, Girskis KM, Lee S, Baraban SC, Hunt RF (2018) PAFAH1B1 haploinsufficiency disrupts GABA neurons and synaptic E/I balance in the dentate gyrus. Sci Rep 8(1):6781–6791PubMedPubMedCentral Dinday MT, Girskis KM, Lee S, Baraban SC, Hunt RF (2018) PAFAH1B1 haploinsufficiency disrupts GABA neurons and synaptic E/I balance in the dentate gyrus. Sci Rep 8(1):6781–6791PubMedPubMedCentral
go back to reference Dobyns WB (1993) Lissencephaly: a human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. JAMA 270(23):2838–2842PubMed Dobyns WB (1993) Lissencephaly: a human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. JAMA 270(23):2838–2842PubMed
go back to reference Dobyns WB (2010) The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia 51(Suppl. 1):5–9PubMed Dobyns WB (2010) The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia 51(Suppl. 1):5–9PubMed
go back to reference Escámez T, Bahamonde O, Tanares-Seisdedos R, Vieta E, Martínez S, Echevarria D (2012) Developmental dynamics of PAFAH1B subunits during mouse brain development. J Comp Neurol 520:3877–3894PubMed Escámez T, Bahamonde O, Tanares-Seisdedos R, Vieta E, Martínez S, Echevarria D (2012) Developmental dynamics of PAFAH1B subunits during mouse brain development. J Comp Neurol 520:3877–3894PubMed
go back to reference Fleck MW, Hirotsune S, Gambello MJ et al (2000) Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J Neurosci 20(7):2439–2450PubMedPubMedCentral Fleck MW, Hirotsune S, Gambello MJ et al (2000) Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J Neurosci 20(7):2439–2450PubMedPubMedCentral
go back to reference Fogli A, Guerrini R, Moro F, Fernandez-Alvarez E, Livet MO, Renieri A, Cioni M, Pilz DT, Veggiotti P, Rossi E, Ballabio A, Carrozzo R (1999) Intracellular levels of the LIS1 protein correlate with clinical and neuroradiological findings in patients with classical lissencephaly. Ann Neurol 45(2):154–161PubMed Fogli A, Guerrini R, Moro F, Fernandez-Alvarez E, Livet MO, Renieri A, Cioni M, Pilz DT, Veggiotti P, Rossi E, Ballabio A, Carrozzo R (1999) Intracellular levels of the LIS1 protein correlate with clinical and neuroradiological findings in patients with classical lissencephaly. Ann Neurol 45(2):154–161PubMed
go back to reference Fucile S, Miledi R, Eusebi F (2006) Effects of cyclothiazide on GluR1/AMPA receptors. Proc Natl Acad Sci USA 103(8):2943–2947PubMedPubMedCentral Fucile S, Miledi R, Eusebi F (2006) Effects of cyclothiazide on GluR1/AMPA receptors. Proc Natl Acad Sci USA 103(8):2943–2947PubMedPubMedCentral
go back to reference Gopal PP, Simonet JS, Shapiro W et al (2009) Leading process branch instability in Lis1+/- nonradially migrating interneurons. Cereb Cortex 20:1497–1505PubMedPubMedCentral Gopal PP, Simonet JS, Shapiro W et al (2009) Leading process branch instability in Lis1+/- nonradially migrating interneurons. Cereb Cortex 20:1497–1505PubMedPubMedCentral
go back to reference Greenwood JS, Wang Y, Estrada RC, Ackerman L, Ohara PT, Baraban SC (2009) Seizures enhanced excitation, and increased vesicle number in Lis1 mutant mice. Ann Neurol 66(5):644–653PubMed Greenwood JS, Wang Y, Estrada RC, Ackerman L, Ohara PT, Baraban SC (2009) Seizures enhanced excitation, and increased vesicle number in Lis1 mutant mice. Ann Neurol 66(5):644–653PubMed
go back to reference Hattori M, Adachi H, Tsujimoto M et al (1994) Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase. Nature 370:216–218PubMed Hattori M, Adachi H, Tsujimoto M et al (1994) Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase. Nature 370:216–218PubMed
go back to reference Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19(4):333–339PubMed Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A, Clark GD, Ledbetter DH, McBain CJ, Wynshaw-Boris A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19(4):333–339PubMed
go back to reference Hunt RF, Dinday MT, Hindle-Katel W et al (2012) LIS1 deficiency promotes dysfunctional synaptic integration of granule cells generated in the developing and adult dentate gyrus. J Neurosci 32(37):12862–12875PubMedPubMedCentral Hunt RF, Dinday MT, Hindle-Katel W et al (2012) LIS1 deficiency promotes dysfunctional synaptic integration of granule cells generated in the developing and adult dentate gyrus. J Neurosci 32(37):12862–12875PubMedPubMedCentral
go back to reference Jones DL, Baraban SC (2007) Characterization of inhibitory circuits in the malformed hippocampus of Lis1 mutant mice. J Neurophysiol 98:2737–2746PubMed Jones DL, Baraban SC (2007) Characterization of inhibitory circuits in the malformed hippocampus of Lis1 mutant mice. J Neurophysiol 98:2737–2746PubMed
go back to reference Lo Nigro C, Chong CS, Smith AC et al (1997) Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 6:157–164PubMed Lo Nigro C, Chong CS, Smith AC et al (1997) Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 6:157–164PubMed
go back to reference Paternain AV, Morales M, Lerma J (1995) Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14(1):185–189PubMed Paternain AV, Morales M, Lerma J (1995) Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14(1):185–189PubMed
go back to reference Paxinos G, Franklin KBJ (2011) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego Paxinos G, Franklin KBJ (2011) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego
go back to reference Pinto JD, Patrick SL, Huang WC et al (2005) Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. J Neurosci 25(36):8131–8140PubMedPubMedCentral Pinto JD, Patrick SL, Huang WC et al (2005) Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. J Neurosci 25(36):8131–8140PubMedPubMedCentral
go back to reference Reiner O, Sapir T (2013) LIS1 dysfunction in normal development and disease. Curr Opin Neurobiol 23(6):951–956PubMed Reiner O, Sapir T (2013) LIS1 dysfunction in normal development and disease. Curr Opin Neurobiol 23(6):951–956PubMed
go back to reference Reiner O, Carrozzo R, Shen Y et al (1993) Isolation of a Miller-Dicker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364:717–721PubMed Reiner O, Carrozzo R, Shen Y et al (1993) Isolation of a Miller-Dicker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364:717–721PubMed
go back to reference Reiner O, Cahana A, Escamez T et al (2002) LIS1—no more no less. Mol Psychiatry 7(1):12–16PubMed Reiner O, Cahana A, Escamez T et al (2002) LIS1—no more no less. Mol Psychiatry 7(1):12–16PubMed
go back to reference Robles RM, Dominguez-Sala E, Martinez S, Geijo-Barrientos E (2020) Layer 2/3 pyramidal neurons of the mouse granular retrosplenial cortex and their innervation by cortico-cortical axons. Front Neural Circ 14:5764 Robles RM, Dominguez-Sala E, Martinez S, Geijo-Barrientos E (2020) Layer 2/3 pyramidal neurons of the mouse granular retrosplenial cortex and their innervation by cortico-cortical axons. Front Neural Circ 14:5764
go back to reference Rovira V, Geijo-Barrientos E (2016) Intra- and interhemispheric propagation of electrophysiological synchronous activity and its modulation by serotonin in the cingulate cortex of juvenile mice. PLoS ONE 11(3):e0150092PubMedPubMedCentral Rovira V, Geijo-Barrientos E (2016) Intra- and interhemispheric propagation of electrophysiological synchronous activity and its modulation by serotonin in the cingulate cortex of juvenile mice. PLoS ONE 11(3):e0150092PubMedPubMedCentral
go back to reference Saillour Y, Carion N, Quelin C (2009) LIS1-related isolated lissencephaly. Spectrum of mutations and relationships with malformation severity. Arch Neurol 66(8):1007–1015PubMed Saillour Y, Carion N, Quelin C (2009) LIS1-related isolated lissencephaly. Spectrum of mutations and relationships with malformation severity. Arch Neurol 66(8):1007–1015PubMed
go back to reference Sempere-Ferràndez A, Andrés-Bayón B, Geijo-Barrientos E (2018) Callosal responses in a retrosplenial column. Brain Struct Funct 223(3):1051–1069PubMed Sempere-Ferràndez A, Andrés-Bayón B, Geijo-Barrientos E (2018) Callosal responses in a retrosplenial column. Brain Struct Funct 223(3):1051–1069PubMed
go back to reference Uyanik G, Morris-Rosendahl DJ, Stiegler J et al (2007) Location and type of mutation in the LIS1 gene do not predict phenotypic severity. Neurology 69(5):442–447PubMed Uyanik G, Morris-Rosendahl DJ, Stiegler J et al (2007) Location and type of mutation in the LIS1 gene do not predict phenotypic severity. Neurology 69(5):442–447PubMed
go back to reference Valdés-Sánchez L, Escámez T, Echevarria D et al (2007) Postnatal alterations of the inhibitory synaptic responses recorded from cortical pyramidal neurons in the Lis1/sLis1 mutant mouse. Mol Cel Neurosci 35(2):220–229 Valdés-Sánchez L, Escámez T, Echevarria D et al (2007) Postnatal alterations of the inhibitory synaptic responses recorded from cortical pyramidal neurons in the Lis1/sLis1 mutant mouse. Mol Cel Neurosci 35(2):220–229
go back to reference Vogt BA, Paxinos G (2012) Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct Funct 219(1):185–192PubMed Vogt BA, Paxinos G (2012) Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct Funct 219(1):185–192PubMed
go back to reference Walker J, Storch G, Bonnie Quach-Wong B et al (2012) Propagation of epileptiform events across the corpus callosum in a cingulate cortical slice preparation. PLoS ONE 7(2):e31415PubMedPubMedCentral Walker J, Storch G, Bonnie Quach-Wong B et al (2012) Propagation of epileptiform events across the corpus callosum in a cingulate cortical slice preparation. PLoS ONE 7(2):e31415PubMedPubMedCentral
go back to reference Wang Y, Baraban SC (2007) Granule cell dispersion and aberrant neurogenesis in the adult hippocampal of an LIS1 mutant mouse. Dev Neurosci 29:91–98PubMed Wang Y, Baraban SC (2007) Granule cell dispersion and aberrant neurogenesis in the adult hippocampal of an LIS1 mutant mouse. Dev Neurosci 29:91–98PubMed
go back to reference Wynshaw-Boris A, Gambello MJ (2001) LIS1 and dynein motor function in neuronal migration and development. Genes Dev 15(6):639–651PubMed Wynshaw-Boris A, Gambello MJ (2001) LIS1 and dynein motor function in neuronal migration and development. Genes Dev 15(6):639–651PubMed
go back to reference Yuan T, Bellone C (2013) Glutamatergic receptors at developing synapses: the role of GluN3-containing NMDA receptors and GluA2-lacking receptors. Eur J Neurosci 719:107–111 Yuan T, Bellone C (2013) Glutamatergic receptors at developing synapses: the role of GluN3-containing NMDA receptors and GluA2-lacking receptors. Eur J Neurosci 719:107–111
Metadata
Title
Properties of the epileptiform activity in the cingulate cortex of a mouse model of LIS1 dysfunction
Authors
E. Domínguez-Sala
A. Andreu-Cervera
P. Martín-Climent
R. Murcia-Ramón
S. Martínez
Emilio Geijo-Barrientos
Publication date
01-06-2022
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2022
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-022-02458-1

Other articles of this Issue 5/2022

Brain Structure and Function 5/2022 Go to the issue