Skip to main content
Top
Published in: Brain Structure and Function 4/2022

Open Access 01-05-2022 | Original Article

Receptor architecture of macaque and human early visual areas: not equal, but comparable

Authors: Lucija Rapan, Meiqi Niu, Ling Zhao, Thomas Funck, Katrin Amunts, Karl Zilles, Nicola Palomero-Gallagher

Published in: Brain Structure and Function | Issue 4/2022

Login to get access

Abstract

Existing cytoarchitectonic maps of the human and macaque posterior occipital cortex differ in the number of areas they display, thus hampering identification of homolog structures. We applied quantitative in vitro receptor autoradiography to characterize the receptor architecture of the primary visual and early extrastriate cortex in macaque and human brains, using previously published cytoarchitectonic criteria as starting point of our analysis. We identified 8 receptor architectonically distinct areas in the macaque brain (mV1d, mV1v, mV2d, mV2v, mV3d, mV3v, mV3A, mV4v), and their respective counterpart areas in the human brain (hV1d, hV1v, hV2d, hV2v, hV3d, hV3v, hV3A, hV4v). Mean densities of 14 neurotransmitter receptors were quantified in each area, and ensuing receptor fingerprints used for multivariate analyses. The 1st principal component segregated macaque and human early visual areas differ. However, the 2nd principal component showed that within each species, area-specific differences in receptor fingerprints were associated with the hierarchical processing level of each area. Subdivisions of V2 and V3 were found to cluster together in both species and were segregated from subdivisions of V1 and from V4v. Thus, comparative studies like this provide valuable architectonic insights into how differences in underlying microstructure impact evolutionary changes in functional processing of the primate brain and, at the same time, provide strong arguments for use of macaque monkey brain as a suitable animal model for translational studies.
Appendix
Available only for authorised users
Literature
go back to reference Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? Neuroimage 11:66–84PubMedCrossRef Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? Neuroimage 11:66–84PubMedCrossRef
go back to reference Backus BT, Fleet DJ, Parker AJ, Heeger DJ (2001) Human cortical activity correlates with stereoscopic depth perception. J Neurophysiol 86:2054–2068PubMedCrossRef Backus BT, Fleet DJ, Parker AJ, Heeger DJ (2001) Human cortical activity correlates with stereoscopic depth perception. J Neurophysiol 86:2054–2068PubMedCrossRef
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300
go back to reference Brewer AA, Press WA, Logothetis NK, Wandell BA (2002) Visual areas in macaque cortex measured using functional magnetic resonance imaging. J Neurosci 22:10416–10426PubMedPubMedCentralCrossRef Brewer AA, Press WA, Logothetis NK, Wandell BA (2002) Visual areas in macaque cortex measured using functional magnetic resonance imaging. J Neurosci 22:10416–10426PubMedPubMedCentralCrossRef
go back to reference Cloutman LL (2013) Interaction between dorsal and ventral processing streams: where, when and how? Brain Lang 127:251–263PubMedCrossRef Cloutman LL (2013) Interaction between dorsal and ventral processing streams: where, when and how? Brain Lang 127:251–263PubMedCrossRef
go back to reference de Sousa AA, Sherwood CC, Schleicher A, Amunts K, MacLeod CE, Hof PR, Zilles K (2010) Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. Cereb Cortex 20:966–981PubMedCrossRef de Sousa AA, Sherwood CC, Schleicher A, Amunts K, MacLeod CE, Hof PR, Zilles K (2010) Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. Cereb Cortex 20:966–981PubMedCrossRef
go back to reference Denys K, Vanduffel W, Fize D, Nelissen K, Peuskens H, Van Essen D, Orban GA (2004) The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study. J Neurosci 24:2551–2565PubMedPubMedCentralCrossRef Denys K, Vanduffel W, Fize D, Nelissen K, Peuskens H, Van Essen D, Orban GA (2004) The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study. J Neurosci 24:2551–2565PubMedPubMedCentralCrossRef
go back to reference DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci 93:2382–2386PubMedPubMedCentralCrossRef DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci 93:2382–2386PubMedPubMedCentralCrossRef
go back to reference Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA (2003) Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J vis 3:1–1CrossRef Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA (2003) Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J vis 3:1–1CrossRef
go back to reference Eickhoff SB, Schleicher A, Scheperjans F, Palomero-Gallagher N, Zilles K (2007) Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex. Neuroimage 34:1317–1330PubMedCrossRef Eickhoff SB, Schleicher A, Scheperjans F, Palomero-Gallagher N, Zilles K (2007) Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex. Neuroimage 34:1317–1330PubMedCrossRef
go back to reference Eickhoff SB, Rottschy C, Kujovic M, Palomero-Gallagher N, Zilles K (2008) Organizational principles of human visual cortex revealed by receptor mapping. Cereb Cortex 18:2637–2645PubMedPubMedCentralCrossRef Eickhoff SB, Rottschy C, Kujovic M, Palomero-Gallagher N, Zilles K (2008) Organizational principles of human visual cortex revealed by receptor mapping. Cereb Cortex 18:2637–2645PubMedPubMedCentralCrossRef
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRef Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRef
go back to reference Fize D, Vanduffel W, Nelissen K, Denys K, d'Hotel CC, Faugeras O, Orban GA (2003) The retinotopic organization of primate dorsal V4 and surrounding areas: a functional magnetic resonance imaging study in awake monkeys. J Neurosci 23:7395–7406PubMedPubMedCentralCrossRef Fize D, Vanduffel W, Nelissen K, Denys K, d'Hotel CC, Faugeras O, Orban GA (2003) The retinotopic organization of primate dorsal V4 and surrounding areas: a functional magnetic resonance imaging study in awake monkeys. J Neurosci 23:7395–7406PubMedPubMedCentralCrossRef
go back to reference Gattass R, Gross C, Sandell J (1981) Visual topography of V2 in the macaque. J Comp Neurol 201:519–539PubMedCrossRef Gattass R, Gross C, Sandell J (1981) Visual topography of V2 in the macaque. J Comp Neurol 201:519–539PubMedCrossRef
go back to reference Gattass R, Sousa A, Mishkin M, Ungerleider LG (1997) Cortical projections of area V2 in the macaque. Cerebral Cortex 7:110–129PubMedCrossRef Gattass R, Sousa A, Mishkin M, Ungerleider LG (1997) Cortical projections of area V2 in the macaque. Cerebral Cortex 7:110–129PubMedCrossRef
go back to reference Gattass R, Nascimento-Silva S, Soares JG, Lima B, Jansen AK, Diogo ACM, Farias MF, Marcondes M, Botelho EP, Mariani OS et al (2005) Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics. Phil Trans R Soc b Biol Sci 360:709–731CrossRef Gattass R, Nascimento-Silva S, Soares JG, Lima B, Jansen AK, Diogo ACM, Farias MF, Marcondes M, Botelho EP, Mariani OS et al (2005) Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics. Phil Trans R Soc b Biol Sci 360:709–731CrossRef
go back to reference Gillen G (2015) Stroke rehabilitation: a function-based approach. Elsevier Health Sciences, New York Gillen G (2015) Stroke rehabilitation: a function-based approach. Elsevier Health Sciences, New York
go back to reference Hendry S, Fuchs J, DeBlas A, Jones E (1990) Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex. J Neurosci 10:2438–2450PubMedPubMedCentralCrossRef Hendry S, Fuchs J, DeBlas A, Jones E (1990) Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex. J Neurosci 10:2438–2450PubMedPubMedCentralCrossRef
go back to reference Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186PubMedCrossRef Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186PubMedCrossRef
go back to reference Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764PubMedCrossRef Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764PubMedCrossRef
go back to reference Impieri D, Zilles K, Niu M, Rapan L, Galletti C, Palomero-Gallagher N (2018) Receptor architecture of the macaque monkey superior parietal lobule. In: 48th Annual Meeting of the Society for Neuroscience, San Diego, USA Impieri D, Zilles K, Niu M, Rapan L, Galletti C, Palomero-Gallagher N (2018) Receptor architecture of the macaque monkey superior parietal lobule. In: 48th Annual Meeting of the Society for Neuroscience, San Diego, USA
go back to reference Kolster H, Janssens T, Orban GA, Vanduffel W (2014) The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. J Neurosci 34:10168–10191PubMedPubMedCentralCrossRef Kolster H, Janssens T, Orban GA, Vanduffel W (2014) The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. J Neurosci 34:10168–10191PubMedPubMedCentralCrossRef
go back to reference Kötter R, Stephan K, Palomero-Gallagher N, Geyer S, Schleicher A, Zilles K (2001) Multimodal characterisation of cortical areas by multivariate analyses of receptor binding and connectivity data. Anat Embryol 204:333–349CrossRef Kötter R, Stephan K, Palomero-Gallagher N, Geyer S, Schleicher A, Zilles K (2001) Multimodal characterisation of cortical areas by multivariate analyses of receptor binding and connectivity data. Anat Embryol 204:333–349CrossRef
go back to reference Kujovic M, Zilles K, Malikovic A, Schleicher A, Mohlberg H, Rottschy C, Eickhoff SB, Amunts K (2013) Cytoarchitectonic mapping of the human dorsal extrastriate cortex. Brain Struct Funct 218:157–172PubMedCrossRef Kujovic M, Zilles K, Malikovic A, Schleicher A, Mohlberg H, Rottschy C, Eickhoff SB, Amunts K (2013) Cytoarchitectonic mapping of the human dorsal extrastriate cortex. Brain Struct Funct 218:157–172PubMedCrossRef
go back to reference Lerma J (2003) Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 4:481–495PubMedCrossRef Lerma J (2003) Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 4:481–495PubMedCrossRef
go back to reference Lu HD, Roe AW (2008) Functional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging. Cereb Cortex 18:516–533PubMedCrossRef Lu HD, Roe AW (2008) Functional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging. Cereb Cortex 18:516–533PubMedCrossRef
go back to reference Merker B (1983) Silver staining of cell bodies by means of physical development. J Neurosci Methods 9:235–241PubMedCrossRef Merker B (1983) Silver staining of cell bodies by means of physical development. J Neurosci Methods 9:235–241PubMedCrossRef
go back to reference Niu M, Impieri D, Rapan L, Funck T, Palomero-Gallagher N, Zilles K (2020) Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus. eLife 9:e55979PubMedPubMedCentralCrossRef Niu M, Impieri D, Rapan L, Funck T, Palomero-Gallagher N, Zilles K (2020) Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus. eLife 9:e55979PubMedPubMedCentralCrossRef
go back to reference Niu M, Rapan L, Funck T, Froudist-Walsh S, Zhao L, Zilles K, Palomero-Gallagher N (2021) Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics. NeuroImage 231:117843PubMedCrossRef Niu M, Rapan L, Funck T, Froudist-Walsh S, Zhao L, Zilles K, Palomero-Gallagher N (2021) Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics. NeuroImage 231:117843PubMedCrossRef
go back to reference Olavarria JF, Van Essen DC (1997) The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. Cereb Cortex 7:395–404PubMedCrossRef Olavarria JF, Van Essen DC (1997) The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. Cereb Cortex 7:395–404PubMedCrossRef
go back to reference Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41:1757–1768PubMedCrossRef Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41:1757–1768PubMedCrossRef
go back to reference Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8:315–324PubMedCrossRef Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8:315–324PubMedCrossRef
go back to reference Palomero-Gallagher N, Zilles K (2018) Cyto-and receptor architectonic mapping of the human brain. Handb Clin Neurol 150:355–387PubMedCrossRef Palomero-Gallagher N, Zilles K (2018) Cyto-and receptor architectonic mapping of the human brain. Handb Clin Neurol 150:355–387PubMedCrossRef
go back to reference Palomero-Gallagher N, Zilles K (2019) Cortical layers: Cyto-, myelo-, receptor-and synaptic architecture in human cortical areas. Neuroimage 197:716–741PubMedCrossRef Palomero-Gallagher N, Zilles K (2019) Cortical layers: Cyto-, myelo-, receptor-and synaptic architecture in human cortical areas. Neuroimage 197:716–741PubMedCrossRef
go back to reference Palomero-Gallagher N, Mohlberg H, Zilles K, Vogt B (2008) Cytology and receptor architecture of human anterior cingulate cortex. J Comp Neurol 508:906–926PubMedPubMedCentralCrossRef Palomero-Gallagher N, Mohlberg H, Zilles K, Vogt B (2008) Cytology and receptor architecture of human anterior cingulate cortex. J Comp Neurol 508:906–926PubMedPubMedCentralCrossRef
go back to reference Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30:2336–2355PubMedCrossRef Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30:2336–2355PubMedCrossRef
go back to reference Palomero-Gallagher N, Zilles K, Schleicher A, Vogt BA (2013) Cyto-and receptor architecture of area 32 in human and macaque brains. J Comp Neurol 521:3272–3286PubMedCrossRef Palomero-Gallagher N, Zilles K, Schleicher A, Vogt BA (2013) Cyto-and receptor architecture of area 32 in human and macaque brains. J Comp Neurol 521:3272–3286PubMedCrossRef
go back to reference Previc FH (1990) Functional specialization in the lower and upper visual fields in humans: its ecological origins and neurophysiological implications. Behav Brain Sci 13:519–542CrossRef Previc FH (1990) Functional specialization in the lower and upper visual fields in humans: its ecological origins and neurophysiological implications. Behav Brain Sci 13:519–542CrossRef
go back to reference R Core Team (2013) R: A language and environment for statistical computing R Core Team (2013) R: A language and environment for statistical computing
go back to reference Rakic P, Lidow MS (1995) Distribution and density of monoamine receptors in the primate visual cortex devoid of retinal input from early embryonic stages. J Neurosci 15:2561–2574PubMedPubMedCentralCrossRef Rakic P, Lidow MS (1995) Distribution and density of monoamine receptors in the primate visual cortex devoid of retinal input from early embryonic stages. J Neurosci 15:2561–2574PubMedPubMedCentralCrossRef
go back to reference Rakic P, Goldman-Rakic PS, Gallager D (1988) Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex. J Neurosci 8:3670–3690PubMedPubMedCentralCrossRef Rakic P, Goldman-Rakic PS, Gallager D (1988) Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex. J Neurosci 8:3670–3690PubMedPubMedCentralCrossRef
go back to reference Rapan L, Froudist-Walsh S, Niu M, Xu T, Funck T, Zilles K, Palomero-Gallagher N (2021) Multimodal 3D atlas of the macaque monkey motor and premotor cortex. NeuroImage 226:117574PubMedCrossRef Rapan L, Froudist-Walsh S, Niu M, Xu T, Funck T, Zilles K, Palomero-Gallagher N (2021) Multimodal 3D atlas of the macaque monkey motor and premotor cortex. NeuroImage 226:117574PubMedCrossRef
go back to reference Rosa MG (2002) Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. Braz J Med Biol Res 35:1485–1498PubMedCrossRef Rosa MG (2002) Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. Braz J Med Biol Res 35:1485–1498PubMedCrossRef
go back to reference Rosa MG, Palmer SM, Gamberini M, Tweedale R, Piñon MC, Bourne JA (2005) Resolving the organization of the New World monkey third visual complex: the dorsal extrastriate cortex of the marmoset (Callithrix jacchus). J Comp Neurol 483:164–191PubMedCrossRef Rosa MG, Palmer SM, Gamberini M, Tweedale R, Piñon MC, Bourne JA (2005) Resolving the organization of the New World monkey third visual complex: the dorsal extrastriate cortex of the marmoset (Callithrix jacchus). J Comp Neurol 483:164–191PubMedCrossRef
go back to reference Rosier A-M, Leroux P, Vaudry H, Orban G, Vandesande F (1991) Distribution of somatostatin receptors in the cat and monkey visual cortex demonstrated by in vitro receptor autoradiography. J Comp Neurol 310:189–199PubMedCrossRef Rosier A-M, Leroux P, Vaudry H, Orban G, Vandesande F (1991) Distribution of somatostatin receptors in the cat and monkey visual cortex demonstrated by in vitro receptor autoradiography. J Comp Neurol 310:189–199PubMedCrossRef
go back to reference Rosier A-M, Arckens L, Orban G, Vandesande F (1993) Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding. J Comp Neurol 335:369–380PubMedCrossRef Rosier A-M, Arckens L, Orban G, Vandesande F (1993) Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]-MK-801 binding. J Comp Neurol 335:369–380PubMedCrossRef
go back to reference Rottschy C, Eickhoff SB, Schleicher A, Mohlberg H, Kujovic M, Zilles K, Amunts K (2007) Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp 28:1045–1059PubMedPubMedCentralCrossRef Rottschy C, Eickhoff SB, Schleicher A, Mohlberg H, Kujovic M, Zilles K, Amunts K (2007) Ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp 28:1045–1059PubMedPubMedCentralCrossRef
go back to reference Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65CrossRef Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65CrossRef
go back to reference Schira MM, Tyler CW, Rosa MG (2012) Brain mapping: the (un) folding of striate cortex. Curr Biol 22:R1051–R1053PubMedCrossRef Schira MM, Tyler CW, Rosa MG (2012) Brain mapping: the (un) folding of striate cortex. Curr Biol 22:R1051–R1053PubMedCrossRef
go back to reference Sereno MI, Dale A, Reppas J, Kwong K, Belliveau J, Brady T, Rosen B, Tootell R (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893PubMedCrossRef Sereno MI, Dale A, Reppas J, Kwong K, Belliveau J, Brady T, Rosen B, Tootell R (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893PubMedCrossRef
go back to reference Sherwood CC, Holloway RL, Erwin JM, Hof PR (2004) Cortical orofacial motor representation in old world monkeys, great apes, and humans. Brain Behav Evol 63:82–106PubMedCrossRef Sherwood CC, Holloway RL, Erwin JM, Hof PR (2004) Cortical orofacial motor representation in old world monkeys, great apes, and humans. Brain Behav Evol 63:82–106PubMedCrossRef
go back to reference Silson EH, Reynolds RC, Kravitz DJ, Baker CI (2018) Differential sampling of visual space in ventral and dorsal early visual cortex. J Neurosci 38:2294–2303PubMedPubMedCentralCrossRef Silson EH, Reynolds RC, Kravitz DJ, Baker CI (2018) Differential sampling of visual space in ventral and dorsal early visual cortex. J Neurosci 38:2294–2303PubMedPubMedCentralCrossRef
go back to reference Takemura H, Palomero-Gallagher N, Axer M, Gräßel D, Jorgensen MJ, Woods R, Zilles K (2020) Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system. elife 9:e55444PubMedPubMedCentralCrossRef Takemura H, Palomero-Gallagher N, Axer M, Gräßel D, Jorgensen MJ, Woods R, Zilles K (2020) Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system. elife 9:e55444PubMedPubMedCentralCrossRef
go back to reference Tolias AS, Smirnakis SM, Augath MA, Trinath T, Logothetis NK (2001) Motion processing in the macaque: revisited with functional magnetic resonance imaging. J Neurosci 21:8594–8601PubMedPubMedCentralCrossRef Tolias AS, Smirnakis SM, Augath MA, Trinath T, Logothetis NK (2001) Motion processing in the macaque: revisited with functional magnetic resonance imaging. J Neurosci 21:8594–8601PubMedPubMedCentralCrossRef
go back to reference Tootell RB, Dale AM, Sereno MI, Malach R (1996) New images from human visual cortex. Trends Neurosci 19:481–489PubMedCrossRef Tootell RB, Dale AM, Sereno MI, Malach R (1996) New images from human visual cortex. Trends Neurosci 19:481–489PubMedCrossRef
go back to reference Ungerleider LG (1982) Two cortical visual systems. Analysis of visual behavior. MIT Press, Cambridge, pp 549–586 Ungerleider LG (1982) Two cortical visual systems. Analysis of visual behavior. MIT Press, Cambridge, pp 549–586
go back to reference Ungerleider LG, Galkin TW, Desimone R, Gattass R (2008) Cortical connections of area V4 in the macaque. Cereb Cortex 18:477–499PubMedCrossRef Ungerleider LG, Galkin TW, Desimone R, Gattass R (2008) Cortical connections of area V4 in the macaque. Cereb Cortex 18:477–499PubMedCrossRef
go back to reference Van Essen DC (2003) Organization of visual areas in macaque and human cerebral cortex. Visual Neurosci 1:507–521CrossRef Van Essen DC (2003) Organization of visual areas in macaque and human cerebral cortex. Visual Neurosci 1:507–521CrossRef
go back to reference Van Essen D, Newsome W, Maunsell J, Bixby J (1986) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. J Comp Neurol 244:451–480PubMedCrossRef Van Essen D, Newsome W, Maunsell J, Bixby J (1986) The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. J Comp Neurol 244:451–480PubMedCrossRef
go back to reference Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert S, Todd J, Orban G (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298:413–415PubMedCrossRef Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert S, Todd J, Orban G (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298:413–415PubMedCrossRef
go back to reference Wilms M, Eickhoff SB, Hömke L, Rottschy C, Kujovic M, Amunts K, Fink GR (2010) Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4 (v). Neuroimage 49:1171–1179PubMedCrossRef Wilms M, Eickhoff SB, Hömke L, Rottschy C, Kujovic M, Amunts K, Fink GR (2010) Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4 (v). Neuroimage 49:1171–1179PubMedCrossRef
go back to reference Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28PubMedCrossRef Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28PubMedCrossRef
go back to reference Zhu Q, Vanduffel W (2019) Submillimeter fMRI reveals a layout of dorsal visual cortex in macaques, remarkably similar to New World monkeys. Proc Natl Acad Sci 116:2306–2311PubMedPubMedCentralCrossRef Zhu Q, Vanduffel W (2019) Submillimeter fMRI reveals a layout of dorsal visual cortex in macaques, remarkably similar to New World monkeys. Proc Natl Acad Sci 116:2306–2311PubMedPubMedCentralCrossRef
go back to reference Zilles K, Clarke S (1997) Architecture, connectivity, and transmitter receptors of human extrastriate visual cortex. Extrastriate cortex in primates. Springer, Berlin, pp 673–742CrossRef Zilles K, Clarke S (1997) Architecture, connectivity, and transmitter receptors of human extrastriate visual cortex. Extrastriate cortex in primates. Springer, Berlin, pp 673–742CrossRef
go back to reference Zilles K, Palomero-Gallagher N (2017a) Comparative analysis of receptor types that identify primary cortical sensory areas. Evolution of nervous systems, 2nd edn. Elsevier, New York, pp 225–245CrossRef Zilles K, Palomero-Gallagher N (2017a) Comparative analysis of receptor types that identify primary cortical sensory areas. Evolution of nervous systems, 2nd edn. Elsevier, New York, pp 225–245CrossRef
go back to reference Zilles K, Schleicher A (1993) Cyto-and myeloarchitecture of human visual cortex and the periodical GABAA receptor distribution. Functional organisation of the human visual cortex. Elsevier, New York, pp 111–122CrossRef Zilles K, Schleicher A (1993) Cyto-and myeloarchitecture of human visual cortex and the periodical GABAA receptor distribution. Functional organisation of the human visual cortex. Elsevier, New York, pp 111–122CrossRef
go back to reference Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto-and receptor architecture of the human brain. Brain mapping: the methods. Elsevier, New York, pp 573–602CrossRef Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto-and receptor architecture of the human brain. Brain mapping: the methods. Elsevier, New York, pp 573–602CrossRef
go back to reference Zilles K, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Friederici AD (2015a) Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex 63:79–89PubMedPubMedCentralCrossRef Zilles K, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Friederici AD (2015a) Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex 63:79–89PubMedPubMedCentralCrossRef
go back to reference Zilles K, Palomero-Gallagher N, Bludau S, Mohlberg H, Amunts K (2015b) Cytoarchitecture and maps of the human cerebral cortex. Brain mapping. Elsevier Academic, San Diego, pp 115–135CrossRef Zilles K, Palomero-Gallagher N, Bludau S, Mohlberg H, Amunts K (2015b) Cytoarchitecture and maps of the human cerebral cortex. Brain mapping. Elsevier Academic, San Diego, pp 115–135CrossRef
Metadata
Title
Receptor architecture of macaque and human early visual areas: not equal, but comparable
Authors
Lucija Rapan
Meiqi Niu
Ling Zhao
Thomas Funck
Katrin Amunts
Karl Zilles
Nicola Palomero-Gallagher
Publication date
01-05-2022
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2022
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02437-y

Other articles of this Issue 4/2022

Brain Structure and Function 4/2022 Go to the issue