Skip to main content
Top
Published in: Brain Structure and Function 4/2022

01-05-2022 | Magnetic Resonance Imaging | Review

Establishing the functional relevancy of white matter connections in the visual system and beyond

Authors: Mareike Grotheer, Emily Kubota, Kalanit Grill-Spector

Published in: Brain Structure and Function | Issue 4/2022

Login to get access

Abstract

For over a century, researchers have examined the functional relevancy of white matter bundles. Consequently, many large-scale bundles spanning several centimeters have been associated in their entirety with specific brain functions, such as language or attention. However, these coarse structural–functional relationships are at odds with modern understanding of the fine-grained functional organization of human cortex, such as the mosaic of category-selective regions in ventral temporal cortex. Here, we review a multimodal approach that combines fMRI to define functional regions of interest within individual’s brains with dMRI tractography to identify the white matter bundles of the same individual. Combining these data allows to determine which subsets of streamlines within a white matter bundle connect to specific functional regions in each individual. That is, this approach identifies the functionally defined white matter sub-bundles of the brain. We argue that this approach not only enhances the accuracy of interpreting the functional relevancy of white matter bundles, but also enables segmentation of these large-scale bundles into meaningful functional units, which can then be linked to behavior with enhanced precision. Importantly, this approach has the potential for making new discoveries of the fine-grained functional relevancy of white matter connections in the visual system and the brain more broadly, akin to the flurry of research that has identified functional regions in cortex.
Literature
go back to reference Bastiani M, Shah NJ, Goebel R, Roebroeck A (2012) Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. Neuroimage 62:1732–1749PubMedCrossRef Bastiani M, Shah NJ, Goebel R, Roebroeck A (2012) Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. Neuroimage 62:1732–1749PubMedCrossRef
go back to reference Bullock DN, Hayday EA, Grier MD, Tang W, Pestilli F, Heilbronner S (2021) A taxonomy of the brain’s white matter: twenty-one major tracts for the twenty-first century. PsyArXiv. Bullock DN, Hayday EA, Grier MD, Tang W, Pestilli F, Heilbronner S (2021) A taxonomy of the brain’s white matter: twenty-one major tracts for the twenty-first century. PsyArXiv.
go back to reference Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94PubMedCrossRef Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94PubMedCrossRef
go back to reference Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn Sci 15:254–262PubMedCrossRef Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn Sci 15:254–262PubMedCrossRef
go back to reference Dougherty RF, Ben-Shachar M, Bammer R, Brewer AA, Wandell BA (2005) Functional organization of human occipital-callosal fiber tracts. Proc Natl Acad Sci 102:7350–7355PubMedPubMedCentralCrossRef Dougherty RF, Ben-Shachar M, Bammer R, Brewer AA, Wandell BA (2005) Functional organization of human occipital-callosal fiber tracts. Proc Natl Acad Sci 102:7350–7355PubMedPubMedCentralCrossRef
go back to reference Finzi D, Gomez J, Nordt M, Rezai AA, Poltoratski S, Grill-Spector K (2021) Differential spatial computations in ventral and lateral face-selective regions are scaffolded by structural connections. Nat Commun 12:2278PubMedPubMedCentralCrossRef Finzi D, Gomez J, Nordt M, Rezai AA, Poltoratski S, Grill-Spector K (2021) Differential spatial computations in ventral and lateral face-selective regions are scaffolded by structural connections. Nat Commun 12:2278PubMedPubMedCentralCrossRef
go back to reference Fitzgerald J, Leemans A, Kehoe E, O’Hanlon E, Gallagher L, McGrath J (2018) Abnormal fronto-parietal white matter organisation in the superior longitudinal fasciculus branches in autism spectrum disorders. Eur J Neurosci 47:652–661PubMedCrossRef Fitzgerald J, Leemans A, Kehoe E, O’Hanlon E, Gallagher L, McGrath J (2018) Abnormal fronto-parietal white matter organisation in the superior longitudinal fasciculus branches in autism spectrum disorders. Eur J Neurosci 47:652–661PubMedCrossRef
go back to reference Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML (2011) White matter damage in primary progressive aphasias: A diffusion tensor tractography study. Brain 134:3011–3029PubMedPubMedCentralCrossRef Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, Dronkers NF, Henry RG, Ogar JM, Miller BL, Gorno-Tempini ML (2011) White matter damage in primary progressive aphasias: A diffusion tensor tractography study. Brain 134:3011–3029PubMedPubMedCentralCrossRef
go back to reference Garyfallidis E, Côté MA, Rheault F, Sidhu J, Hau J, Petit L, Fortin D, Cunanne S, Descoteaux M (2018) Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170:283–295PubMedCrossRef Garyfallidis E, Côté MA, Rheault F, Sidhu J, Hau J, Petit L, Fortin D, Cunanne S, Descoteaux M (2018) Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170:283–295PubMedCrossRef
go back to reference Gomez J, Pestilli F, Witthoft N, Golarai G, Liberman A, Poltoratski S, Yoon J, Grill-Spector K (2015) Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85:216–228PubMedPubMedCentralCrossRef Gomez J, Pestilli F, Witthoft N, Golarai G, Liberman A, Poltoratski S, Yoon J, Grill-Spector K (2015) Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85:216–228PubMedPubMedCentralCrossRef
go back to reference Greenberg AS, Verstynen T, Chiu Y-C, Yantis S, Schneider W, Behrmann M (2012) Visuotopic cortical connectivity underlying attention revealed with white-matter tractography. J Neurosci 32:2773–2782PubMedPubMedCentralCrossRef Greenberg AS, Verstynen T, Chiu Y-C, Yantis S, Schneider W, Behrmann M (2012) Visuotopic cortical connectivity underlying attention revealed with white-matter tractography. J Neurosci 32:2773–2782PubMedPubMedCentralCrossRef
go back to reference Grotheer M, Zhen Z, Lerma-Usabiaga G, Grill-Spector K (2019) Separate lanes for adding and reading in the white matter highways of the human brain. Nat Commun 10:420216CrossRef Grotheer M, Zhen Z, Lerma-Usabiaga G, Grill-Spector K (2019) Separate lanes for adding and reading in the white matter highways of the human brain. Nat Commun 10:420216CrossRef
go back to reference Grotheer M, Rosenke M, Wu H, Kular H, Querdasi FR, Natu V, Yeatman JD, Grill-Spector K (2021a) White matter myelination during early infancy is explained by spatial gradients and myelin content at birth. bioRxiv:2021.03.29.437583 Grotheer M, Rosenke M, Wu H, Kular H, Querdasi FR, Natu V, Yeatman JD, Grill-Spector K (2021a) White matter myelination during early infancy is explained by spatial gradients and myelin content at birth. bioRxiv:​2021.​03.​29.​437583
go back to reference Grotheer M, Yeatman J, Grill-Spector K (2021b) White matter fascicles and cortical microstructure predict reading-related responses in human ventral temporal cortex. Neuroimage 227:117669PubMedCrossRef Grotheer M, Yeatman J, Grill-Spector K (2021b) White matter fascicles and cortical microstructure predict reading-related responses in human ventral temporal cortex. Neuroimage 227:117669PubMedCrossRef
go back to reference Gschwind M, Pourtois G, Schwartz S, Van De Ville D, Vuilleumier P (2012) White-matter connectivity between face-responsive regions in the human brain. Cereb Cortex 22:1564–1576PubMedCrossRef Gschwind M, Pourtois G, Schwartz S, Van De Ville D, Vuilleumier P (2012) White-matter connectivity between face-responsive regions in the human brain. Cereb Cortex 22:1564–1576PubMedCrossRef
go back to reference Jeurissen B, Descoteaux M, Mori S, Leemans A (2019) Diffusion MRI fiber tractography of the brain. NMR Biomed 32:3785CrossRef Jeurissen B, Descoteaux M, Mori S, Leemans A (2019) Diffusion MRI fiber tractography of the brain. NMR Biomed 32:3785CrossRef
go back to reference Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254PubMedCrossRef Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254PubMedCrossRef
go back to reference Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311PubMedPubMedCentralCrossRef Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311PubMedPubMedCentralCrossRef
go back to reference Kim M, Ducros M, Carlson T, Ronen I, He S, Ugurbil K, Kim DS (2006) Anatomical correlates of the functional organization in the human occipitotemporal cortex. Magn Reson Imaging 24:583–590PubMedCrossRef Kim M, Ducros M, Carlson T, Ronen I, He S, Ugurbil K, Kim DS (2006) Anatomical correlates of the functional organization in the human occipitotemporal cortex. Magn Reson Imaging 24:583–590PubMedCrossRef
go back to reference Kirilina E, Helbling S, Morawski M, Pine K, Reimann K, Jankuhn S, Dinse J, Deistung A, Reichenbach JR, Trampel R, Geyer S, Müller L, Jakubowski N, Arendt T, Bazin PL, Weiskopf N (2020) Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping. Sci Adv. Kirilina E, Helbling S, Morawski M, Pine K, Reimann K, Jankuhn S, Dinse J, Deistung A, Reichenbach JR, Trampel R, Geyer S, Müller L, Jakubowski N, Arendt T, Bazin PL, Weiskopf N (2020) Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping. Sci Adv.
go back to reference Kruper J, Yeatman JD, Richie-Halford A, Bloom D, Grotheer M, Caffarra S, Kiar G, Karipidis II, Roy E, Chandio BQ, Garyfallidis E, Rokem A (2021) Evaluating the Reliability of Human Brain White Matter Tractometry. Aperture Neuro 1:1–25 Kruper J, Yeatman JD, Richie-Halford A, Bloom D, Grotheer M, Caffarra S, Kiar G, Karipidis II, Roy E, Chandio BQ, Garyfallidis E, Rokem A (2021) Evaluating the Reliability of Human Brain White Matter Tractometry. Aperture Neuro 1:1–25
go back to reference Kurzawski JW, Mikellidou K, Morrone MC, Pestilli F (2020) The visual white matter connecting human area prostriata and the thalamus is retinotopically organized. Brain Struct Funct 225:1839–1853PubMedPubMedCentralCrossRef Kurzawski JW, Mikellidou K, Morrone MC, Pestilli F (2020) The visual white matter connecting human area prostriata and the thalamus is retinotopically organized. Brain Struct Funct 225:1839–1853PubMedPubMedCentralCrossRef
go back to reference Lerma-Usabiaga G, Carreiras M, Paz-Alonso PM (2018) Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proc Natl Acad Sci USA 115:E9981–E9990PubMedPubMedCentralCrossRef Lerma-Usabiaga G, Carreiras M, Paz-Alonso PM (2018) Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proc Natl Acad Sci USA 115:E9981–E9990PubMedPubMedCentralCrossRef
go back to reference Maier-Hein KH et al (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8:1–13CrossRef Maier-Hein KH et al (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8:1–13CrossRef
go back to reference Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869PubMedCrossRef Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869PubMedCrossRef
go back to reference Movahedian Attar F, Kirilina E, Haenelt D, Pine KJ, Trampel R, Edwards LJ, Weiskopf N (2020) Mapping short association fibers in the early cortical visual processing stream using in vivo diffusion tractography. Cereb Cortex 30:4496–4514PubMedPubMedCentralCrossRef Movahedian Attar F, Kirilina E, Haenelt D, Pine KJ, Trampel R, Edwards LJ, Weiskopf N (2020) Mapping short association fibers in the early cortical visual processing stream using in vivo diffusion tractography. Cereb Cortex 30:4496–4514PubMedPubMedCentralCrossRef
go back to reference Natu VS, Gomez J, Barnett M, Jeska B, Kirilina E, Jaeger C, Zhen Z, Cox S, Weiner KS, Weiskopf N, Grill-Spector K (2019) Apparent thinning of human visual cortex during childhood is associated with myelination. Proc Natl Acad Sci USA 116:20750–20759PubMedPubMedCentralCrossRef Natu VS, Gomez J, Barnett M, Jeska B, Kirilina E, Jaeger C, Zhen Z, Cox S, Weiner KS, Weiskopf N, Grill-Spector K (2019) Apparent thinning of human visual cortex during childhood is associated with myelination. Proc Natl Acad Sci USA 116:20750–20759PubMedPubMedCentralCrossRef
go back to reference Osher DE, Saxe RR, Koldewyn K, Gabrieli JDE, Kanwisher N, Saygin ZM (2016) Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb Cortex 26:1668–1683PubMedCrossRef Osher DE, Saxe RR, Koldewyn K, Gabrieli JDE, Kanwisher N, Saygin ZM (2016) Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb Cortex 26:1668–1683PubMedCrossRef
go back to reference Parlatini V, Radua J, Dell’Acqua F, Leslie A, Simmons A, Murphy DG, Catani M, Thiebaut de Schotten M (2017) Functional segregation and integration within fronto-parietal networks. Neuroimage 146:367–375PubMedCrossRef Parlatini V, Radua J, Dell’Acqua F, Leslie A, Simmons A, Murphy DG, Catani M, Thiebaut de Schotten M (2017) Functional segregation and integration within fronto-parietal networks. Neuroimage 146:367–375PubMedCrossRef
go back to reference Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116PubMedCrossRef Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116PubMedCrossRef
go back to reference Pyles JA, Verstynen TD, Schneider W, Tarr MJ (2013) Explicating the face perception network with white matter connectivity ptito. PLoS ONE 8:61611CrossRef Pyles JA, Verstynen TD, Schneider W, Tarr MJ (2013) Explicating the face perception network with white matter connectivity ptito. PLoS ONE 8:61611CrossRef
go back to reference Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC, Leopold DA, Ye FQ (2015) Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci USA 112:E2820–E2828PubMedPubMedCentralCrossRef Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC, Leopold DA, Ye FQ (2015) Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci USA 112:E2820–E2828PubMedPubMedCentralCrossRef
go back to reference Roebroeck A, Galuske R, Formisano E, Chiry O, Bratzke H, Ronen I, Kim D, Goebel R (2008) High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T. Neuroimage 39:157–168PubMedCrossRef Roebroeck A, Galuske R, Formisano E, Chiry O, Bratzke H, Ronen I, Kim D, Goebel R (2008) High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T. Neuroimage 39:157–168PubMedCrossRef
go back to reference Safadi Z, Grisot G, Jbabdi S, Behrens TE, Heilbronner SR, McLaughlin NCR, Mandeville J, Versace A, Phillips ML, Lehman JF, Yendiki A, Haber SN (2018) Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J Neurosci 38:2106–2117PubMedPubMedCentralCrossRef Safadi Z, Grisot G, Jbabdi S, Behrens TE, Heilbronner SR, McLaughlin NCR, Mandeville J, Versace A, Phillips ML, Lehman JF, Yendiki A, Haber SN (2018) Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J Neurosci 38:2106–2117PubMedPubMedCentralCrossRef
go back to reference Sani I, McPherson BC, Stemmann H, Pestilli F, Freiwald WA (2019) Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network. Elife 8 Sani I, McPherson BC, Stemmann H, Pestilli F, Freiwald WA (2019) Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network. Elife 8
go back to reference Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JDE, Saxe RR (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15:321–327CrossRef Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JDE, Saxe RR (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15:321–327CrossRef
go back to reference Saygin ZM, Osher DE, Norton ES, Youssoufian DA, Beach SD, Feather J, Gaab N, Gabrieli JDE, Kanwisher N (2016) Connectivity precedes function in the development of the visual word form area. Nat Neurosci 19:1250–1255PubMedPubMedCentralCrossRef Saygin ZM, Osher DE, Norton ES, Youssoufian DA, Beach SD, Feather J, Gaab N, Gabrieli JDE, Kanwisher N (2016) Connectivity precedes function in the development of the visual word form area. Nat Neurosci 19:1250–1255PubMedPubMedCentralCrossRef
go back to reference Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University PressCrossRef Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University PressCrossRef
go back to reference Schurr R, Duan Y, Norcia AM, Ogawa S, Yeatman JD, Mezer AA (2018) Tractography optimization using quantitative T1 mapping in the human optic radiation. Neuroimage 181:645–658PubMedCrossRef Schurr R, Duan Y, Norcia AM, Ogawa S, Yeatman JD, Mezer AA (2018) Tractography optimization using quantitative T1 mapping in the human optic radiation. Neuroimage 181:645–658PubMedCrossRef
go back to reference Schurr R, Filo S, Mezer AA (2019) Tractography delineation of the vertical occipital fasciculus using quantitative T1 mapping. Neuroimage 202:116121PubMedCrossRef Schurr R, Filo S, Mezer AA (2019) Tractography delineation of the vertical occipital fasciculus using quantitative T1 mapping. Neuroimage 202:116121PubMedCrossRef
go back to reference Schurr R, Zelman A, Mezer AA (2020) Subdividing the superior longitudinal fasciculus using local quantitative MRI. Neuroimage 208:116439PubMedCrossRef Schurr R, Zelman A, Mezer AA (2020) Subdividing the superior longitudinal fasciculus using local quantitative MRI. Neuroimage 208:116439PubMedCrossRef
go back to reference Smith RE, Tournier JD, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62:1924–1938PubMedCrossRef Smith RE, Tournier JD, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62:1924–1938PubMedCrossRef
go back to reference Smith RE, Tournier JD, Calamante F, Connelly A (2013) SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312PubMedCrossRef Smith RE, Tournier JD, Calamante F, Connelly A (2013) SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312PubMedCrossRef
go back to reference Stüber C, Morawski M, Schäfer A, Labadie C, Wähnert M, Leuze C, Streicher M, Barapatre N, Reimann K, Geyer S, Spemann D, Turner R (2014) Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage 93:95–106PubMedCrossRef Stüber C, Morawski M, Schäfer A, Labadie C, Wähnert M, Leuze C, Streicher M, Barapatre N, Reimann K, Geyer S, Spemann D, Turner R (2014) Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage 93:95–106PubMedCrossRef
go back to reference Thiebaut de Schotten M, Dell’Acqua F, Forkel S, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuo-spatial attention. Nat Preced 1–1 Thiebaut de Schotten M, Dell’Acqua F, Forkel S, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuo-spatial attention. Nat Preced 1–1
go back to reference Thomas C, Avidan G, Humphreys K, Jung KJ, Gao F, Behrmann M (2009) Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia. Nat Neurosci 12:29–31PubMedCrossRef Thomas C, Avidan G, Humphreys K, Jung KJ, Gao F, Behrmann M (2009) Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia. Nat Neurosci 12:29–31PubMedCrossRef
go back to reference Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111:16574–16579PubMedPubMedCentralCrossRef Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111:16574–16579PubMedPubMedCentralCrossRef
go back to reference Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T (2012) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22:2241–2262PubMedCrossRef Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T (2012) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22:2241–2262PubMedCrossRef
go back to reference Vanderauwera J, Wouters J, Vandermosten M, Ghesquière P (2017) Early dynamics of white matter deficits in children developing dyslexia. Dev Cogn Neurosci 27:69–77PubMedPubMedCentralCrossRef Vanderauwera J, Wouters J, Vandermosten M, Ghesquière P (2017) Early dynamics of white matter deficits in children developing dyslexia. Dev Cogn Neurosci 27:69–77PubMedPubMedCentralCrossRef
go back to reference Wang X, Pathak S, Stefaneanu L, Yeh FC, Li S, Fernandez-Miranda JC (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 221:2075–2092PubMedCrossRef Wang X, Pathak S, Stefaneanu L, Yeh FC, Li S, Fernandez-Miranda JC (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 221:2075–2092PubMedCrossRef
go back to reference Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52:1559–1573PubMedCrossRef Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52:1559–1573PubMedCrossRef
go back to reference Weiner KS, Grill-Spector K (2013) Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol Res 77:74–97PubMedCrossRef Weiner KS, Grill-Spector K (2013) Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol Res 77:74–97PubMedCrossRef
go back to reference Weiner KS, Yeatman JD, Wandell BA (2017) The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex 97:274–276PubMedCrossRef Weiner KS, Yeatman JD, Wandell BA (2017) The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex 97:274–276PubMedCrossRef
go back to reference Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts K, Zilles K, Fischl B, Grill-Spector K (2017) The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb Cortex 27:146–161PubMedCrossRef Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts K, Zilles K, Fischl B, Grill-Spector K (2017) The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb Cortex 27:146–161PubMedCrossRef
go back to reference Weiner KS, Barnett MA, Witthoft N, Golarai G, Stigliani A, Kay KN, Gomez J, Natu VS, Amunts K, Zilles K, Grill-Spector K (2018) Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage 170:373–384PubMedCrossRef Weiner KS, Barnett MA, Witthoft N, Golarai G, Stigliani A, Kay KN, Gomez J, Natu VS, Amunts K, Zilles K, Grill-Spector K (2018) Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage 170:373–384PubMedCrossRef
go back to reference Yeatman JD, Rauschecker AM, Wandell BA (2013) Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections. Brain Lang 125:146–155PubMedCrossRef Yeatman JD, Rauschecker AM, Wandell BA (2013) Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections. Brain Lang 125:146–155PubMedCrossRef
go back to reference Yoshimine S, Ogawa S, Horiguchi H, Terao M, Miyazaki A, Matsumoto K, Tsuneoka H, Nakano T, Masuda Y, Pestilli F (2018) Age-related macular degeneration affects the optic radiation white matter projecting to locations of retinal damage. Brain Struct Funct 223:3889–3900PubMedCrossRef Yoshimine S, Ogawa S, Horiguchi H, Terao M, Miyazaki A, Matsumoto K, Tsuneoka H, Nakano T, Masuda Y, Pestilli F (2018) Age-related macular degeneration affects the optic radiation white matter projecting to locations of retinal damage. Brain Struct Funct 223:3889–3900PubMedCrossRef
Metadata
Title
Establishing the functional relevancy of white matter connections in the visual system and beyond
Authors
Mareike Grotheer
Emily Kubota
Kalanit Grill-Spector
Publication date
01-05-2022
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2022
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02423-4

Other articles of this Issue 4/2022

Brain Structure and Function 4/2022 Go to the issue