Skip to main content
Top
Published in: Brain Structure and Function 4/2022

01-05-2022 | Review

One object, two networks? Assessing the relationship between the face and body-selective regions in the primate visual system

Authors: Jessica Taubert, J. Brendan Ritchie, Leslie G. Ungerleider, Christopher I. Baker

Published in: Brain Structure and Function | Issue 4/2022

Login to get access

Abstract

Faces and bodies are often treated as distinct categories that are processed separately by face- and body-selective brain regions in the primate visual system. These regions occupy distinct regions of visual cortex and are often thought to constitute independent functional networks. Yet faces and bodies are part of the same object and their presence inevitably covary in naturalistic settings. Here, we re-evaluate both the evidence supporting the independent processing of faces and bodies and the organizational principles that have been invoked to explain this distinction. We outline four hypotheses ranging from completely separate networks to a single network supporting the perception of whole people or animals. The current evidence, especially in humans, is compatible with all of these hypotheses, making it presently unclear how the representation of faces and bodies is organized in the cortex.
Literature
go back to reference Afraz SR, Kiani R, Esteky H (2006) Microstimulation of inferotemporal cortex influences face categorization. Nature 442(7103):692–695PubMedCrossRef Afraz SR, Kiani R, Esteky H (2006) Microstimulation of inferotemporal cortex influences face categorization. Nature 442(7103):692–695PubMedCrossRef
go back to reference Afraz A, Boyden ES, DiCarlo JJ (2015) Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. Proc Natl Acad Sci 112(21):6730–6735PubMedPubMedCentralCrossRef Afraz A, Boyden ES, DiCarlo JJ (2015) Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. Proc Natl Acad Sci 112(21):6730–6735PubMedPubMedCentralCrossRef
go back to reference Almeida J, Freixo A, Tábuas-Pereira M, Herald SB, Valério D, Schu G, Duro D, Cunha G, Bukhari Q, Duchaine B, Santana I (2020) Face-specific perceptual distortions reveal a view-and orientation-independent face template. Curr Biol 30(20):4071–4077PubMedCrossRef Almeida J, Freixo A, Tábuas-Pereira M, Herald SB, Valério D, Schu G, Duro D, Cunha G, Bukhari Q, Duchaine B, Santana I (2020) Face-specific perceptual distortions reveal a view-and orientation-independent face template. Curr Biol 30(20):4071–4077PubMedCrossRef
go back to reference Aparicio PL, Issa EB, DiCarlo JJ (2016) Neurophysiological organization of the middle face patch in macaque inferior temporal cortex. J Neurosci 36(50):12729–12745PubMedPubMedCentralCrossRef Aparicio PL, Issa EB, DiCarlo JJ (2016) Neurophysiological organization of the middle face patch in macaque inferior temporal cortex. J Neurosci 36(50):12729–12745PubMedPubMedCentralCrossRef
go back to reference Baeck A, Wagemans J, de Beeck HPO (2013) The distributed representation of random and meaningful object pairs in human occipitotemporal cortex: the weighted average as a general rule. Neuroimage 70:37–47PubMedCrossRef Baeck A, Wagemans J, de Beeck HPO (2013) The distributed representation of random and meaningful object pairs in human occipitotemporal cortex: the weighted average as a general rule. Neuroimage 70:37–47PubMedCrossRef
go back to reference Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion–symptom mapping. Nat Neurosci 6(5):448–450PubMedCrossRef Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion–symptom mapping. Nat Neurosci 6(5):448–450PubMedCrossRef
go back to reference Beauchamp MS, Lee KE, Haxby JV, Martin A (2003) FMRI responses to video and point-light displays of moving humans and manipulable objects. J Cogn Neurosci 15(7):991–1001PubMedCrossRef Beauchamp MS, Lee KE, Haxby JV, Martin A (2003) FMRI responses to video and point-light displays of moving humans and manipulable objects. J Cogn Neurosci 15(7):991–1001PubMedCrossRef
go back to reference Bell AH, Malecek NJ, Morin EL, Hadj-Bouziane F, Tootell RB, Ungerleider LG (2011) Relationship between functional magnetic resonance imaging-identified regions and neuronal category selectivity. J Neurosci 31(34):12229–12240PubMedPubMedCentralCrossRef Bell AH, Malecek NJ, Morin EL, Hadj-Bouziane F, Tootell RB, Ungerleider LG (2011) Relationship between functional magnetic resonance imaging-identified regions and neuronal category selectivity. J Neurosci 31(34):12229–12240PubMedPubMedCentralCrossRef
go back to reference Bernstein M, Oron J, Sadeh B, Yovel G (2014) An integrated face–body representation in the fusiform gyrus but not the lateral occipital cortex. J Cogn Neurosci 26(11):2469–2478PubMedCrossRef Bernstein M, Oron J, Sadeh B, Yovel G (2014) An integrated face–body representation in the fusiform gyrus but not the lateral occipital cortex. J Cogn Neurosci 26(11):2469–2478PubMedCrossRef
go back to reference Biotti F, Gray KL, Cook R (2017) Impaired body perception in developmental prosopagnosia. Cortex 93:41–49PubMedCrossRef Biotti F, Gray KL, Cook R (2017) Impaired body perception in developmental prosopagnosia. Cortex 93:41–49PubMedCrossRef
go back to reference Blom JD, Ter Meulen BC, Dool J (2021) A century of prosopometamorphopsia studies. Cortex 139:298–308PubMedCrossRef Blom JD, Ter Meulen BC, Dool J (2021) A century of prosopometamorphopsia studies. Cortex 139:298–308PubMedCrossRef
go back to reference Bornstein MH, Mash C, Arterberry ME (2011) Young infants’ eye movements over “natural” scenes and “experimental” scenes. Infant Behav Dev 34(1):206–210PubMedCrossRef Bornstein MH, Mash C, Arterberry ME (2011) Young infants’ eye movements over “natural” scenes and “experimental” scenes. Infant Behav Dev 34(1):206–210PubMedCrossRef
go back to reference Bracci S, Ritchie JB, de Beeck HO (2017) On the partnership between neural representations of object categories and visual features in the ventral visual pathway. Neuropsychologia 105:153–164PubMedPubMedCentralCrossRef Bracci S, Ritchie JB, de Beeck HO (2017) On the partnership between neural representations of object categories and visual features in the ventral visual pathway. Neuropsychologia 105:153–164PubMedPubMedCentralCrossRef
go back to reference Buiatti M, Di Giorgio E, Piazza M, Polloni C, Menna G, Taddei F, Baldo E, Vallortigara G (2019) Cortical route for facelike pattern processing in human newborns. Proc Natl Acad Sci 116(10):4625–4630PubMedPubMedCentralCrossRef Buiatti M, Di Giorgio E, Piazza M, Polloni C, Menna G, Taddei F, Baldo E, Vallortigara G (2019) Cortical route for facelike pattern processing in human newborns. Proc Natl Acad Sci 116(10):4625–4630PubMedPubMedCentralCrossRef
go back to reference Collins JA, Olson IR (2014) Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61:65–79PubMedCrossRef Collins JA, Olson IR (2014) Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61:65–79PubMedCrossRef
go back to reference Conway BR (2018) The organization and operation of inferior temporal cortex. Ann Rev Vis Sci 4:381–402CrossRef Conway BR (2018) The organization and operation of inferior temporal cortex. Ann Rev Vis Sci 4:381–402CrossRef
go back to reference Cox D, Meyers E, Sinha P (2004) Contextually evoked object-specific responses in human visual cortex. Science 304(5667):115–117PubMedCrossRef Cox D, Meyers E, Sinha P (2004) Contextually evoked object-specific responses in human visual cortex. Science 304(5667):115–117PubMedCrossRef
go back to reference De Haas B, Schwarzkopf DS, Alvarez I, Lawson RP, Henriksson L, Kriegeskorte N, Rees G (2016) Perception and processing of faces in the human brain is tuned to typical feature locations. J Neurosci 36(36):9289–9302PubMedPubMedCentralCrossRef De Haas B, Schwarzkopf DS, Alvarez I, Lawson RP, Henriksson L, Kriegeskorte N, Rees G (2016) Perception and processing of faces in the human brain is tuned to typical feature locations. J Neurosci 36(36):9289–9302PubMedPubMedCentralCrossRef
go back to reference Deen B, Richardson H, Dilks DD, Takahashi A, Keil B, Wald LL, Kanwisher N, Saxe R (2017) Organization of high-level visual cortex in human infants. Nat Commun 8(1):1–10CrossRef Deen B, Richardson H, Dilks DD, Takahashi A, Keil B, Wald LL, Kanwisher N, Saxe R (2017) Organization of high-level visual cortex in human infants. Nat Commun 8(1):1–10CrossRef
go back to reference Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4(8):2051–2062PubMedPubMedCentralCrossRef Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4(8):2051–2062PubMedPubMedCentralCrossRef
go back to reference Dorr M, Martinetz T, Gegenfurtner KR, Barth E (2010) Variability of eye movements when viewing dynamic natural scenes. J vis 10(10):28–28PubMedCrossRef Dorr M, Martinetz T, Gegenfurtner KR, Barth E (2010) Variability of eye movements when viewing dynamic natural scenes. J vis 10(10):28–28PubMedCrossRef
go back to reference Downing PE, Peelen MV (2016) Body selectivity in occipitotemporal cortex: Causal evidence. Neuropsychologia 83:138–148PubMedCrossRef Downing PE, Peelen MV (2016) Body selectivity in occipitotemporal cortex: Causal evidence. Neuropsychologia 83:138–148PubMedCrossRef
go back to reference Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293(5539):2470–2473PubMedCrossRef Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293(5539):2470–2473PubMedCrossRef
go back to reference Duchaine B, Yovel G (2015) A revised neural framework for face processing. Ann Rev Vis Sci 1:393–416CrossRef Duchaine B, Yovel G (2015) A revised neural framework for face processing. Ann Rev Vis Sci 1:393–416CrossRef
go back to reference Epstein RA, Baker CI (2019) Scene perception in the human brain. Ann Rev Vis Sci 5:373–397CrossRef Epstein RA, Baker CI (2019) Scene perception in the human brain. Ann Rev Vis Sci 5:373–397CrossRef
go back to reference Fairhall SL, Ishai A (2007) Effective connectivity within the distributed cortical network for face perception. Cereb Cortex 17(10):2400–2406PubMedCrossRef Fairhall SL, Ishai A (2007) Effective connectivity within the distributed cortical network for face perception. Cereb Cortex 17(10):2400–2406PubMedCrossRef
go back to reference Farroni T, Chiarelli AM, Lloyd-Fox S, Massaccesi S, Merla A, Di Gangi V, Mattarello T, Faraguna D, Johnson MH (2013) Infant cortex responds to other humans from shortly after birth. Sci Rep 3(1):1–5CrossRef Farroni T, Chiarelli AM, Lloyd-Fox S, Massaccesi S, Merla A, Di Gangi V, Mattarello T, Faraguna D, Johnson MH (2013) Infant cortex responds to other humans from shortly after birth. Sci Rep 3(1):1–5CrossRef
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47PubMedCrossRef Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47PubMedCrossRef
go back to reference Feusner JD, Townsend J, Bystritsky A, Bookheimer S (2007) Visual information processing of faces in body dysmorphic disorder. Arch Gen Psychiatry 64(12):1417–1425PubMedCrossRef Feusner JD, Townsend J, Bystritsky A, Bookheimer S (2007) Visual information processing of faces in body dysmorphic disorder. Arch Gen Psychiatry 64(12):1417–1425PubMedCrossRef
go back to reference Foster C, Zhao M, Bolkart T, Black MJ, Bartels A, Buelthoff I (2021) Separated and overlapping neural coding of face and body identity. Hum Brain Mapp 42(13):4242–4260PubMedPubMedCentralCrossRef Foster C, Zhao M, Bolkart T, Black MJ, Bartels A, Buelthoff I (2021) Separated and overlapping neural coding of face and body identity. Hum Brain Mapp 42(13):4242–4260PubMedPubMedCentralCrossRef
go back to reference Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330(6005):845–851PubMedPubMedCentralCrossRef Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330(6005):845–851PubMedPubMedCentralCrossRef
go back to reference Fujita I, Fujita T (1996) Intrinsic connections in the macaque inferior temporal cortex. J Comp Neurol 368(4):467–486PubMedCrossRef Fujita I, Fujita T (1996) Intrinsic connections in the macaque inferior temporal cortex. J Comp Neurol 368(4):467–486PubMedCrossRef
go back to reference Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360(6402):343–346PubMedCrossRef Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360(6402):343–346PubMedCrossRef
go back to reference Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3(2):191–197PubMedCrossRef Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3(2):191–197PubMedCrossRef
go back to reference Gerlach C, Starrfelt R (2021) Patterns of perceptual performance in developmental prosopagnosia: an in-depth case series. Cogn Neuropsychol 38(1):27–49PubMedCrossRef Gerlach C, Starrfelt R (2021) Patterns of perceptual performance in developmental prosopagnosia: an in-depth case series. Cogn Neuropsychol 38(1):27–49PubMedCrossRef
go back to reference Golomb JD, Kanwisher N (2012) Higher level visual cortex represents retinotopic, not spatiotopic, object location. Cereb Cortex 22(12):2794–2810PubMedCrossRef Golomb JD, Kanwisher N (2012) Higher level visual cortex represents retinotopic, not spatiotopic, object location. Cereb Cortex 22(12):2794–2810PubMedCrossRef
go back to reference Gomez J, Barnett M, Grill-Spector K (2019) Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nat Hum Behav 3(6):611–624PubMedPubMedCentralCrossRef Gomez J, Barnett M, Grill-Spector K (2019) Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nat Hum Behav 3(6):611–624PubMedPubMedCentralCrossRef
go back to reference Goren CC, Sarty M, Wu PY (1975) Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56(4):544–549PubMedCrossRef Goren CC, Sarty M, Wu PY (1975) Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56(4):544–549PubMedCrossRef
go back to reference Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 15(8):536–548PubMedPubMedCentralCrossRef Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 15(8):536–548PubMedPubMedCentralCrossRef
go back to reference Grimaldi P, Saleem KS, Tsao D (2016) Anatomical connections of the functionally defined “face patches” in the macaque monkey. Neuron 90(6):1325–1342PubMedPubMedCentralCrossRef Grimaldi P, Saleem KS, Tsao D (2016) Anatomical connections of the functionally defined “face patches” in the macaque monkey. Neuron 90(6):1325–1342PubMedPubMedCentralCrossRef
go back to reference Gross CG, Rocha-Miranda CD, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35(1):96–111PubMedCrossRef Gross CG, Rocha-Miranda CD, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35(1):96–111PubMedCrossRef
go back to reference Grossman ED, Blake R (2002) Brain areas active during visual perception of biological motion. Neuron 35(6):1167–1175PubMedCrossRef Grossman ED, Blake R (2002) Brain areas active during visual perception of biological motion. Neuron 35(6):1167–1175PubMedCrossRef
go back to reference Guntupalli JS, Wheeler KG, Gobbini MI (2017) Disentangling the representation of identity from head view along the human face processing pathway. Cereb Cortex 27(1):46–53PubMedCrossRef Guntupalli JS, Wheeler KG, Gobbini MI (2017) Disentangling the representation of identity from head view along the human face processing pathway. Cereb Cortex 27(1):46–53PubMedCrossRef
go back to reference Hadj-Bouziane F, Liu N, Bell AH, Gothard KM, Luh WM, Tootell RB, Murray EA, Ungerleider LG (2012) Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proc Natl Acad Sci 109(52):E3640–E3648PubMedPubMedCentralCrossRef Hadj-Bouziane F, Liu N, Bell AH, Gothard KM, Luh WM, Tootell RB, Murray EA, Ungerleider LG (2012) Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proc Natl Acad Sci 109(52):E3640–E3648PubMedPubMedCentralCrossRef
go back to reference Handwerker DA, Ianni G, Gutierrez B, Roopchansingh V, Gonzalez-Castillo J, Chen G, Bandettini PA, Ungerleider LG, Pitcher D (2020) Theta-burst TMS to the posterior superior temporal sulcus decreases resting-state fMRI connectivity across the face processing network. Netw Neurosci 4(3):746–760PubMedPubMedCentralCrossRef Handwerker DA, Ianni G, Gutierrez B, Roopchansingh V, Gonzalez-Castillo J, Chen G, Bandettini PA, Ungerleider LG, Pitcher D (2020) Theta-burst TMS to the posterior superior temporal sulcus decreases resting-state fMRI connectivity across the face processing network. Netw Neurosci 4(3):746–760PubMedPubMedCentralCrossRef
go back to reference Harry BB, Umla-Runge K, Lawrence AD, Graham KS, Downing PE (2016) Evidence for integrated visual face and body representations in the anterior temporal lobes. J Cogn Neurosci 28(8):1178–1193PubMedCrossRef Harry BB, Umla-Runge K, Lawrence AD, Graham KS, Downing PE (2016) Evidence for integrated visual face and body representations in the anterior temporal lobes. J Cogn Neurosci 28(8):1178–1193PubMedCrossRef
go back to reference Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4(6):223–233PubMedCrossRef Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4(6):223–233PubMedCrossRef
go back to reference Haxby JV, Hoffman EA, Gobbini MI (2002) Human neural systems for face recognition and social communication. Biol Psychiat 51(1):59–67PubMedCrossRef Haxby JV, Hoffman EA, Gobbini MI (2002) Human neural systems for face recognition and social communication. Biol Psychiat 51(1):59–67PubMedCrossRef
go back to reference Haxby JV, Gobbini MI, Nastase SA (2020) Naturalistic stimuli reveal a dominant role for agentic action in visual representation. Neuroimage 216:116561PubMedCrossRef Haxby JV, Gobbini MI, Nastase SA (2020) Naturalistic stimuli reveal a dominant role for agentic action in visual representation. Neuroimage 216:116561PubMedCrossRef
go back to reference Henriksson L, Mur M, Kriegeskorte N (2015) Faciotopy—a face-feature map with face-like topology in the human occipital face area. Cortex 72:156–167PubMedPubMedCentralCrossRef Henriksson L, Mur M, Kriegeskorte N (2015) Faciotopy—a face-feature map with face-like topology in the human occipital face area. Cortex 72:156–167PubMedPubMedCentralCrossRef
go back to reference Hoffman EA, Haxby JV (2000) Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci 3(1):80–84PubMedCrossRef Hoffman EA, Haxby JV (2000) Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci 3(1):80–84PubMedCrossRef
go back to reference Hu Y, Baragchizadeh A, O’Toole AJ (2020) Integrating faces and bodies: Psychological and neural perspectives on whole person perception. Neurosci Biobehav Rev 112:472–486PubMedCrossRef Hu Y, Baragchizadeh A, O’Toole AJ (2020) Integrating faces and bodies: Psychological and neural perspectives on whole person perception. Neurosci Biobehav Rev 112:472–486PubMedCrossRef
go back to reference Hung CC, Yen CC, Ciuchta JL, Papoti D, Bock NA, Leopold DA, Silva AC (2015) Functional mapping of face-selective regions in the extrastriate visual cortex of the marmoset. J Neurosci 35(3):1160–1172PubMedPubMedCentralCrossRef Hung CC, Yen CC, Ciuchta JL, Papoti D, Bock NA, Leopold DA, Silva AC (2015) Functional mapping of face-selective regions in the extrastriate visual cortex of the marmoset. J Neurosci 35(3):1160–1172PubMedPubMedCentralCrossRef
go back to reference Hutchison RM, Culham JC, Everling S, Flanagan JR, Gallivan JP (2014) Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway. Neuroimage 96:216–236PubMedCrossRef Hutchison RM, Culham JC, Everling S, Flanagan JR, Gallivan JP (2014) Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway. Neuroimage 96:216–236PubMedCrossRef
go back to reference Issa EB, Papanastassiou AM, DiCarlo JJ (2013) Large-scale, high-resolution neurophysiological maps underlying FMRI of macaque temporal lobe. J Neurosci 33(38):15207–15219PubMedPubMedCentralCrossRef Issa EB, Papanastassiou AM, DiCarlo JJ (2013) Large-scale, high-resolution neurophysiological maps underlying FMRI of macaque temporal lobe. J Neurosci 33(38):15207–15219PubMedPubMedCentralCrossRef
go back to reference Jack RE, Schyns PG (2015) The human face as a dynamic tool for social communication. Curr Biol 25(14):R621–R634PubMedCrossRef Jack RE, Schyns PG (2015) The human face as a dynamic tool for social communication. Curr Biol 25(14):R621–R634PubMedCrossRef
go back to reference Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvée M, Guye M, Vignal JP, Vespignani H, Rossion B, Maillard L (2012) Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience 222:281–288PubMedCrossRef Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvée M, Guye M, Vignal JP, Vespignani H, Rossion B, Maillard L (2012) Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience 222:281–288PubMedCrossRef
go back to reference Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44(2):107–112PubMedCrossRef Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44(2):107–112PubMedCrossRef
go back to reference Kaiser D, Strnad L, Seidl KN, Kastner S, Peelen MV (2014) Whole person-evoked fMRI activity patterns in human fusiform gyrus are accurately modeled by a linear combination of face-and body-evoked activity patterns. J Neurophysiol 111(1):82–90PubMedCrossRef Kaiser D, Strnad L, Seidl KN, Kastner S, Peelen MV (2014) Whole person-evoked fMRI activity patterns in human fusiform gyrus are accurately modeled by a linear combination of face-and body-evoked activity patterns. J Neurophysiol 111(1):82–90PubMedCrossRef
go back to reference Kamps FS, Morris EJ, Dilks DD (2019) A face is more than just the eyes, nose, and mouth: fMRI evidence that face-selective cortex represents external features. Neuroimage 184:90–100PubMedCrossRef Kamps FS, Morris EJ, Dilks DD (2019) A face is more than just the eyes, nose, and mouth: fMRI evidence that face-selective cortex represents external features. Neuroimage 184:90–100PubMedCrossRef
go back to reference Kamps FS, Hendrix CL, Brennan PA, Dilks DD (2020) Connectivity at the origins of domain specificity in the cortical face and place networks. Proc Natl Acad Sci 117(11):6163–6169PubMedPubMedCentralCrossRef Kamps FS, Hendrix CL, Brennan PA, Dilks DD (2020) Connectivity at the origins of domain specificity in the cortical face and place networks. Proc Natl Acad Sci 117(11):6163–6169PubMedPubMedCentralCrossRef
go back to reference Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311PubMedPubMedCentralCrossRef Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311PubMedPubMedCentralCrossRef
go back to reference Kiani R, Esteky H, Mirpour K, Tanaka K (2007) Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J Neurophysiol 97(6):4296–4309PubMedCrossRef Kiani R, Esteky H, Mirpour K, Tanaka K (2007) Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J Neurophysiol 97(6):4296–4309PubMedCrossRef
go back to reference Kliger L, Yovel G (2020) The functional organization of high-level visual cortex determines the representation of complex visual stimuli. J Neurosci 40(39):7545–7558PubMedPubMedCentralCrossRef Kliger L, Yovel G (2020) The functional organization of high-level visual cortex determines the representation of complex visual stimuli. J Neurosci 40(39):7545–7558PubMedPubMedCentralCrossRef
go back to reference Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M (2021) Combining brain perturbation and neuroimaging in non-human primates. NeuroImage 235:118017PubMedCrossRef Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M (2021) Combining brain perturbation and neuroimaging in non-human primates. NeuroImage 235:118017PubMedCrossRef
go back to reference Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA (2008) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6):1126–1141PubMedPubMedCentralCrossRef Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA (2008) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6):1126–1141PubMedPubMedCentralCrossRef
go back to reference Kumar S, Popivanov ID, Vogels R (2019) Transformation of visual representations across ventral stream body-selective patches. Cereb Cortex 29(1):215–229PubMedCrossRef Kumar S, Popivanov ID, Vogels R (2019) Transformation of visual representations across ventral stream body-selective patches. Cereb Cortex 29(1):215–229PubMedCrossRef
go back to reference Lafer-Sousa R, Conway BR (2013) Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat Neurosci 16(12):1870–1878PubMedPubMedCentralCrossRef Lafer-Sousa R, Conway BR (2013) Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat Neurosci 16(12):1870–1878PubMedPubMedCentralCrossRef
go back to reference Le Grand R, Mondloch CJ, Maurer D, Brent HP (2001) Early visual experience and face processing. Nature 410(6831):890–890PubMedCrossRef Le Grand R, Mondloch CJ, Maurer D, Brent HP (2001) Early visual experience and face processing. Nature 410(6831):890–890PubMedCrossRef
go back to reference Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center–periphery organization of human object areas. Nat Neurosci 4(5):533–539PubMedCrossRef Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center–periphery organization of human object areas. Nat Neurosci 4(5):533–539PubMedCrossRef
go back to reference Lisboa IC, Miguel H, Sampaio A, Mouta S, Santos JA, Pereira AF (2020) Right STS responses to biological motion in infancy—an fNIRS study using point-light walkers. Neuropsychologia 149:107668PubMedCrossRef Lisboa IC, Miguel H, Sampaio A, Mouta S, Santos JA, Pereira AF (2020) Right STS responses to biological motion in infancy—an fNIRS study using point-light walkers. Neuropsychologia 149:107668PubMedCrossRef
go back to reference Livingstone MS, Vincent JL, Arcaro MJ, Srihasam K, Schade PF, Savage T (2017) Development of the macaque face-patch system. Nat Commun 8(1):1–12CrossRef Livingstone MS, Vincent JL, Arcaro MJ, Srihasam K, Schade PF, Savage T (2017) Development of the macaque face-patch system. Nat Commun 8(1):1–12CrossRef
go back to reference Malaspina M, Albonico A, Daini R (2019) Self-face and self-body advantages in congenital prosopagnosia: evidence for a common mechanism. Exp Brain Res 237(3):673–686PubMedCrossRef Malaspina M, Albonico A, Daini R (2019) Self-face and self-body advantages in congenital prosopagnosia: evidence for a common mechanism. Exp Brain Res 237(3):673–686PubMedCrossRef
go back to reference McCarthy G, Puce A, Gore JC, Allison T (1997) Face-specific processing in the human fusiform gyrus. J Cogn Neurosci 9(5):605–610PubMedCrossRef McCarthy G, Puce A, Gore JC, Allison T (1997) Face-specific processing in the human fusiform gyrus. J Cogn Neurosci 9(5):605–610PubMedCrossRef
go back to reference McKone E, Kanwisher N, Duchaine BC (2007) Can generic expertise explain special processing for faces? Trends Cogn Sci 11(1):8–15PubMedCrossRef McKone E, Kanwisher N, Duchaine BC (2007) Can generic expertise explain special processing for faces? Trends Cogn Sci 11(1):8–15PubMedCrossRef
go back to reference Minnebusch DA, Daum I (2009) Neuropsychological mechanisms of visual face and body perception. Neurosci Biobehav Rev 33(7):1133–1144PubMedCrossRef Minnebusch DA, Daum I (2009) Neuropsychological mechanisms of visual face and body perception. Neurosci Biobehav Rev 33(7):1133–1144PubMedCrossRef
go back to reference Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O, Jansen O, Stephani U, Siniatchkin M (2008) Changes in activity of striato–thalamo–cortical network precede generalized spike wave discharges. Neuroimage 39(4):1839–1849PubMedCrossRef Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O, Jansen O, Stephani U, Siniatchkin M (2008) Changes in activity of striato–thalamo–cortical network precede generalized spike wave discharges. Neuroimage 39(4):1839–1849PubMedCrossRef
go back to reference Moro V, Urgesi C, Pernigo S, Lanteri P, Pazzaglia M, Aglioti SM (2008) The neural basis of body form and body action agnosia. Neuron 60(2):235–246PubMedCrossRef Moro V, Urgesi C, Pernigo S, Lanteri P, Pazzaglia M, Aglioti SM (2008) The neural basis of body form and body action agnosia. Neuron 60(2):235–246PubMedCrossRef
go back to reference Moro V, Pernigo S, Avesani R, Bulgarelli C, Urgesi C, Candidi M, Aglioti SM (2012) Visual body recognition in a prosopagnosic patient. Neuropsychologia 50(1):104–117PubMedCrossRef Moro V, Pernigo S, Avesani R, Bulgarelli C, Urgesi C, Candidi M, Aglioti SM (2012) Visual body recognition in a prosopagnosic patient. Neuropsychologia 50(1):104–117PubMedCrossRef
go back to reference Morris JP, Pelphrey KA, McCarthy G (2006) Occipitotemporal activation evoked by the perception of human bodies is modulated by the presence or absence of the face. Neuropsychologia 44(10):1919–1927PubMedPubMedCentralCrossRef Morris JP, Pelphrey KA, McCarthy G (2006) Occipitotemporal activation evoked by the perception of human bodies is modulated by the presence or absence of the face. Neuropsychologia 44(10):1919–1927PubMedPubMedCentralCrossRef
go back to reference Mur M, Meys M, Bodurka J, Goebel R, Bandettini PA, Kriegeskorte N (2013) Human object-similarity judgments reflect and transcend the primate-IT object representation. Front Psychol 4:128PubMedPubMedCentralCrossRef Mur M, Meys M, Bodurka J, Goebel R, Bandettini PA, Kriegeskorte N (2013) Human object-similarity judgments reflect and transcend the primate-IT object representation. Front Psychol 4:128PubMedPubMedCentralCrossRef
go back to reference Murty NAR, Teng S, Beeler D, Mynick A, Oliva A, Kanwisher N (2020) Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. Proc Natl Acad Sci 117(37):23011–23020CrossRef Murty NAR, Teng S, Beeler D, Mynick A, Oliva A, Kanwisher N (2020) Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. Proc Natl Acad Sci 117(37):23011–23020CrossRef
go back to reference O’Neil EB, Hutchison RM, McLean DA, Köhler S (2014) Resting-state fMRI reveals functional connectivity between face-selective perirhinal cortex and the fusiform face area related to face inversion. Neuroimage 92:349–355PubMedCrossRef O’Neil EB, Hutchison RM, McLean DA, Köhler S (2014) Resting-state fMRI reveals functional connectivity between face-selective perirhinal cortex and the fusiform face area related to face inversion. Neuroimage 92:349–355PubMedCrossRef
go back to reference Op de Beeck HP, Pillet I, Ritchie JB (2019) Factors determining where category-selective areas emerge in visual cortex. Trends Cogn Sci 23(9):784–797PubMedCrossRef Op de Beeck HP, Pillet I, Ritchie JB (2019) Factors determining where category-selective areas emerge in visual cortex. Trends Cogn Sci 23(9):784–797PubMedCrossRef
go back to reference Orlov T, Makin TR, Zohary E (2010) Topographic representation of the human body in the occipitotemporal cortex. Neuron 68(3):586–600PubMedCrossRef Orlov T, Makin TR, Zohary E (2010) Topographic representation of the human body in the occipitotemporal cortex. Neuron 68(3):586–600PubMedCrossRef
go back to reference Osher DE, Saxe RR, Koldewyn K, Gabrieli JD, Kanwisher N, Saygin ZM (2016) Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb Cortex 26(4):1668–1683PubMedCrossRef Osher DE, Saxe RR, Koldewyn K, Gabrieli JD, Kanwisher N, Saygin ZM (2016) Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb Cortex 26(4):1668–1683PubMedCrossRef
go back to reference O’Toole AJ, Roark DA, Abdi H (2002) Recognizing moving faces: A psychological and neural synthesis. Trends Cogn Sci 6(6):261–266PubMedCrossRef O’Toole AJ, Roark DA, Abdi H (2002) Recognizing moving faces: A psychological and neural synthesis. Trends Cogn Sci 6(6):261–266PubMedCrossRef
go back to reference Parr LA, Hecht E, Barks SK, Preuss TM, Votaw JR (2009) Face processing in the chimpanzee brain. Curr Biol 19(1):50–53PubMedCrossRef Parr LA, Hecht E, Barks SK, Preuss TM, Votaw JR (2009) Face processing in the chimpanzee brain. Curr Biol 19(1):50–53PubMedCrossRef
go back to reference Parvizi J, Jacques C, Foster BL, Withoft N, Rangarajan V, Weiner KS, Grill-Spector K (2012) Electrical stimulation of human fusiform face-selective regions distorts face perception. J Neurosci 32(43):14915–14920PubMedPubMedCentralCrossRef Parvizi J, Jacques C, Foster BL, Withoft N, Rangarajan V, Weiner KS, Grill-Spector K (2012) Electrical stimulation of human fusiform face-selective regions distorts face perception. J Neurosci 32(43):14915–14920PubMedPubMedCentralCrossRef
go back to reference Peelen MV, Downing PE (2005) Selectivity for the human body in the fusiform gyrus. J Neurophysiol 93(1):603–608PubMedCrossRef Peelen MV, Downing PE (2005) Selectivity for the human body in the fusiform gyrus. J Neurophysiol 93(1):603–608PubMedCrossRef
go back to reference Peelen MV, Downing PE (2007) The neural basis of visual body perception. Nat Rev Neurosci 8(8):636–648PubMedCrossRef Peelen MV, Downing PE (2007) The neural basis of visual body perception. Nat Rev Neurosci 8(8):636–648PubMedCrossRef
go back to reference Peelen MV, Glaser B, Vuilleumier P, Eliez S (2009) Differential development of selectivity for faces and bodies in the fusiform gyrus. Dev Sci 12(6):F16–F25PubMedCrossRef Peelen MV, Glaser B, Vuilleumier P, Eliez S (2009) Differential development of selectivity for faces and bodies in the fusiform gyrus. Dev Sci 12(6):F16–F25PubMedCrossRef
go back to reference Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47(3):329–342PubMedCrossRef Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47(3):329–342PubMedCrossRef
go back to reference Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S (2005) Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc Natl Acad Sci 102(19):6996–7001PubMedPubMedCentralCrossRef Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S (2005) Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc Natl Acad Sci 102(19):6996–7001PubMedPubMedCentralCrossRef
go back to reference Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ, Gross CG, Kastner S (2009) Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J Neurophysiol 101(5):2581–2600PubMedPubMedCentralCrossRef Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ, Gross CG, Kastner S (2009) Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J Neurophysiol 101(5):2581–2600PubMedPubMedCentralCrossRef
go back to reference Pitcher D, Ungerleider LG (2021) Evidence for a third visual pathway specialized for social perception. Trends Cogn Sci 25(2):100–110PubMedCrossRef Pitcher D, Ungerleider LG (2021) Evidence for a third visual pathway specialized for social perception. Trends Cogn Sci 25(2):100–110PubMedCrossRef
go back to reference Pitcher D, Charles L, Devlin JT, Walsh V, Duchaine B (2009) Triple dissociation of faces, bodies, and objects in extrastriate cortex. Curr Biol 19(4):319–324PubMedCrossRef Pitcher D, Charles L, Devlin JT, Walsh V, Duchaine B (2009) Triple dissociation of faces, bodies, and objects in extrastriate cortex. Curr Biol 19(4):319–324PubMedCrossRef
go back to reference Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N (2011) Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 56(4):2356–2363PubMedCrossRef Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N (2011) Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 56(4):2356–2363PubMedCrossRef
go back to reference Pitcher D, Japee S, Rauth L, Ungerleider LG (2017) The superior temporal sulcus is causally connected to the amygdala: a combined TBS-fMRI study. J Neurosci 37(5):1156–1161PubMedPubMedCentralCrossRef Pitcher D, Japee S, Rauth L, Ungerleider LG (2017) The superior temporal sulcus is causally connected to the amygdala: a combined TBS-fMRI study. J Neurosci 37(5):1156–1161PubMedPubMedCentralCrossRef
go back to reference Pitcher D, Ianni G, Ungerleider LG (2019) A functional dissociation of face-, body-and scene-selective brain areas based on their response to moving and static stimuli. Sci Rep 9(1):1–9CrossRef Pitcher D, Ianni G, Ungerleider LG (2019) A functional dissociation of face-, body-and scene-selective brain areas based on their response to moving and static stimuli. Sci Rep 9(1):1–9CrossRef
go back to reference Popivanov ID, Jastorff J, Vanduffel W, Vogels R (2012) Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI. Neuroimage 63(2):723–741PubMedCrossRef Popivanov ID, Jastorff J, Vanduffel W, Vogels R (2012) Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI. Neuroimage 63(2):723–741PubMedCrossRef
go back to reference Popivanov ID, Jastorff J, Vanduffel W, Vogels R (2014) Heterogeneous single-unit selectivity in an fMRI-defined body-selective patch. J Neurosci 34(1):95–111PubMedPubMedCentralCrossRef Popivanov ID, Jastorff J, Vanduffel W, Vogels R (2014) Heterogeneous single-unit selectivity in an fMRI-defined body-selective patch. J Neurosci 34(1):95–111PubMedPubMedCentralCrossRef
go back to reference Popivanov ID, Schyns PG, Vogels R (2016) Stimulus features coded by single neurons of a macaque body category selective patch. Proc Natl Acad Sci 113(17):E2450–E2459PubMedPubMedCentralCrossRef Popivanov ID, Schyns PG, Vogels R (2016) Stimulus features coded by single neurons of a macaque body category selective patch. Proc Natl Acad Sci 113(17):E2450–E2459PubMedPubMedCentralCrossRef
go back to reference Premereur E, Taubert J, Janssen P, Vogels R, Vanduffel W (2016) Effective connectivity reveals largely independent parallel networks of face and body patches. Curr Biol 26(24):3269–3279PubMedCrossRef Premereur E, Taubert J, Janssen P, Vogels R, Vanduffel W (2016) Effective connectivity reveals largely independent parallel networks of face and body patches. Curr Biol 26(24):3269–3279PubMedCrossRef
go back to reference Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci 16(16):5205–5215PubMedPubMedCentralCrossRef Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci 16(16):5205–5215PubMedPubMedCentralCrossRef
go back to reference Puce A, Allison T, Bentin S, Gore JC, McCarthy G (1998) Temporal cortex activation in humans viewing eye and mouth movements. J Neurosci 18(6):2188–2199PubMedPubMedCentralCrossRef Puce A, Allison T, Bentin S, Gore JC, McCarthy G (1998) Temporal cortex activation in humans viewing eye and mouth movements. J Neurosci 18(6):2188–2199PubMedPubMedCentralCrossRef
go back to reference Ramot M, Walsh C, Martin A (2019) Multifaceted integration: memory for faces is subserved by widespread connections between visual, memory, auditory, and social networks. J Neurosci 39(25):4976–4985PubMedPubMedCentralCrossRef Ramot M, Walsh C, Martin A (2019) Multifaceted integration: memory for faces is subserved by widespread connections between visual, memory, auditory, and social networks. J Neurosci 39(25):4976–4985PubMedPubMedCentralCrossRef
go back to reference Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C, Grill-Spector K, Parvizi J (2014) Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J Neurosci 34(38):12828–12836PubMedPubMedCentralCrossRef Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C, Grill-Spector K, Parvizi J (2014) Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J Neurosci 34(38):12828–12836PubMedPubMedCentralCrossRef
go back to reference Reed CL, Stone VE, Bozova S, Tanaka J (2003) The body-inversion effect. Psychol Sci 14(4):302–308PubMedCrossRef Reed CL, Stone VE, Bozova S, Tanaka J (2003) The body-inversion effect. Psychol Sci 14(4):302–308PubMedCrossRef
go back to reference Rivolta D, Lawson RP, Palermo R (2017) More than just a problem with faces: altered body perception in a group of congenital prosopagnosics. Quarterly Journal of Experimental Psychology 70(2):276–286CrossRef Rivolta D, Lawson RP, Palermo R (2017) More than just a problem with faces: altered body perception in a group of congenital prosopagnosics. Quarterly Journal of Experimental Psychology 70(2):276–286CrossRef
go back to reference Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126(11):2381–2395PubMedCrossRef Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126(11):2381–2395PubMedCrossRef
go back to reference Russ BE, Leopold DA (2015) Functional MRI mapping of dynamic visual features during natural viewing in the macaque. Neuroimage 109:84–94PubMedCrossRef Russ BE, Leopold DA (2015) Functional MRI mapping of dynamic visual features during natural viewing in the macaque. Neuroimage 109:84–94PubMedCrossRef
go back to reference Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JD, Saxe RR (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15(2):321–327CrossRef Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JD, Saxe RR (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15(2):321–327CrossRef
go back to reference Schaeffer DJ, Selvanayagam J, Johnston KD, Menon RS, Freiwald WA, Everling S (2020) Face selective patches in marmoset frontal cortex. Nat Commun 11(1):1–8CrossRef Schaeffer DJ, Selvanayagam J, Johnston KD, Menon RS, Freiwald WA, Everling S (2020) Face selective patches in marmoset frontal cortex. Nat Commun 11(1):1–8CrossRef
go back to reference Schalk G, Kapeller C, Guger C, Ogawa H, Hiroshima S, Lafer-Sousa R, Saygin ZM, Kamada K, Kanwisher N (2017) Facephenes and rainbows: Causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proc Natl Acad Sci 114(46):12285–12290PubMedPubMedCentralCrossRef Schalk G, Kapeller C, Guger C, Ogawa H, Hiroshima S, Lafer-Sousa R, Saygin ZM, Kamada K, Kanwisher N (2017) Facephenes and rainbows: Causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proc Natl Acad Sci 114(46):12285–12290PubMedPubMedCentralCrossRef
go back to reference Schmalzl L, Zopf R, Williams MA (2012) From head to toe: evidence for selective brain activation reflecting visual perception of whole individuals. Front Hum Neurosci 6:108PubMedPubMedCentralCrossRef Schmalzl L, Zopf R, Williams MA (2012) From head to toe: evidence for selective brain activation reflecting visual perception of whole individuals. Front Hum Neurosci 6:108PubMedPubMedCentralCrossRef
go back to reference Schwiedrzik CM, Zarco W, Everling S, Freiwald WA (2015) Face patch resting state networks link face processing to social cognition. PLoS Biol 13(9):e1002245PubMedPubMedCentralCrossRef Schwiedrzik CM, Zarco W, Everling S, Freiwald WA (2015) Face patch resting state networks link face processing to social cognition. PLoS Biol 13(9):e1002245PubMedPubMedCentralCrossRef
go back to reference Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893PubMedCrossRef Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893PubMedCrossRef
go back to reference Shah P, Gaule A, Gaigg SB, Bird G, Cook R (2015) Probing short-term face memory in developmental prosopagnosia. Cortex 64:115–122PubMedCrossRef Shah P, Gaule A, Gaigg SB, Bird G, Cook R (2015) Probing short-term face memory in developmental prosopagnosia. Cortex 64:115–122PubMedCrossRef
go back to reference Silson EH, Chan AWY, Reynolds RC, Kravitz DJ, Baker CI (2015) A retinotopic basis for the division of high-level scene processing between lateral and ventral human occipitotemporal cortex. J Neurosci 35(34):11921–11935PubMedPubMedCentralCrossRef Silson EH, Chan AWY, Reynolds RC, Kravitz DJ, Baker CI (2015) A retinotopic basis for the division of high-level scene processing between lateral and ventral human occipitotemporal cortex. J Neurosci 35(34):11921–11935PubMedPubMedCentralCrossRef
go back to reference Silson EH, Groen II, Kravitz DJ, Baker CI (2016) Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex. J Vis 16(6):14–14PubMedPubMedCentralCrossRef Silson EH, Groen II, Kravitz DJ, Baker CI (2016) Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex. J Vis 16(6):14–14PubMedPubMedCentralCrossRef
go back to reference Slaughter V, Stone VE, Reed C (2004) Perception of faces and bodies: similar or different? Curr Dir Psychol Sci 13(6):219–223CrossRef Slaughter V, Stone VE, Reed C (2004) Perception of faces and bodies: similar or different? Curr Dir Psychol Sci 13(6):219–223CrossRef
go back to reference Song Y, Luo YL, Li X, Xu M, Liu J (2013) Representation of contextually related multiple objects in the human ventral visual pathway. J Cogn Neurosci 25(8):1261–1269PubMedCrossRef Song Y, Luo YL, Li X, Xu M, Liu J (2013) Representation of contextually related multiple objects in the human ventral visual pathway. J Cogn Neurosci 25(8):1261–1269PubMedCrossRef
go back to reference Sonkusare S, Breakspear M, Guo C (2019) Naturalistic stimuli in neuroscience: critically acclaimed. Trends Cogn Sci 23(8):699–714PubMedCrossRef Sonkusare S, Breakspear M, Guo C (2019) Naturalistic stimuli in neuroscience: critically acclaimed. Trends Cogn Sci 23(8):699–714PubMedCrossRef
go back to reference Sorger B, Goebel R, Schiltz C, Rossion B (2007) Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage 35(2):836–852PubMedCrossRef Sorger B, Goebel R, Schiltz C, Rossion B (2007) Understanding the functional neuroanatomy of acquired prosopagnosia. Neuroimage 35(2):836–852PubMedCrossRef
go back to reference Spiridon M, Fischl B, Kanwisher N (2006) Location and spatial profile of category-specific regions in human extrastriate cortex. Hum Brain Mapp 27(1):77–89PubMedCrossRef Spiridon M, Fischl B, Kanwisher N (2006) Location and spatial profile of category-specific regions in human extrastriate cortex. Hum Brain Mapp 27(1):77–89PubMedCrossRef
go back to reference Suchan B, Bauser DS, Busch M, Schulte D, Grönemeyer D, Herpertz S, Vocks S (2013) Reduced connectivity between the left fusiform body area and the extrastriate body area in anorexia nervosa is associated with body image distortion. Behav Brain Res 241:80–85PubMedCrossRef Suchan B, Bauser DS, Busch M, Schulte D, Grönemeyer D, Herpertz S, Vocks S (2013) Reduced connectivity between the left fusiform body area and the extrastriate body area in anorexia nervosa is associated with body image distortion. Behav Brain Res 241:80–85PubMedCrossRef
go back to reference Susilo T, Yovel G, Barton JJ, Duchaine B (2013) Face perception is category-specific: evidence from normal body perception in acquired prosopagnosia. Cognition 129(1):88–94PubMedCrossRef Susilo T, Yovel G, Barton JJ, Duchaine B (2013) Face perception is category-specific: evidence from normal body perception in acquired prosopagnosia. Cognition 129(1):88–94PubMedCrossRef
go back to reference Susilo T, Yang H, Potter Z, Robbins R, Duchaine B (2015) Normal body perception despite the loss of right fusiform gyrus. J Cogn Neurosci 27(3):614–622PubMedCrossRef Susilo T, Yang H, Potter Z, Robbins R, Duchaine B (2015) Normal body perception despite the loss of right fusiform gyrus. J Cogn Neurosci 27(3):614–622PubMedCrossRef
go back to reference Tarhan L, Konkle T (2020) Sociality and interaction envelope organize visual action representations. Nat Commun 11(1):1–11CrossRef Tarhan L, Konkle T (2020) Sociality and interaction envelope organize visual action representations. Nat Commun 11(1):1–11CrossRef
go back to reference Taubert J, Van Belle G, Vanduffel W, Rossion B, Vogels R (2015) The effect of face inversion for neurons inside and outside fMRI-defined face-selective cortical regions. J Neurophysiol 113(5):1644–1655PubMedCrossRef Taubert J, Van Belle G, Vanduffel W, Rossion B, Vogels R (2015) The effect of face inversion for neurons inside and outside fMRI-defined face-selective cortical regions. J Neurophysiol 113(5):1644–1655PubMedCrossRef
go back to reference Taubert J, Flessert M, Wardle SG, Basile BM, Murphy AP, Murray EA, Ungerleider LG (2018) Amygdala lesions eliminate viewing preferences for faces in rhesus monkeys. Proc Natl Acad Sci 115(31):8043–8048PubMedPubMedCentralCrossRef Taubert J, Flessert M, Wardle SG, Basile BM, Murphy AP, Murray EA, Ungerleider LG (2018) Amygdala lesions eliminate viewing preferences for faces in rhesus monkeys. Proc Natl Acad Sci 115(31):8043–8048PubMedPubMedCentralCrossRef
go back to reference Taubert J, Japee S, Murphy AP, Tardiff CT, Koele EA, Kumar S, Leopold DA, Ungerleider LG (2020) Parallel processing of facial expression and head orientation in the macaque brain. J Neurosci 40(42):8119–8131PubMedPubMedCentralCrossRef Taubert J, Japee S, Murphy AP, Tardiff CT, Koele EA, Kumar S, Leopold DA, Ungerleider LG (2020) Parallel processing of facial expression and head orientation in the macaque brain. J Neurosci 40(42):8119–8131PubMedPubMedCentralCrossRef
go back to reference Taylor JC, Downing PE (2011) Division of labor between lateral and ventral extrastriate representations of faces, bodies, and objects. J Cogn Neurosci 23(12):4122–4137PubMedCrossRef Taylor JC, Downing PE (2011) Division of labor between lateral and ventral extrastriate representations of faces, bodies, and objects. J Cogn Neurosci 23(12):4122–4137PubMedCrossRef
go back to reference Thompson JC, Hardee JE, Panayiotou A, Crewther D, Puce A (2007) Common and distinct brain activation to viewing dynamic sequences of face and hand movements. Neuroimage 37(3):966–973PubMedCrossRef Thompson JC, Hardee JE, Panayiotou A, Crewther D, Puce A (2007) Common and distinct brain activation to viewing dynamic sequences of face and hand movements. Neuroimage 37(3):966–973PubMedCrossRef
go back to reference Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4(8):832–838PubMedCrossRef Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4(8):832–838PubMedCrossRef
go back to reference van den Hurk J, Van Baelen M, Op de Beeck HP (2017) Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc Natl Acad Sci 114(22):E4501–E4510PubMedPubMedCentral van den Hurk J, Van Baelen M, Op de Beeck HP (2017) Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc Natl Acad Sci 114(22):E4501–E4510PubMedPubMedCentral
go back to reference van Koningsbruggen MG, Peelen MV, Downing PE (2013) A causal role for the extrastriate body area in detecting people in real-world scenes. J Neurosci 33(16):7003–7010PubMedPubMedCentralCrossRef van Koningsbruggen MG, Peelen MV, Downing PE (2013) A causal role for the extrastriate body area in detecting people in real-world scenes. J Neurosci 33(16):7003–7010PubMedPubMedCentralCrossRef
go back to reference Vangeneugden J, Peelen MV, Tadin D, Battelli L (2014) Distinct neural mechanisms for body form and body motion discriminations. J Neurosci 34(2):574–585PubMedPubMedCentralCrossRef Vangeneugden J, Peelen MV, Tadin D, Battelli L (2014) Distinct neural mechanisms for body form and body motion discriminations. J Neurosci 34(2):574–585PubMedPubMedCentralCrossRef
go back to reference Vinken K, Vogels R (2019) A behavioral face preference deficit in a monkey with an incomplete face patch system. Neuroimage 189:415–424PubMedCrossRef Vinken K, Vogels R (2019) A behavioral face preference deficit in a monkey with an incomplete face patch system. Neuroimage 189:415–424PubMedCrossRef
go back to reference Vuilleumier P, Pourtois G (2007) Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45(1):174–194PubMedCrossRef Vuilleumier P, Pourtois G (2007) Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45(1):174–194PubMedCrossRef
go back to reference Wachsmuth E, Oram MW, Perrett DI (1994) Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cereb Cortex 4(5):509–522PubMedCrossRef Wachsmuth E, Oram MW, Perrett DI (1994) Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cereb Cortex 4(5):509–522PubMedCrossRef
go back to reference Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383PubMedCrossRef Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383PubMedCrossRef
go back to reference Webster MJ, Ungerleider LG, Bachevalier J (1991) Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11(4):1095–1116PubMedPubMedCentralCrossRef Webster MJ, Ungerleider LG, Bachevalier J (1991) Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11(4):1095–1116PubMedPubMedCentralCrossRef
go back to reference Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52(4):1559–1573PubMedCrossRef Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52(4):1559–1573PubMedCrossRef
go back to reference Weiner KS, Grill-Spector K (2013) Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol Res 77(1):74–97PubMedCrossRef Weiner KS, Grill-Spector K (2013) Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol Res 77(1):74–97PubMedCrossRef
go back to reference Zhang H, Japee S, Stacy A, Flessert M, Ungerleider LG (2020) Anterior superior temporal sulcus is specialized for non-rigid facial motion in both monkeys and humans. NeuroImage 218:116878PubMedCrossRef Zhang H, Japee S, Stacy A, Flessert M, Ungerleider LG (2020) Anterior superior temporal sulcus is specialized for non-rigid facial motion in both monkeys and humans. NeuroImage 218:116878PubMedCrossRef
go back to reference Zhu Q, Zhang J, Luo YL, Dilks DD, Liu J (2011) Resting-state neural activity across face-selective cortical regions is behaviorally relevant. J Neurosci 31(28):10323–10330PubMedPubMedCentralCrossRef Zhu Q, Zhang J, Luo YL, Dilks DD, Liu J (2011) Resting-state neural activity across face-selective cortical regions is behaviorally relevant. J Neurosci 31(28):10323–10330PubMedPubMedCentralCrossRef
Metadata
Title
One object, two networks? Assessing the relationship between the face and body-selective regions in the primate visual system
Authors
Jessica Taubert
J. Brendan Ritchie
Leslie G. Ungerleider
Christopher I. Baker
Publication date
01-05-2022
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2022
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02420-7

Other articles of this Issue 4/2022

Brain Structure and Function 4/2022 Go to the issue