Skip to main content
Top
Published in: Brain Structure and Function 1/2022

01-01-2022 | Original Article

Magnetic resonance fingerprinting residual signals can disassociate human grey matter regions

Authors: Shahrzad Moinian, Viktor Vegh, Kieran O’Brien, David Reutens

Published in: Brain Structure and Function | Issue 1/2022

Login to get access

Abstract

The importance of accurate structural discrimination of the human grey matter regions has motivated the development of observer-independent reproducible methods that account for inter-individual architectonic variations. We introduce a non-invasive statistical residual analysis framework, employing unique tissue-specific magnetic resonance fingerprinting (MRF) signals after adjusting for the effect of T1 and T2* MR relaxometry parameters (here termed MRF residuals). A 7 T Siemens MR scanner was used to acquire MRF signals, quantitative transmit magnetic field (B1+) maps and T1-weighted anatomical images of eleven cortical areas (5L, 5M, 5Ci, 7A, 7P, 7PC, hIP3, BA2, BA4a, BA4p and BA6) from six female participants. MRF residual signal for each voxel was calculated as the difference between the actual and best matching MRF signal evolutions from a precomputed MRF dictionary covering a range of T1, T2* and B1+ values. To compare MRF residuals between regions of interest, normalised autocorrelation was used as a shape-based statistical signal characterisation method and the Euclidean distance between autocorrelation profiles of residuals was used to measure the interareal dissimilarity. In the eleven cortical areas in both cerebral hemispheres of six participants, the proposed MRF residual analysis consistently showed interareal dissimilarity profiles that concorded with histological studies, indicating that MRF residuals potentially contain tissue microstructural information. MRF residual signals provide additional area-specific information that is complementary to the MR relaxometry-based (T1, T2*) information used previously for distinguishing microstructural differences between human cerebral cortex regions in vivo. The proposed approach led to more accurate identification of structural variations across cortical areas of interest.
Appendix
Available only for authorised users
Literature
go back to reference Andersson JL, Jenkinson M, Smith S (2007) Non-linear registration aka spatial normalisation fmrib technial report Tr07ja2. Fmrib Analysis Group Of The University Of Oxford, Oxford Andersson JL, Jenkinson M, Smith S (2007) Non-linear registration aka spatial normalisation fmrib technial report Tr07ja2. Fmrib Analysis Group Of The University Of Oxford, Oxford
go back to reference Awad IA, Rosenfeld J, Ahl J, Hahn JF, Lüders H (1991) Intractable epilepsy and structural lesions of the brain: mapping, resection strategies, and seizure outcome. Epilepsia 32(2):179–186CrossRefPubMed Awad IA, Rosenfeld J, Ahl J, Hahn JF, Lüders H (1991) Intractable epilepsy and structural lesions of the brain: mapping, resection strategies, and seizure outcome. Epilepsia 32(2):179–186CrossRefPubMed
go back to reference Brodmann K (1909) Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. Barth, Brodmann K (1909) Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. Barth,
go back to reference Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg Md, Kl W, Seiberlich N, Ma G, Gulani V (2016) MR fingerprinting for rapid quantitative abdominal imaging. Radiology 279(1):278–286CrossRefPubMed Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg Md, Kl W, Seiberlich N, Ma G, Gulani V (2016) MR fingerprinting for rapid quantitative abdominal imaging. Radiology 279(1):278–286CrossRefPubMed
go back to reference Cohen-Adad J, Polimeni JR, Helmer KG, Benner T, Mcnab JA, Wald LL, Rosen BR, Mainero C (2012) T2* mapping and B0 orientation-dependence at 7 T reveal cyto-and myeloarchitecture organization of the human cortex. Neuroimage 60(2):1006–1014CrossRefPubMed Cohen-Adad J, Polimeni JR, Helmer KG, Benner T, Mcnab JA, Wald LL, Rosen BR, Mainero C (2012) T2* mapping and B0 orientation-dependence at 7 T reveal cyto-and myeloarchitecture organization of the human cortex. Neuroimage 60(2):1006–1014CrossRefPubMed
go back to reference Douaud G, Menke RA, Gass A, Monsch AU, Rao A, Whitcher B, Zamboni G, Pm M, Sollberger M, Smith S (2013) Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. J Neurosci 33(5):2147–2155CrossRefPubMedPubMedCentral Douaud G, Menke RA, Gass A, Monsch AU, Rao A, Whitcher B, Zamboni G, Pm M, Sollberger M, Smith S (2013) Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. J Neurosci 33(5):2147–2155CrossRefPubMedPubMedCentral
go back to reference Duffau H (2011) Brain mapping: from neural basis of cognition to surgical applications. Springer Science & Business Media, BerlinCrossRef Duffau H (2011) Brain mapping: from neural basis of cognition to surgical applications. Springer Science & Business Media, BerlinCrossRef
go back to reference Geyer S (2012) The microstructural border between the motor and the cognitive domain in the human cerebral cortex, vol 174. Springer Science & Business Media, Berlin Geyer S (2012) The microstructural border between the motor and the cognitive domain in the human cerebral cortex, vol 174. Springer Science & Business Media, Berlin
go back to reference Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design, vol 82. Wiley-Liss, New York Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design, vol 82. Wiley-Liss, New York
go back to reference Honey CJ, Thivierge J-P, Sporns O (2010) Can structure predict function in the human brain? Neuroimage 52(3):766–776CrossRefPubMed Honey CJ, Thivierge J-P, Sporns O (2010) Can structure predict function in the human brain? Neuroimage 52(3):766–776CrossRefPubMed
go back to reference Hopf A (1968) Registration of the myeloarchitecture of the human frontal lobe with an extinction method. J Hirnforsch 10(3):259–269PubMed Hopf A (1968) Registration of the myeloarchitecture of the human frontal lobe with an extinction method. J Hirnforsch 10(3):259–269PubMed
go back to reference Hopf A (1970) Photometric studies on the myeloarchitecture of the human parietal lobe. Ii postcentral region. J Hirnforsch 12(1):135–141PubMed Hopf A (1970) Photometric studies on the myeloarchitecture of the human parietal lobe. Ii postcentral region. J Hirnforsch 12(1):135–141PubMed
go back to reference Krol LR (2020) Permutation test. https://github.com/lrkrol/permutationTest Krol LR (2020) Permutation test. https://​github.​com/​lrkrol/​permutationTest
go back to reference Ma D, Se J, Deshmane A, Sakaie K, Pierre EY, Larvie M, Mcgivney D, Blumcke I, Krishnan B, Lowe M, Gulani V, Najm I, Ma G, Zi W (2019) Development of high-resolution 3d MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging 49(5):1333–1346. https://doi.org/10.1002/Jmri.26319CrossRefPubMed Ma D, Se J, Deshmane A, Sakaie K, Pierre EY, Larvie M, Mcgivney D, Blumcke I, Krishnan B, Lowe M, Gulani V, Najm I, Ma G, Zi W (2019) Development of high-resolution 3d MR fingerprinting for detection and characterization of epileptic lesions. J Magn Reson Imaging 49(5):1333–1346. https://​doi.​org/​10.​1002/​Jmri.​26319CrossRefPubMed
go back to reference Moinian S, Vegh V, Reutens D (2020) In vivo voxel-wise parcellation of the human cerebral cortex using 3d mr fingerprinting (MRF) and supervised machine learning classification. Ismrm, Virtual Moinian S, Vegh V, Reutens D (2020) In vivo voxel-wise parcellation of the human cerebral cortex using 3d mr fingerprinting (MRF) and supervised machine learning classification. Ismrm, Virtual
go back to reference Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE (2011) Statistical parametric mapping: the analysis of functional brain images. Elsevier, Amsterdam Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE (2011) Statistical parametric mapping: the analysis of functional brain images. Elsevier, Amsterdam
go back to reference Perlin K (1985) An image synthesizer. Acm Siggraph Computer Graphics 19(3):287–296CrossRef Perlin K (1985) An image synthesizer. Acm Siggraph Computer Graphics 19(3):287–296CrossRef
go back to reference Scheperjans F, Hermann K, Sb E, Amunts K, Schleicher A, Zilles K (2008) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18(4):846–867CrossRefPubMed Scheperjans F, Hermann K, Sb E, Amunts K, Schleicher A, Zilles K (2008) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18(4):846–867CrossRefPubMed
go back to reference Tardif CL, Dinse J, Schäfer A, Turner R, Bazin P-L (2013) Multi-modal surface-based alignment of cortical areas using intra-cortical T1 contrast. International workshop on multimodal brain image analysis. Springer, Berlin, pp 222–232CrossRef Tardif CL, Dinse J, Schäfer A, Turner R, Bazin P-L (2013) Multi-modal surface-based alignment of cortical areas using intra-cortical T1 contrast. International workshop on multimodal brain image analysis. Springer, Berlin, pp 222–232CrossRef
go back to reference Wang X, Smith K, Hyndman R (2006) Characteristic-based clustering for time series data. Data Min Knowl Disc 13(3):335–364CrossRef Wang X, Smith K, Hyndman R (2006) Characteristic-based clustering for time series data. Data Min Knowl Disc 13(3):335–364CrossRef
go back to reference Wang I, Boyacioglu R, Griswold MA, Jones S, Ma D (2019) Exploring human cortical microstructure using magnetic resonance fingerprinting at 3t. Ismrm, Montreal, p 4990 Wang I, Boyacioglu R, Griswold MA, Jones S, Ma D (2019) Exploring human cortical microstructure using magnetic resonance fingerprinting at 3t. Ismrm, Montreal, p 4990
go back to reference Weiskopf N, Mohammadi S, Lutti A, Callaghan MF (2015) Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology (vol 28, Pg 313, 2015). Curr Opin Neurol 28(5):547–547CrossRef Weiskopf N, Mohammadi S, Lutti A, Callaghan MF (2015) Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology (vol 28, Pg 313, 2015). Curr Opin Neurol 28(5):547–547CrossRef
go back to reference Widjaja E, Zarei Mahmoodabadi S, Otsubo H, Snead OC, Holowka S, Bells S, Raybaud C (2009) Subcortical alterations in tissue microstructure adjacent to focal cortical dysplasia: detection at diffusion-tensor MR imaging by using magnetoencephalographic dipole cluster localization. Radiology 251(1):206–215CrossRefPubMed Widjaja E, Zarei Mahmoodabadi S, Otsubo H, Snead OC, Holowka S, Bells S, Raybaud C (2009) Subcortical alterations in tissue microstructure adjacent to focal cortical dysplasia: detection at diffusion-tensor MR imaging by using magnetoencephalographic dipole cluster localization. Radiology 251(1):206–215CrossRefPubMed
go back to reference Winston GP, Micallef C, Symms MR, Alexander DC, Duncan JS, Zhang H (2014) Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res 108(2):336–339CrossRefPubMedPubMedCentral Winston GP, Micallef C, Symms MR, Alexander DC, Duncan JS, Zhang H (2014) Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res 108(2):336–339CrossRefPubMedPubMedCentral
Metadata
Title
Magnetic resonance fingerprinting residual signals can disassociate human grey matter regions
Authors
Shahrzad Moinian
Viktor Vegh
Kieran O’Brien
David Reutens
Publication date
01-01-2022
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2022
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02402-9

Other articles of this Issue 1/2022

Brain Structure and Function 1/2022 Go to the issue