Skip to main content
Top
Published in: Brain Structure and Function 5/2020

01-06-2020 | Magnetic Resonance Imaging | Original Article

A systematic comparison of structural-, structural connectivity-, and functional connectivity-based thalamus parcellation techniques

Authors: Charles Iglehart, Martin Monti, Joshua Cain, Thomas Tourdias, Manojkumar Saranathan

Published in: Brain Structure and Function | Issue 5/2020

Login to get access

Abstract

The thalamus consists of several histologically and functionally distinct nuclei increasingly implicated in brain pathology and important for treatment, motivating the need for development of fast and accurate thalamic parcellation. The contrast between thalamic nuclei as well as between the thalamus and surrounding tissues is poor in T1- and T2-weighted magnetic resonance imaging (MRI), inhibiting efforts to date to segment the thalamus using standard clinical MRI. Automatic parcellation techniques have been developed to leverage thalamic features better captured by advanced MRI methods, including magnetization prepared rapid acquisition gradient echo (MP-RAGE), diffusion tensor imaging (DTI), and resting-state functional MRI (fMRI). Despite operating on fundamentally different image contrasts, these methods claim a high degree of agreement with the Morel stereotactic atlas of the thalamus. However, no comparison has been undertaken to compare the results of these disparate parcellation methods. We have implemented state-of-the-art structural-, diffusion-, and functional imaging-based thalamus parcellation techniques and used them on a single set of subjects. We present the first systematic qualitative and quantitative comparison of these methods. The results show that DTI parcellation agrees more with structural parcellation in the larger thalamic nuclei, while rsfMRI parcellation agrees more with structural parcellation in the smaller nuclei. Structural parcellation is the most accurate in the delineation of small structures such as the habenular, antero-ventral, and medial geniculate nuclei.
Appendix
Available only for authorised users
Literature
go back to reference Abosch A, Yacoub E, Ugurbil K, Harel N (2010) An assessment of current brain targets for deep brain stimulation surgery with susceptibilityweightedimaging at 7 tesla. Neurosurgery 67(6):1745–1756CrossRefPubMed Abosch A, Yacoub E, Ugurbil K, Harel N (2010) An assessment of current brain targets for deep brain stimulation surgery with susceptibilityweightedimaging at 7 tesla. Neurosurgery 67(6):1745–1756CrossRefPubMed
go back to reference Aggleton J, Brown MW (1999) Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav Brain Sci 22(3):425–444CrossRefPubMed Aggleton J, Brown MW (1999) Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav Brain Sci 22(3):425–444CrossRefPubMed
go back to reference Barth M et al (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75(1):63–81CrossRefPubMed Barth M et al (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75(1):63–81CrossRefPubMed
go back to reference Beckmann CF, Mackay CE, Filippini N, Smith SM (2009) Group comparison of resting- state FMRI data using multi-subject ICA and dual regression. Neuroimage 47(Suppl 1):S148CrossRef Beckmann CF, Mackay CE, Filippini N, Smith SM (2009) Group comparison of resting- state FMRI data using multi-subject ICA and dual regression. Neuroimage 47(Suppl 1):S148CrossRef
go back to reference Braak H, Braak E (1991) Alzheimer’s disease affects limbic nuclei of the thalamus. Acta Neuropathol 81(3):261–268CrossRefPubMed Braak H, Braak E (1991) Alzheimer’s disease affects limbic nuclei of the thalamus. Acta Neuropathol 81(3):261–268CrossRefPubMed
go back to reference Byne W et al (2001) Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry 58(2):133–140CrossRefPubMed Byne W et al (2001) Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry 58(2):133–140CrossRefPubMed
go back to reference Chen W et al (1998) Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. NeuroReport 9(16):3669–3674CrossRefPubMed Chen W et al (1998) Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. NeuroReport 9(16):3669–3674CrossRefPubMed
go back to reference Iglesias JE et al (2018) A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183:314–326CrossRefPubMed Iglesias JE et al (2018) A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183:314–326CrossRefPubMed
go back to reference Ji B et al (2016) Dynamic thalamus parcellation from resting-state fMRI data. Hum Brain Mapp 37(3):954–967CrossRefPubMed Ji B et al (2016) Dynamic thalamus parcellation from resting-state fMRI data. Hum Brain Mapp 37(3):954–967CrossRefPubMed
go back to reference Krauth A et al (2010) A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 49(3):2053–2062CrossRefPubMed Krauth A et al (2010) A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 49(3):2053–2062CrossRefPubMed
go back to reference O‘Mara SM (2013) The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front System Neurosci 7(45) O‘Mara SM (2013) The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front System Neurosci 7(45)
go back to reference O'Muircheartaigh J, Vollmar C, Traynor C, Barker GJ, Kumari V, Symms MR, Thompson P, Duncan JS, Koepp MJ, Richardson MP (2011) Clustering probabilistic tractograms using independent component analysis applied to the thalamus. Neuroimage 54(3):2020–2032CrossRefPubMed O'Muircheartaigh J, Vollmar C, Traynor C, Barker GJ, Kumari V, Symms MR, Thompson P, Duncan JS, Koepp MJ, Richardson MP (2011) Clustering probabilistic tractograms using independent component analysis applied to the thalamus. Neuroimage 54(3):2020–2032CrossRefPubMed
go back to reference Planche V et al (2019) White-matter-nulled MPRAGE at 7T reveals thalamic lesions and atrophy of specific thalamic nuclei in multiple sclerosis. Mult Scler J p. 1352458519828297 Planche V et al (2019) White-matter-nulled MPRAGE at 7T reveals thalamic lesions and atrophy of specific thalamic nuclei in multiple sclerosis. Mult Scler J p. 1352458519828297
go back to reference Rohlfing T, Russakoff DB, Maurer CR (2003) An expectation maximization-like algorithm for multi-atlas multi-label segmentation. In: Bildverarbeitung für die Medizin Springer, Berlin, Heidelberg, pp 348–352 Rohlfing T, Russakoff DB, Maurer CR (2003) An expectation maximization-like algorithm for multi-atlas multi-label segmentation. In: Bildverarbeitung für die Medizin Springer, Berlin, Heidelberg, pp 348–352
go back to reference Schiff ND (2010) Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 33(1):1–9CrossRefPubMed Schiff ND (2010) Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 33(1):1–9CrossRefPubMed
go back to reference Schiff ND et al (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448(7153):600CrossRefPubMed Schiff ND et al (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448(7153):600CrossRefPubMed
go back to reference Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ (2009) A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the fast gray matter acquisition T1 inversion recovery (FGATIR). Neuroimage 47:T44–T52CrossRefPubMed Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ (2009) A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the fast gray matter acquisition T1 inversion recovery (FGATIR). Neuroimage 47:T44–T52CrossRefPubMed
go back to reference Watanabe Y, Funahashi S (2012) Thalamic mediodorsal nucleus and working memory. Neurosci Biobehav Rev 36(1):134–142CrossRefPubMed Watanabe Y, Funahashi S (2012) Thalamic mediodorsal nucleus and working memory. Neurosci Biobehav Rev 36(1):134–142CrossRefPubMed
go back to reference Zahr NM, Sullivan EV, Pohl KM, Pfefferbaum A, Saranathan M (2020) Sensitivity of ventrolateral posterior thalamic nucleus to back pain in alcoholism and CD4 nadir in HIV. Human Brain Mapping 41(5):1351–1361CrossRefPubMed Zahr NM, Sullivan EV, Pohl KM, Pfefferbaum A, Saranathan M (2020) Sensitivity of ventrolateral posterior thalamic nucleus to back pain in alcoholism and CD4 nadir in HIV. Human Brain Mapping 41(5):1351–1361CrossRefPubMed
go back to reference Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME (2008) Intrinsic functional relations between human cerebral cortexand thalamus. J neurophysiol 100(4):1740–1748CrossRefPubMedPubMedCentral Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME (2008) Intrinsic functional relations between human cerebral cortexand thalamus. J neurophysiol 100(4):1740–1748CrossRefPubMedPubMedCentral
Metadata
Title
A systematic comparison of structural-, structural connectivity-, and functional connectivity-based thalamus parcellation techniques
Authors
Charles Iglehart
Martin Monti
Joshua Cain
Thomas Tourdias
Manojkumar Saranathan
Publication date
01-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2020
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-020-02085-8

Other articles of this Issue 5/2020

Brain Structure and Function 5/2020 Go to the issue