Skip to main content
Top
Published in: Brain Structure and Function 5/2020

01-06-2020 | Review

Untangling the dorsal diencephalic conduction system: a review of structure and function of the stria medullaris, habenula and fasciculus retroflexus

Authors: Elena Roman, Joshua Weininger, Basil Lim, Marin Roman, Denis Barry, Paul Tierney, Erik O’Hanlon, Kirk Levins, Veronica O’Keane, Darren Roddy

Published in: Brain Structure and Function | Issue 5/2020

Login to get access

Abstract

The often-overlooked dorsal diencephalic conduction system (DDCS) is a highly conserved pathway linking the basal forebrain and the monoaminergic brainstem. It consists of three key structures; the stria medullaris, the habenula and the fasciculus retroflexus. The first component of the DDCS, the stria medullaris, is a discrete bilateral tract composed of fibers from the basal forebrain that terminate in the triangular eminence of the stalk of the pineal gland, known as the habenula. The habenula acts as a relay hub where incoming signals from the stria medullaris are processed and subsequently relayed to the midbrain and hindbrain monoaminergic nuclei through the fasciculus retroflexus. As a result of its wide-ranging connections, the DDCS has recently been implicated in a wide range of behaviors related to reward processing, aversion and motivation. As such, an understanding of the structure and connections of the DDCS may help illuminate the pathophysiology of neuropsychiatric disorders such as depression, addiction and pain. This is the first review of all three components of the DDCS, the stria medullaris, the habenula and the fasciculus retroflexus, with particular focus on their anatomy, function and development.
Literature
go back to reference Altman J, Bayer SA (1979) Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. J Comp Neurol 188(3):455–471PubMedCrossRef Altman J, Bayer SA (1979) Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. J Comp Neurol 188(3):455–471PubMedCrossRef
go back to reference Amat J, Sparks P, Matus-Amat P, Griggs J, Watkins L, Maier S (2001) The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res 917(1):118–126PubMedCrossRef Amat J, Sparks P, Matus-Amat P, Griggs J, Watkins L, Maier S (2001) The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res 917(1):118–126PubMedCrossRef
go back to reference Anderson CH, Shen CL (1980) Efferents of the medial preoptic area in the guinea pig: an autoradiographic study. Brain Res Bull 5(3):257–265PubMedCrossRef Anderson CH, Shen CL (1980) Efferents of the medial preoptic area in the guinea pig: an autoradiographic study. Brain Res Bull 5(3):257–265PubMedCrossRef
go back to reference Angevine JB Jr (1970) Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J Comp Neurol 139(2):129–187PubMedCrossRef Angevine JB Jr (1970) Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J Comp Neurol 139(2):129–187PubMedCrossRef
go back to reference Araki M, McGeer PL, McGeer EG (1984) Retrograde HRP tracing combined with a pharmacohistochemical method for GABA transaminase for the identification of presumptive GABAergic projections to the habenula. Brain Res 304(2):271–277PubMedCrossRef Araki M, McGeer PL, McGeer EG (1984) Retrograde HRP tracing combined with a pharmacohistochemical method for GABA transaminase for the identification of presumptive GABAergic projections to the habenula. Brain Res 304(2):271–277PubMedCrossRef
go back to reference Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179(3):641–667PubMedCrossRef Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179(3):641–667PubMedCrossRef
go back to reference Ban T (1962) Experimental studies on the fiber connections of the rhinencephalon, 1. Med J Osaka Univ 12(3):385–424PubMed Ban T (1962) Experimental studies on the fiber connections of the rhinencephalon, 1. Med J Osaka Univ 12(3):385–424PubMed
go back to reference Battisti WP, Levin BE, Murray M (1987) Norepinephrine in the interpeduncular nucleus of the rat: normal distribution and the effects of deafferentation. Brain Res 418(2):287–300PubMedCrossRef Battisti WP, Levin BE, Murray M (1987) Norepinephrine in the interpeduncular nucleus of the rat: normal distribution and the effects of deafferentation. Brain Res 418(2):287–300PubMedCrossRef
go back to reference Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Neuroanatomy. Springer, New York, pp 449–475 Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Neuroanatomy. Springer, New York, pp 449–475
go back to reference Berk ML, Finkelstein JA (1982) Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation. Brain Res Bull 8(5):511–526PubMedCrossRef Berk ML, Finkelstein JA (1982) Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation. Brain Res Bull 8(5):511–526PubMedCrossRef
go back to reference Bischoff S, Leonhard S, Reymann N, Schuler V, Shigemoto R, Kaupmann K, Bettler B (1999) Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. J Comp Neurol 412(1):1–16PubMedCrossRef Bischoff S, Leonhard S, Reymann N, Schuler V, Shigemoto R, Kaupmann K, Bettler B (1999) Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. J Comp Neurol 412(1):1–16PubMedCrossRef
go back to reference Björklund A, Owman C, West K (1972) Peripheral sympathetic innervation and serotonin cells in the habenular region of the rat brain. Zeitschrift für Zellforschung und mikroskopische Anatomie 127(4):570–579PubMedCrossRef Björklund A, Owman C, West K (1972) Peripheral sympathetic innervation and serotonin cells in the habenular region of the rat brain. Zeitschrift für Zellforschung und mikroskopische Anatomie 127(4):570–579PubMedCrossRef
go back to reference Bobillier P, Pettijean F, Salvert D, Ligier M, Seguin S (1975) Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography. Brain Res 85(2):205PubMedCrossRef Bobillier P, Pettijean F, Salvert D, Ligier M, Seguin S (1975) Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography. Brain Res 85(2):205PubMedCrossRef
go back to reference Bobillier P, Seguin S, Degueurce A, Lewis B, Pujol J (1979) The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography. Brain Res 166(1):1–8PubMedCrossRef Bobillier P, Seguin S, Degueurce A, Lewis B, Pujol J (1979) The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography. Brain Res 166(1):1–8PubMedCrossRef
go back to reference Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113(3):449–486PubMedCrossRef Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113(3):449–486PubMedCrossRef
go back to reference Brinschwitz K, Dittgen A, Madai V, Lommel R, Geisler S, Veh R (2010) Glutamatergic axons from the lateral habenula mainly terminate on GABAergic neurons of the ventral midbrain. Neuroscience 168(2):463–476PubMedCrossRef Brinschwitz K, Dittgen A, Madai V, Lommel R, Geisler S, Veh R (2010) Glutamatergic axons from the lateral habenula mainly terminate on GABAergic neurons of the ventral midbrain. Neuroscience 168(2):463–476PubMedCrossRef
go back to reference Buchanan, Frazer JE (1937) Buchanan's manual of anatomy including embryology. In: J. E. Frazer (ed), 6th edn. Bailliere, Tindall and Cox, London Buchanan, Frazer JE (1937) Buchanan's manual of anatomy including embryology. In: J. E. Frazer (ed), 6th edn. Bailliere, Tindall and Cox, London
go back to reference Buchanan AR, Newton EB (1948) Functional neuroanatomy: including an atlas of the brain stem, 1st edn. Lea & Febiger, Philadelphia Buchanan AR, Newton EB (1948) Functional neuroanatomy: including an atlas of the brain stem, 1st edn. Lea & Febiger, Philadelphia
go back to reference Buijs R (1978) Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 192(3):423–435PubMedCrossRef Buijs R (1978) Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 192(3):423–435PubMedCrossRef
go back to reference Carl Huber G, Crosby EC (1929) The nuclei and fiber paths of the avian diencephalon, with consideration of telencephalic and certain mesencephalic centers and connections. J Comp Neurol 48(1):1–225CrossRef Carl Huber G, Crosby EC (1929) The nuclei and fiber paths of the avian diencephalon, with consideration of telencephalic and certain mesencephalic centers and connections. J Comp Neurol 48(1):1–225CrossRef
go back to reference Carlson J, Armstrong B, Switzer Iii RC, Ellison G (2000) Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this a weak link in brain across multiple drugs of abuse. Neuropharmacology 39(13):2792–2798PubMedCrossRef Carlson J, Armstrong B, Switzer Iii RC, Ellison G (2000) Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this a weak link in brain across multiple drugs of abuse. Neuropharmacology 39(13):2792–2798PubMedCrossRef
go back to reference Carpenter MB (1991) Core text of neuroanatomy. In: 4th ed. edn. Williams & Wilkins, Baltimore Carpenter MB (1991) Core text of neuroanatomy. In: 4th ed. edn. Williams & Wilkins, Baltimore
go back to reference Carter D, Fibiger H (1978) The projections of the entopeduncular nucleus and globus pallidus in rat as demonstrated by autoradiography and horseradish peroxidase histochemistry. J Comp Neurol 177(1):113–123PubMedCrossRef Carter D, Fibiger H (1978) The projections of the entopeduncular nucleus and globus pallidus in rat as demonstrated by autoradiography and horseradish peroxidase histochemistry. J Comp Neurol 177(1):113–123PubMedCrossRef
go back to reference Champney TH (2015) Essential clinical neuroanatomy. Wiley, Hoboken Champney TH (2015) Essential clinical neuroanatomy. Wiley, Hoboken
go back to reference Charles K, Evans M, Robbins M, Calver A, Leslie R, Pangalos M (2001) Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion. Neuroscience 106(3):447–467PubMedCrossRef Charles K, Evans M, Robbins M, Calver A, Leslie R, Pangalos M (2001) Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion. Neuroscience 106(3):447–467PubMedCrossRef
go back to reference Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci 6(3):613–619PubMedPubMedCentralCrossRef Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci 6(3):613–619PubMedPubMedCentralCrossRef
go back to reference Coenen VA, Schumacher LV, Kaller C, Schlaepfer TE, Reinacher PC, Egger K, Urbach H, Reisert M (2018) The anatomy of the human medial forebrain bundle: ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. NeuroImage Clinical 18:770–783PubMedPubMedCentralCrossRef Coenen VA, Schumacher LV, Kaller C, Schlaepfer TE, Reinacher PC, Egger K, Urbach H, Reisert M (2018) The anatomy of the human medial forebrain bundle: ventral tegmental area connections to reward-associated subcortical and frontal lobe regions. NeuroImage Clinical 18:770–783PubMedPubMedCentralCrossRef
go back to reference Concha ML, Ahumada-Galleguillos P (2016) An evolutionary perspective on habenular asymmetry in humans. J Neurol Neuromed 1:44–50CrossRef Concha ML, Ahumada-Galleguillos P (2016) An evolutionary perspective on habenular asymmetry in humans. J Neurol Neuromed 1:44–50CrossRef
go back to reference Concha ML, Wilson SW (2001) Asymmetry in the epithalamus of vertebrates. J Anat 199(Pt 1–2):63–84PubMedCrossRef Concha ML, Wilson SW (2001) Asymmetry in the epithalamus of vertebrates. J Anat 199(Pt 1–2):63–84PubMedCrossRef
go back to reference Conrad LC, Leonard CM, Pfaff DW (1974) Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J Comp Neurol 156(2):179–205PubMedCrossRef Conrad LC, Leonard CM, Pfaff DW (1974) Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J Comp Neurol 156(2):179–205PubMedCrossRef
go back to reference Contestabile A, Fonnum F (1983) Cholinergic and GABAergic forebrain projections to the habenula and nucleus interpeduncularis: surgical and kainic acid lesions. Brain Res 275(2):287–297PubMedCrossRef Contestabile A, Fonnum F (1983) Cholinergic and GABAergic forebrain projections to the habenula and nucleus interpeduncularis: surgical and kainic acid lesions. Brain Res 275(2):287–297PubMedCrossRef
go back to reference Contestabile A, Villani L, Fasolo A, Franzoni M, Gribaudo L, Øktedalen O, Fonnum F (1987) Topography of cholinergic and substance P pathways in the habenulo-interpeduncular system of the rat. An immunocytochemical and microchemical approach. Neuroscience 21(1):253–270PubMedCrossRef Contestabile A, Villani L, Fasolo A, Franzoni M, Gribaudo L, Øktedalen O, Fonnum F (1987) Topography of cholinergic and substance P pathways in the habenulo-interpeduncular system of the rat. An immunocytochemical and microchemical approach. Neuroscience 21(1):253–270PubMedCrossRef
go back to reference Contestabile R, Flumerfelt B (1981) Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulo-interpeduncular pathway: an HRP study in the rat. J Comp Neurol 196(2):253–270PubMedCrossRef Contestabile R, Flumerfelt B (1981) Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulo-interpeduncular pathway: an HRP study in the rat. J Comp Neurol 196(2):253–270PubMedCrossRef
go back to reference Cornwall J, Cooper J, Phillipson O (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25(2):271–284PubMedCrossRef Cornwall J, Cooper J, Phillipson O (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25(2):271–284PubMedCrossRef
go back to reference Cruveilhier J (1836) Anatomie descriptive, vol 4. Béchet jeune, Paris Cruveilhier J (1836) Anatomie descriptive, vol 4. Béchet jeune, Paris
go back to reference Curtis K, Viswanath H, Velasquez KM, Molfese DL, Harding MJ, Aramayo E, Baldwin PR, Ambrosi E, Madan A, Patriquin M, Frueh BC, Fowler JC, Kosten TR, Nielsen DA, Salas R (2017) Increased habenular connectivity in opioid users is associated with an α5 subunit nicotinic receptor genetic variant. Am J Addict 26(7):751–759. https://doi.org/10.1111/ajad.12607 CrossRefPubMedPubMedCentral Curtis K, Viswanath H, Velasquez KM, Molfese DL, Harding MJ, Aramayo E, Baldwin PR, Ambrosi E, Madan A, Patriquin M, Frueh BC, Fowler JC, Kosten TR, Nielsen DA, Salas R (2017) Increased habenular connectivity in opioid users is associated with an α5 subunit nicotinic receptor genetic variant. Am J Addict 26(7):751–759. https://​doi.​org/​10.​1111/​ajad.​12607 CrossRefPubMedPubMedCentral
go back to reference Díaz C, Puelles L (1992) Afferent connections of the habenular complex in the lizard Gallotia galloti. Brain Behav Evol 39(5):312–324PubMedCrossRef Díaz C, Puelles L (1992) Afferent connections of the habenular complex in the lizard Gallotia galloti. Brain Behav Evol 39(5):312–324PubMedCrossRef
go back to reference Dong HW, Swanson LW (2006) Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. J Comp Neurol 494(1):142–178PubMedPubMedCentralCrossRef Dong HW, Swanson LW (2006) Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. J Comp Neurol 494(1):142–178PubMedPubMedCentralCrossRef
go back to reference Drago T, O’Regan PW, Welaratne I, Rooney S, O’Callaghan A, Malkit M, Roman E, Levins KJ, Alexander L, Barry D, O'Hanlon E, O'Keane V, Roddy D (2018) A comprehensive regional neurochemical theory in depression: a protocol for the systematic review and meta-analysis of 1H-MRS studies in major depressive disorder. Syst Rev 7(1):158PubMedPubMedCentralCrossRef Drago T, O’Regan PW, Welaratne I, Rooney S, O’Callaghan A, Malkit M, Roman E, Levins KJ, Alexander L, Barry D, O'Hanlon E, O'Keane V, Roddy D (2018) A comprehensive regional neurochemical theory in depression: a protocol for the systematic review and meta-analysis of 1H-MRS studies in major depressive disorder. Syst Rev 7(1):158PubMedPubMedCentralCrossRef
go back to reference Durkin MM, Gunwaldsen CA, Borowsky B, Jones KA, Branchek TA (1999) An in situ hybridization study of the distribution of the GABAB2 protein mRNA in the rat CNS. Mol Brain Res 71(2):185–200PubMedCrossRef Durkin MM, Gunwaldsen CA, Borowsky B, Jones KA, Branchek TA (1999) An in situ hybridization study of the distribution of the GABAB2 protein mRNA in the rat CNS. Mol Brain Res 71(2):185–200PubMedCrossRef
go back to reference Ellison G (1994) Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Res Brain Res Rev 19(2):223–239PubMedCrossRef Ellison G (1994) Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Res Brain Res Rev 19(2):223–239PubMedCrossRef
go back to reference Ellison G (2002) Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry. Eur Neuropsychopharmacol 12(4):287–297PubMedCrossRef Ellison G (2002) Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry. Eur Neuropsychopharmacol 12(4):287–297PubMedCrossRef
go back to reference Faron-Górecka A, Kuśmider M, Kolasa M, Żurawek D, Szafran-Pilch K, Gruca P, Pabian P, Solich J, Papp M, Dziedzicka-Wasylewska M (2016) Chronic mild stress alters the somatostatin receptors in the rat brain. Psychopharmacology 233(2):255–266PubMedCrossRef Faron-Górecka A, Kuśmider M, Kolasa M, Żurawek D, Szafran-Pilch K, Gruca P, Pabian P, Solich J, Papp M, Dziedzicka-Wasylewska M (2016) Chronic mild stress alters the somatostatin receptors in the rat brain. Psychopharmacology 233(2):255–266PubMedCrossRef
go back to reference Faucette JR (1969) The olfactory bulb and medial hemisphere wall of the rat-fish. Chimaera J Comp Neurol 137(4):377–405PubMedCrossRef Faucette JR (1969) The olfactory bulb and medial hemisphere wall of the rat-fish. Chimaera J Comp Neurol 137(4):377–405PubMedCrossRef
go back to reference Felton TM, Linton L, Rosenblatt JS, Morell JI (1999) First and second order maternal behavior related afferents of the lateral habenula. NeuroReport 10(4):883–887PubMedCrossRef Felton TM, Linton L, Rosenblatt JS, Morell JI (1999) First and second order maternal behavior related afferents of the lateral habenula. NeuroReport 10(4):883–887PubMedCrossRef
go back to reference Filion M, Harnois C (1978) A comparison of projections of entopeduncular neurons to the thalamus, the midbrain and the habenula in the cat. J Comp Neurol 181(4):763–780PubMedCrossRef Filion M, Harnois C (1978) A comparison of projections of entopeduncular neurons to the thalamus, the midbrain and the habenula in the cat. J Comp Neurol 181(4):763–780PubMedCrossRef
go back to reference Folgueira M, Anadón R, Yáñez J (2004) Experimental study of the connections of the telencephalon in the rainbow trout (Oncorhynchus mykiss). II: dorsal area and preoptic region. J Comp Neurol 480(2):204–233PubMedCrossRef Folgueira M, Anadón R, Yáñez J (2004) Experimental study of the connections of the telencephalon in the rainbow trout (Oncorhynchus mykiss). II: dorsal area and preoptic region. J Comp Neurol 480(2):204–233PubMedCrossRef
go back to reference Funato H, Saito-Nakazato Y, Takahashi H (2000) Axonal growth from the habenular nucleus along the neuromere boundary region of the diencephalon is regulated by semaphorin 3F and netrin-1. Mol Cell Neurosci 16(3):206–220PubMedCrossRef Funato H, Saito-Nakazato Y, Takahashi H (2000) Axonal growth from the habenular nucleus along the neuromere boundary region of the diencephalon is regulated by semaphorin 3F and netrin-1. Mol Cell Neurosci 16(3):206–220PubMedCrossRef
go back to reference Gamble HJ (1952) An experimental study of the secondary olfactory connexions in Lacerta viridis. J Anat 86(2):180–196PubMedPubMedCentral Gamble HJ (1952) An experimental study of the secondary olfactory connexions in Lacerta viridis. J Anat 86(2):180–196PubMedPubMedCentral
go back to reference Garland JC, Mogenson GJ (1983) An electrophysiological study of convergence of entopeduncular and lateral preoptic inputs on lateral habenular neurons projecting to the midbrain. Brain Res 263(1):33–41PubMedCrossRef Garland JC, Mogenson GJ (1983) An electrophysiological study of convergence of entopeduncular and lateral preoptic inputs on lateral habenular neurons projecting to the midbrain. Brain Res 263(1):33–41PubMedCrossRef
go back to reference Genton C (1969) Study, using the Nauta technique, of degeneration after electrolytic lesion of the septal region in the wood mouse (Apodemus sylvaticus). Brain Res 14(1):1–23PubMedCrossRef Genton C (1969) Study, using the Nauta technique, of degeneration after electrolytic lesion of the septal region in the wood mouse (Apodemus sylvaticus). Brain Res 14(1):1–23PubMedCrossRef
go back to reference Goto M, Swanson LW, Canteras NS (2001) Connections of the nucleus incertus. J Comp Neurol 438(1):86–122PubMedCrossRef Goto M, Swanson LW, Canteras NS (2001) Connections of the nucleus incertus. J Comp Neurol 438(1):86–122PubMedCrossRef
go back to reference Gottesfeld Z (1983) Origin and distribution of noradrenergic innervation in the habenula: a neurochemical study. Brain Res 275(2):299–304PubMedCrossRef Gottesfeld Z (1983) Origin and distribution of noradrenergic innervation in the habenula: a neurochemical study. Brain Res 275(2):299–304PubMedCrossRef
go back to reference Gottesfeld Z, Jacobowitz DM (1979) Cholinergic projections from the septal-diagonal band area to the habenular nuclei. Brain Res 176(2):391–394PubMedCrossRef Gottesfeld Z, Jacobowitz DM (1979) Cholinergic projections from the septal-diagonal band area to the habenular nuclei. Brain Res 176(2):391–394PubMedCrossRef
go back to reference Gottesfeld Z, Massari VJ, Muth EA, Jacobowitz DM (1977) Stria medullaris: a possible pathway containing GABAergic afferents to the lateral habenula. Brain Res 130(1):184–189PubMedCrossRef Gottesfeld Z, Massari VJ, Muth EA, Jacobowitz DM (1977) Stria medullaris: a possible pathway containing GABAergic afferents to the lateral habenula. Brain Res 130(1):184–189PubMedCrossRef
go back to reference Greatrex RM, Phillipson OT (1982) Demonstration of synaptic input from prefrontal cortex to the habenula i the rat. Brain Res 238(1):192–197PubMedCrossRef Greatrex RM, Phillipson OT (1982) Demonstration of synaptic input from prefrontal cortex to the habenula i the rat. Brain Res 238(1):192–197PubMedCrossRef
go back to reference Groenewegen H, Berendse H, Haber S (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57(1):113–142PubMedCrossRef Groenewegen H, Berendse H, Haber S (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57(1):113–142PubMedCrossRef
go back to reference Gurdjian ES (1925) Olfactory connections in the albino rat, with special reference to the stria medullaris and the anterior commissure. JComp Neurol 38(2):127–163CrossRef Gurdjian ES (1925) Olfactory connections in the albino rat, with special reference to the stria medullaris and the anterior commissure. JComp Neurol 38(2):127–163CrossRef
go back to reference Gurdjian ES (1927) The diencephalon of the albino rat. Studies on the brain of the rat No. 2. J Comp Neurol 43(1):1–114CrossRef Gurdjian ES (1927) The diencephalon of the albino rat. Studies on the brain of the rat No. 2. J Comp Neurol 43(1):1–114CrossRef
go back to reference Haber S, Lynd-Balta E, Mitchell S (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329(1):111–128PubMedCrossRef Haber S, Lynd-Balta E, Mitchell S (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329(1):111–128PubMedCrossRef
go back to reference Hahn JD, Swanson LW (2010) Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 64(1):14–103PubMedPubMedCentralCrossRef Hahn JD, Swanson LW (2010) Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 64(1):14–103PubMedPubMedCentralCrossRef
go back to reference Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262(1):105–124PubMedCrossRef Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262(1):105–124PubMedCrossRef
go back to reference Halpern ME, Liang JO, Gamse JT (2003) Leaning to the left: laterality in the zebrafish forebrain. Trends Neurosci 26(6):308–313PubMedCrossRef Halpern ME, Liang JO, Gamse JT (2003) Leaning to the left: laterality in the zebrafish forebrain. Trends Neurosci 26(6):308–313PubMedCrossRef
go back to reference Hattori T, McGeer EG, Singh VK, McGeer PL (1977) Cholinergic synapse of the interpeduncular nucleus. Exp Neurol 55(3 PT 1):666–679PubMedCrossRef Hattori T, McGeer EG, Singh VK, McGeer PL (1977) Cholinergic synapse of the interpeduncular nucleus. Exp Neurol 55(3 PT 1):666–679PubMedCrossRef
go back to reference Hayakawa T, Seki M, Zyo K (1981) Studies on the efferent projections of the interpeduncular complex in cats. Okajimas Folia Anat Jpn 58(1):1–15PubMedCrossRef Hayakawa T, Seki M, Zyo K (1981) Studies on the efferent projections of the interpeduncular complex in cats. Okajimas Folia Anat Jpn 58(1):1–15PubMedCrossRef
go back to reference Hazrati L-N, Parent A (1991) Contralateral pallidothalamic and pallidotegmental projections in primates: an anterograde and retrograde labeling study. Brain Res 567(2):212–223PubMedCrossRef Hazrati L-N, Parent A (1991) Contralateral pallidothalamic and pallidotegmental projections in primates: an anterograde and retrograde labeling study. Brain Res 567(2):212–223PubMedCrossRef
go back to reference Hendricks M, Jesuthasan S (2007) Asymmetric innervation of the habenula in zebrafish. J Comp Neurol 502(4):611–619PubMedCrossRef Hendricks M, Jesuthasan S (2007) Asymmetric innervation of the habenula in zebrafish. J Comp Neurol 502(4):611–619PubMedCrossRef
go back to reference Herkenham M (1981) Anesthetics and the habenulo-interpeduncular system: selective sparing of metabolic activity. Brain Res 210(1–2):461–466PubMedCrossRef Herkenham M (1981) Anesthetics and the habenulo-interpeduncular system: selective sparing of metabolic activity. Brain Res 210(1–2):461–466PubMedCrossRef
go back to reference Herrick CJ (1948) The brain of the tiger salamander, Ambystoma tigrinum, vol VIII. University of Chicago Press, Chicago Herrick CJ (1948) The brain of the tiger salamander, Ambystoma tigrinum, vol VIII. University of Chicago Press, Chicago
go back to reference Hines M (1929) The brain of Ornithorhynchus anatinus. Philos Trans R Soc Lond Ser B Contain Pap Biol Character 217:155–287 Hines M (1929) The brain of Ornithorhynchus anatinus. Philos Trans R Soc Lond Ser B Contain Pap Biol Character 217:155–287
go back to reference Holstege G (2009) The mesopontine rostromedial tegmental nucleus and the emotional motor system: role in basic survival behavior. J Comp Neurol 513(6):559–565PubMedCrossRef Holstege G (2009) The mesopontine rostromedial tegmental nucleus and the emotional motor system: role in basic survival behavior. J Comp Neurol 513(6):559–565PubMedCrossRef
go back to reference Hoogland PV (1982) Brainstem afferents to the thalamus in a lizard, Varanus exanthematicus. J Comp Neurol 210(2):152–162PubMedCrossRef Hoogland PV (1982) Brainstem afferents to the thalamus in a lizard, Varanus exanthematicus. J Comp Neurol 210(2):152–162PubMedCrossRef
go back to reference Hsu Y-WA, Wang SD, Wang S, Morton G, Zariwala HA, Horacio O, Turner EE (2014) Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement. J Neurosci 34(34):11366–11384PubMedPubMedCentralCrossRef Hsu Y-WA, Wang SD, Wang S, Morton G, Zariwala HA, Horacio O, Turner EE (2014) Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement. J Neurosci 34(34):11366–11384PubMedPubMedCentralCrossRef
go back to reference Humphrey T (1936) The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertinent fiber connections. J Comp Neurol 65(1):603–711CrossRef Humphrey T (1936) The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertinent fiber connections. J Comp Neurol 65(1):603–711CrossRef
go back to reference Iwahori N (1977) A Golgi study on the habenular nucleus of the cat. J Comp Neurol 171(3):319–344CrossRef Iwahori N (1977) A Golgi study on the habenular nucleus of the cat. J Comp Neurol 171(3):319–344CrossRef
go back to reference Jacobowitz DM, Palkovits M (1974) Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon). J Comp Neurol 157(1):13–28PubMedCrossRef Jacobowitz DM, Palkovits M (1974) Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon). J Comp Neurol 157(1):13–28PubMedCrossRef
go back to reference Johnson TN (1965) An experimental study of the fornix and hypothalamo-tegmental tracts in the cat. J Comp Neurol 125(1):29–39PubMedCrossRef Johnson TN (1965) An experimental study of the fornix and hypothalamo-tegmental tracts in the cat. J Comp Neurol 125(1):29–39PubMedCrossRef
go back to reference Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier MJ, Barrot M (2009) Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 513(6):597–621PubMedCrossRef Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier MJ, Barrot M (2009) Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 513(6):597–621PubMedCrossRef
go back to reference Kawaja MD, Flumerfelt BA, Hrycyshyn AW (1990) Synaptic organization of septal projections in the rat medial habenula: a wheat germ agglutinin—horseradish peroxidase and immunohistochemical study. Synapse 6(1):45–54PubMedCrossRef Kawaja MD, Flumerfelt BA, Hrycyshyn AW (1990) Synaptic organization of septal projections in the rat medial habenula: a wheat germ agglutinin—horseradish peroxidase and immunohistochemical study. Synapse 6(1):45–54PubMedCrossRef
go back to reference Kemali M (1984) Morphological asymmetry of the habenulae of a macrosmatic mammal, the mole. Jahrbuch für Morphologie und mikroskopische Anatomie 2 Abteilung, Zeitschrift für mikroskopisch-anatomische Forschung 98 (6):951–954 Kemali M (1984) Morphological asymmetry of the habenulae of a macrosmatic mammal, the mole. Jahrbuch für Morphologie und mikroskopische Anatomie 2 Abteilung, Zeitschrift für mikroskopisch-anatomische Forschung 98 (6):951–954
go back to reference Kha HT, Finkelstein DI, Pow DV, Lawrence AJ, Horne MK (2000) Study of projections from the entopeduncular nucleus to the thalamus of the rat. J Comp Neurol 426(3):366–377PubMedCrossRef Kha HT, Finkelstein DI, Pow DV, Lawrence AJ, Horne MK (2000) Study of projections from the entopeduncular nucleus to the thalamus of the rat. J Comp Neurol 426(3):366–377PubMedCrossRef
go back to reference Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169(3):263–289PubMedCrossRef Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169(3):263–289PubMedCrossRef
go back to reference Kim U, Lee T (2012) Topography of descending projections from anterior insular and medial prefrontal regions to the lateral habenula of the epithalamus in the rat. Eur J Neurosci 35(8):1253–1269PubMedCrossRef Kim U, Lee T (2012) Topography of descending projections from anterior insular and medial prefrontal regions to the lateral habenula of the epithalamus in the rat. Eur J Neurosci 35(8):1253–1269PubMedCrossRef
go back to reference Kizer J, Palkovits M, Brownstein M (1976) The projections of the A8, A9 and A10 dopaminergic cell bodies: evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res 108(2):363–370PubMedCrossRef Kizer J, Palkovits M, Brownstein M (1976) The projections of the A8, A9 and A10 dopaminergic cell bodies: evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res 108(2):363–370PubMedCrossRef
go back to reference Klemm WR (2004) Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Med Sci Monit 10(11):261–273 Klemm WR (2004) Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Med Sci Monit 10(11):261–273
go back to reference Krug L, Wicht H, Northcutt RG (1993) Afferent and efferent connections of the thalamic eminence in the axolotl. Ambystoma Mex Neurosci Lett 149(2):145–148CrossRef Krug L, Wicht H, Northcutt RG (1993) Afferent and efferent connections of the thalamic eminence in the axolotl. Ambystoma Mex Neurosci Lett 149(2):145–148CrossRef
go back to reference Kusama T, Hagino N (1961) Medial forebrain bundle and stria medullaris thalami in rabbits. Psychiatry Clin Neurosci 15(3):229–245CrossRef Kusama T, Hagino N (1961) Medial forebrain bundle and stria medullaris thalami in rabbits. Psychiatry Clin Neurosci 15(3):229–245CrossRef
go back to reference Lai HM, Liu AKL, Ng HHM, Goldfinger MH, Chau TW, DeFelice J, Tilley BS, Wong WM, Wu W, Gentleman SM (2018) Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues. Nat Commun 9(1):1066PubMedPubMedCentralCrossRef Lai HM, Liu AKL, Ng HHM, Goldfinger MH, Chau TW, DeFelice J, Tilley BS, Wong WM, Wu W, Gentleman SM (2018) Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues. Nat Commun 9(1):1066PubMedPubMedCentralCrossRef
go back to reference Larsen KD, Sutin J (1978) Output organization of the feline entopeduncular and subthalamic nuclei. Brain Res 157(1):21–31PubMedCrossRef Larsen KD, Sutin J (1978) Output organization of the feline entopeduncular and subthalamic nuclei. Brain Res 157(1):21–31PubMedCrossRef
go back to reference Laursen AM (1955) An experimental study of pathways from the basal ganglia. J Comp Neurol 102(1):1–25PubMedCrossRef Laursen AM (1955) An experimental study of pathways from the basal ganglia. J Comp Neurol 102(1):1–25PubMedCrossRef
go back to reference Lee HW, Kim SH, Kim JY, Kim H (2019) The role of the medial habenula cholinergic system in addiction and emotion-associated behaviors. Front Psychiatry 10:100PubMedPubMedCentralCrossRef Lee HW, Kim SH, Kim JY, Kim H (2019) The role of the medial habenula cholinergic system in addiction and emotion-associated behaviors. Front Psychiatry 10:100PubMedPubMedCentralCrossRef
go back to reference Leonard CM, Scott JW (1971) Origin and distribution of the amygdalofugal pathways in the rat: an experimental neuronatomical study. J Comp Neurol 141(3):313–329PubMedCrossRef Leonard CM, Scott JW (1971) Origin and distribution of the amygdalofugal pathways in the rat: an experimental neuronatomical study. J Comp Neurol 141(3):313–329PubMedCrossRef
go back to reference Li YQ, Takada M, Shinonaga Y, Mizuno N (1993) The sites of origin of dopaminergic afferent fibers to the lateral habenular nucleus in the rat. J Comp Neurol 333(1):118–133PubMedCrossRef Li YQ, Takada M, Shinonaga Y, Mizuno N (1993) The sites of origin of dopaminergic afferent fibers to the lateral habenular nucleus in the rat. J Comp Neurol 333(1):118–133PubMedCrossRef
go back to reference Lima LB, Bueno D, Leite F, Souza S, Gonçalves L, Furigo IC, Donato J Jr, Metzger M (2017) Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei. J Comp Neurol 525(10):2411–2442PubMedCrossRef Lima LB, Bueno D, Leite F, Souza S, Gonçalves L, Furigo IC, Donato J Jr, Metzger M (2017) Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei. J Comp Neurol 525(10):2411–2442PubMedCrossRef
go back to reference Lindvall O, Björklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl 412:1–48PubMed Lindvall O, Björklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl 412:1–48PubMed
go back to reference Loo YT (1931) The forebrain of the opossum, Didelphis virginiana.Part II. Histology. J Comp Neurol 52(1):1–148CrossRef Loo YT (1931) The forebrain of the opossum, Didelphis virginiana.Part II. Histology. J Comp Neurol 52(1):1–148CrossRef
go back to reference Maldonado M, Molfese DL, Viswanath H, Curtis K, Jones A, Hayes TG, Marcelli M, Mediwala S, Baldwin P, Garcia JM (2018) The habenula as a novel link between the homeostatic and hedonic pathways in cancer-associated weight loss: a pilot study. J Cachexia Sarcopenia Muscle 9(3):497–504PubMedPubMedCentralCrossRef Maldonado M, Molfese DL, Viswanath H, Curtis K, Jones A, Hayes TG, Marcelli M, Mediwala S, Baldwin P, Garcia JM (2018) The habenula as a novel link between the homeostatic and hedonic pathways in cancer-associated weight loss: a pilot study. J Cachexia Sarcopenia Muscle 9(3):497–504PubMedPubMedCentralCrossRef
go back to reference Marburg O (1944) The structure and fiber connections of the human habenula. J Comp Neurol 80(2):211–233CrossRef Marburg O (1944) The structure and fiber connections of the human habenula. J Comp Neurol 80(2):211–233CrossRef
go back to reference Massopust LC Jr, Thompson R (1962) A new interpedunculo-diencephalic pathway in rats and cats. J Comp Neurol 118(1):97–105PubMedCrossRef Massopust LC Jr, Thompson R (1962) A new interpedunculo-diencephalic pathway in rats and cats. J Comp Neurol 118(1):97–105PubMedCrossRef
go back to reference McBride RL (1981) Organization of afferent connections of the feline lateral habenular nucleus. J Comp Neurol 198(1):89–99PubMedCrossRef McBride RL (1981) Organization of afferent connections of the feline lateral habenular nucleus. J Comp Neurol 198(1):89–99PubMedCrossRef
go back to reference Meibach RC, Siegel A (1977) Efferent connections of the septal area in the rat: an analysis utilizing retrograde and anterograde transport methods. Brain Res 119(1):1–20PubMedCrossRef Meibach RC, Siegel A (1977) Efferent connections of the septal area in the rat: an analysis utilizing retrograde and anterograde transport methods. Brain Res 119(1):1–20PubMedCrossRef
go back to reference Meynert T (1872) Vom Gehirn der Säugetiere. In: Stricker S, Handbuch der Lehre von den Geweben der Menschen und Tiere, vol 2. Engelmann, Leipzig Meynert T (1872) Vom Gehirn der Säugetiere. In: Stricker S, Handbuch der Lehre von den Geweben der Menschen und Tiere, vol 2. Engelmann, Leipzig
go back to reference Millhouse OE (1969) A Golgi study of the descending medial forebrain bundle. Brain Res 15(2):341–363PubMedCrossRef Millhouse OE (1969) A Golgi study of the descending medial forebrain bundle. Brain Res 15(2):341–363PubMedCrossRef
go back to reference Mitchell R (1963) Connections of the habenula and of the interpeduncular nucleus in the cat. J Comp Neurol 121(3):441–457PubMedCrossRef Mitchell R (1963) Connections of the habenula and of the interpeduncular nucleus in the cat. J Comp Neurol 121(3):441–457PubMedCrossRef
go back to reference Mizuno N, Clemente CD, Sauerland EK (1969) Fiber projections from rostral basal forebrain structures in the cat. Exp Neurol 25(2):220–237PubMedCrossRef Mizuno N, Clemente CD, Sauerland EK (1969) Fiber projections from rostral basal forebrain structures in the cat. Exp Neurol 25(2):220–237PubMedCrossRef
go back to reference Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180(3):417–438PubMedCrossRef Moore RY, Halaris AE, Jones BE (1978) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180(3):417–438PubMedCrossRef
go back to reference Moreno-Bravo JA, Martinez-Lopez JE, Madrigal MP, Kim M, Mastick GS, Lopez-Bendito G, Martinez S, Puelles E (2016) Developmental guidance of the retroflex tract at its bending point involves Robo1-Slit2-mediated floor plate repulsion. Brain Struct Funct 221(1):665–678PubMedCrossRef Moreno-Bravo JA, Martinez-Lopez JE, Madrigal MP, Kim M, Mastick GS, Lopez-Bendito G, Martinez S, Puelles E (2016) Developmental guidance of the retroflex tract at its bending point involves Robo1-Slit2-mediated floor plate repulsion. Brain Struct Funct 221(1):665–678PubMedCrossRef
go back to reference Moriizumi T, Hattori T (1992) Choline acetyltransferase-immunoreactive neurons in the rat entopeduncular nucleus. Neuroscience 46(3):721–728PubMedCrossRef Moriizumi T, Hattori T (1992) Choline acetyltransferase-immunoreactive neurons in the rat entopeduncular nucleus. Neuroscience 46(3):721–728PubMedCrossRef
go back to reference Morin F (1950) An experimental study of hypothalamic connections in the guinea pig. J Comp Neurol 92(2):193–213PubMedCrossRef Morin F (1950) An experimental study of hypothalamic connections in the guinea pig. J Comp Neurol 92(2):193–213PubMedCrossRef
go back to reference Morin L, Meyer-Bernstein E (1999) The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience 91(1):81–105PubMedCrossRef Morin L, Meyer-Bernstein E (1999) The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience 91(1):81–105PubMedCrossRef
go back to reference Muller F, O'Rahilly R (1990) The human brain at stages 18–20, including the choroid plexuses and the amygdaloid and septal nuclei. Anat Embryol (Berl) 182(3):285–306CrossRef Muller F, O'Rahilly R (1990) The human brain at stages 18–20, including the choroid plexuses and the amygdaloid and septal nuclei. Anat Embryol (Berl) 182(3):285–306CrossRef
go back to reference Muller F, O'Rahilly R (1997) The timing and sequence of appearance of neuromeres and their derivatives in staged human embryos. Acta Anat (Basel) 158(2):83–99CrossRef Muller F, O'Rahilly R (1997) The timing and sequence of appearance of neuromeres and their derivatives in staged human embryos. Acta Anat (Basel) 158(2):83–99CrossRef
go back to reference Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2016) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct Funct 221(1):535–561PubMedCrossRef Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2016) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct Funct 221(1):535–561PubMedCrossRef
go back to reference Nagy J, Carter D, Lehmann J, Fibiger H (1978) Evidence for a GABA-containing projection from the entopeduncular nucleus to the lateral habenula in the rat. Brain Res 145(2):360–364PubMedCrossRef Nagy J, Carter D, Lehmann J, Fibiger H (1978) Evidence for a GABA-containing projection from the entopeduncular nucleus to the lateral habenula in the rat. Brain Res 145(2):360–364PubMedCrossRef
go back to reference Naidich TP, Duvernoy HM (2009) Duvernoy's atlas of the human brain stem and cerebellum: high-field MRI : surface anatomy, internal structure, vascularization and 3D sectional anatomy. Springer, Wien Naidich TP, Duvernoy HM (2009) Duvernoy's atlas of the human brain stem and cerebellum: high-field MRI : surface anatomy, internal structure, vascularization and 3D sectional anatomy. Springer, Wien
go back to reference Nauta WJ (1956) An experimental study of the fornix system in the rat. J Comp Neurol 104(2):247–271PubMedCrossRef Nauta WJ (1956) An experimental study of the fornix system in the rat. J Comp Neurol 104(2):247–271PubMedCrossRef
go back to reference Nauta WJ, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1(1):3–42PubMedCrossRef Nauta WJ, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1(1):3–42PubMedCrossRef
go back to reference Nauta WJH (1958) Hippocampal projections and related neural pathways to the mid-brain in the cat. Brain 81(3):319–340PubMedCrossRef Nauta WJH (1958) Hippocampal projections and related neural pathways to the mid-brain in the cat. Brain 81(3):319–340PubMedCrossRef
go back to reference Nishikawa T, Fage D, Scatton B (1986) Evidence for, and nature of, the tonic inhibitory influence of habenulointerpeduncular pathways upon cerebral dopaminergic transmission in the rat. Brain Res 373(1–2):324–336PubMedCrossRef Nishikawa T, Fage D, Scatton B (1986) Evidence for, and nature of, the tonic inhibitory influence of habenulointerpeduncular pathways upon cerebral dopaminergic transmission in the rat. Brain Res 373(1–2):324–336PubMedCrossRef
go back to reference Nolte J (2002) The human brain: an introduction to its functional anatomy. 5th ed. edn. Mosby, St. Louis, Mo.; London Nolte J (2002) The human brain: an introduction to its functional anatomy. 5th ed. edn. Mosby, St. Louis, Mo.; London
go back to reference Olucha-Bordonau FE, Teruel V, Barcia-González J, Ruiz-Torner A, Valverde-Navarro AA, Martínez-Soriano F (2003) Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 464(1):62–97PubMedCrossRef Olucha-Bordonau FE, Teruel V, Barcia-González J, Ruiz-Torner A, Valverde-Navarro AA, Martínez-Soriano F (2003) Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol 464(1):62–97PubMedCrossRef
go back to reference Parent A (1979) Identification of the pallidal and peripallidal cells projecting to the habenula in monkey. Neurosci Lett 15(2–3):159–164PubMedCrossRef Parent A (1979) Identification of the pallidal and peripallidal cells projecting to the habenula in monkey. Neurosci Lett 15(2–3):159–164PubMedCrossRef
go back to reference Parent A, Gravel S, Boucher R (1981) The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res Bull 6(1):23–38PubMedCrossRef Parent A, Gravel S, Boucher R (1981) The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res Bull 6(1):23–38PubMedCrossRef
go back to reference Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439(2):162–175PubMedCrossRef Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439(2):162–175PubMedCrossRef
go back to reference Parent MC (2013) Handling item-level missing data: simpler is just as good. Couns Psychol 41(4):568–600CrossRef Parent MC (2013) Handling item-level missing data: simpler is just as good. Couns Psychol 41(4):568–600CrossRef
go back to reference Patestas MA, Gartner LP (2016) A textbook of neuroanatomy. Wiley, Hoboken Patestas MA, Gartner LP (2016) A textbook of neuroanatomy. Wiley, Hoboken
go back to reference Phillipson O, Griffith A (1980) The neurones of origin for the mesohabenular dopamine pathway. Brain Res 197(1):213–218PubMedCrossRef Phillipson O, Griffith A (1980) The neurones of origin for the mesohabenular dopamine pathway. Brain Res 197(1):213–218PubMedCrossRef
go back to reference Phillipson O, Pycock C (1982) Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula. Exp Brain Res 45(1–2):89–94PubMed Phillipson O, Pycock C (1982) Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula. Exp Brain Res 45(1–2):89–94PubMed
go back to reference Pierce ET, Foote WE, Hobson JA (1976) The efferent connection of the nucleus raphe dorsalis. Brain Res 107(1):137–144PubMedCrossRef Pierce ET, Foote WE, Hobson JA (1976) The efferent connection of the nucleus raphe dorsalis. Brain Res 107(1):137–144PubMedCrossRef
go back to reference Powell EW (1963) Septal efferents revealed by axonal degeneration in the rat. Exp Neurol 8(5):406–422CrossRef Powell EW (1963) Septal efferents revealed by axonal degeneration in the rat. Exp Neurol 8(5):406–422CrossRef
go back to reference Powell EW (1968) Septohabenular connections in the rat, cat and monkey. J Comp Neurol 134(2):145–150PubMedCrossRef Powell EW (1968) Septohabenular connections in the rat, cat and monkey. J Comp Neurol 134(2):145–150PubMedCrossRef
go back to reference Price JL, Powell T (1970) The afferent connexions of the nucleus of the horizontal limb of the diagonal band. J Anat 107(Pt 2):239PubMedPubMedCentral Price JL, Powell T (1970) The afferent connexions of the nucleus of the horizontal limb of the diagonal band. J Anat 107(Pt 2):239PubMedPubMedCentral
go back to reference Qin C, Luo M (2009) Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience 161(3):827–837PubMedCrossRef Qin C, Luo M (2009) Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience 161(3):827–837PubMedCrossRef
go back to reference Ramon y Cajal S (1911) Histologie du syste me nerveux de I'Homme et des verte be s. Maloine (Paris) 2:891–942 Ramon y Cajal S (1911) Histologie du syste me nerveux de I'Homme et des verte be s. Maloine (Paris) 2:891–942
go back to reference Ranson S, Ranson M (1941) Fiber connections of corpus striatum as seen in Marchi preparations. Arch Neurol Psychiatry 46(2):230–249CrossRef Ranson S, Ranson M (1941) Fiber connections of corpus striatum as seen in Marchi preparations. Arch Neurol Psychiatry 46(2):230–249CrossRef
go back to reference Rausch LJ, Long CJ (1971) Habenular nuclei: a crucial link between the olfactory and motor systems. Brain Res 29(1):146–150PubMedCrossRef Rausch LJ, Long CJ (1971) Habenular nuclei: a crucial link between the olfactory and motor systems. Brain Res 29(1):146–150PubMedCrossRef
go back to reference Rioch DM (1931) Studies on the diencephalon of Carnivora. Part III. Certain myelinated-fiber connections of the diencephalon of the dog (Canis familiaris), cat (Felis domestica), and aevisa (Crossarchus obscurus). J Comp Neurol 53(2):319–388CrossRef Rioch DM (1931) Studies on the diencephalon of Carnivora. Part III. Certain myelinated-fiber connections of the diencephalon of the dog (Canis familiaris), cat (Felis domestica), and aevisa (Crossarchus obscurus). J Comp Neurol 53(2):319–388CrossRef
go back to reference Risold P, Canteras N, Swanson L (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348(1):1–40PubMedCrossRef Risold P, Canteras N, Swanson L (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348(1):1–40PubMedCrossRef
go back to reference Risold P, Swanson L (1995) Cajal's nucleus of the stria medullaris: characterization by in situ hybridization and immunohistochemistry for enkephalin. J Chem Neuroanat 9(4):235–240PubMedCrossRef Risold P, Swanson L (1995) Cajal's nucleus of the stria medullaris: characterization by in situ hybridization and immunohistochemistry for enkephalin. J Chem Neuroanat 9(4):235–240PubMedCrossRef
go back to reference Risold P, Swanson L (1997) Connections of the rat lateral septal complex. Brain Res Rev 24(2–3):115–195PubMedCrossRef Risold P, Swanson L (1997) Connections of the rat lateral septal complex. Brain Res Rev 24(2–3):115–195PubMedCrossRef
go back to reference Saper C, Swanson L, Cowan W (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol 183(4):689–706PubMedCrossRef Saper C, Swanson L, Cowan W (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol 183(4):689–706PubMedCrossRef
go back to reference Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. In: Biol Psychiatry, vol 67. vol 2. United States, pp e9-e11. 10.1016/j.biopsych.2009.08.027 Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. In: Biol Psychiatry, vol 67. vol 2. United States, pp e9-e11. 10.1016/j.biopsych.2009.08.027
go back to reference Schmidt ER, Pasterkamp RJ (2017) The molecular mechanisms controlling morphogenesis and wiring of the habenula. Pharmacol Biochem Behav 162:29–37PubMedCrossRef Schmidt ER, Pasterkamp RJ (2017) The molecular mechanisms controlling morphogenesis and wiring of the habenula. Pharmacol Biochem Behav 162:29–37PubMedCrossRef
go back to reference Schmidt FM, Schindler S, Adamidis M, Strauss M, Trankner A, Trampel R, Walter M, Hegerl U, Turner R, Geyer S, Schonknecht P (2017) Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI. Eur Arch Psychiatry Clin Neurosci 267(2):107–115. https://doi.org/10.1007/s00406-016-0675-8 CrossRefPubMed Schmidt FM, Schindler S, Adamidis M, Strauss M, Trankner A, Trampel R, Walter M, Hegerl U, Turner R, Geyer S, Schonknecht P (2017) Habenula volume increases with disease severity in unmedicated major depressive disorder as revealed by 7T MRI. Eur Arch Psychiatry Clin Neurosci 267(2):107–115. https://​doi.​org/​10.​1007/​s00406-016-0675-8 CrossRefPubMed
go back to reference Schmued LC (1994) Diagonal ventral forebrain continuum has overlapping telencephalic inputs and brainstem outputs which may represent loci for limbic/autonomic integration. Brain Res 667(2):175–191PubMedCrossRef Schmued LC (1994) Diagonal ventral forebrain continuum has overlapping telencephalic inputs and brainstem outputs which may represent loci for limbic/autonomic integration. Brain Res 667(2):175–191PubMedCrossRef
go back to reference Schmued LC (2016) Development and application of novel histochemical tracers for localizing brain connectivity and pathology. Brain Res 1645:31–35PubMedCrossRef Schmued LC (2016) Development and application of novel histochemical tracers for localizing brain connectivity and pathology. Brain Res 1645:31–35PubMedCrossRef
go back to reference Sheffield EB, Quick MW, Lester RA (2000) Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons. Neuropharmacology 39(13):2591–2603PubMedCrossRef Sheffield EB, Quick MW, Lester RA (2000) Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons. Neuropharmacology 39(13):2591–2603PubMedCrossRef
go back to reference Shepard PD, Holcomb HH, Gold JM (2006) Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes. Schizophr Bull 32(3):417–421PubMedPubMedCentralCrossRef Shepard PD, Holcomb HH, Gold JM (2006) Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes. Schizophr Bull 32(3):417–421PubMedPubMedCentralCrossRef
go back to reference Shinoda K, Tohyama M (1987) Analysis of the habenulopetal enkephalinergic system in the rat brain: an immunohistochemical study. J Comp Neurol 255(4):483–496PubMedCrossRef Shinoda K, Tohyama M (1987) Analysis of the habenulopetal enkephalinergic system in the rat brain: an immunohistochemical study. J Comp Neurol 255(4):483–496PubMedCrossRef
go back to reference Sim LJ, Joseph SA (1991) Arcuate nucleus projections to brainstem regions which modulate nociception. J Chem Neuroanat 4(2):97–109PubMedCrossRef Sim LJ, Joseph SA (1991) Arcuate nucleus projections to brainstem regions which modulate nociception. J Chem Neuroanat 4(2):97–109PubMedCrossRef
go back to reference Simon H, Le Moal M, Calas A (1979) Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H] leucine and horseradish peroxidase. Brain Res 178(1):17–40PubMedCrossRef Simon H, Le Moal M, Calas A (1979) Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H] leucine and horseradish peroxidase. Brain Res 178(1):17–40PubMedCrossRef
go back to reference Skagerberg G, Lindvall O, Bjo A (1984) Origin, course and termination of the mesohabenular dopamine pathway in the rat. Brain Res 307(1–2):99–108PubMedCrossRef Skagerberg G, Lindvall O, Bjo A (1984) Origin, course and termination of the mesohabenular dopamine pathway in the rat. Brain Res 307(1–2):99–108PubMedCrossRef
go back to reference Smaha LA, Kaelber WW (1973) Efferent fiber projections of the habenula and the interpeduncular nucleus. An experimental study in the opossum and cat. Exp Brain Res 16(3):291–308PubMedCrossRef Smaha LA, Kaelber WW (1973) Efferent fiber projections of the habenula and the interpeduncular nucleus. An experimental study in the opossum and cat. Exp Brain Res 16(3):291–308PubMedCrossRef
go back to reference Sofroniew M, Weindl A, Schrell U, Wetzstein R (1981) Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brain. Acta Histochemica Supplementband 24:79–95PubMed Sofroniew M, Weindl A, Schrell U, Wetzstein R (1981) Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brain. Acta Histochemica Supplementband 24:79–95PubMed
go back to reference Staines W, Yamamoto T, Dewar K, Daddona P, Geiger J, Nagy J (1988) Distribution, morphology and habenular projections of adenosine deaminase-containing neurons in the septal area of rat. Brain Res 455(1):72–87PubMedCrossRef Staines W, Yamamoto T, Dewar K, Daddona P, Geiger J, Nagy J (1988) Distribution, morphology and habenular projections of adenosine deaminase-containing neurons in the septal area of rat. Brain Res 455(1):72–87PubMedCrossRef
go back to reference Sutherland RJ (1982) The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 6(1):1–13PubMedCrossRef Sutherland RJ (1982) The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 6(1):1–13PubMedCrossRef
go back to reference Swanson L (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1–6):321–353PubMedCrossRef Swanson L (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1–6):321–353PubMedCrossRef
go back to reference Takishita N, Kubo H, Mitani A, Nakamura Y, Masuda S, Iwahashi K, Kataoka K (1990) Differential effects of fasciculus retroflexus lesions on serotonin, glutamate and gamma-aminobutyrate content and choline acetyltransferase activity in the interpeduncular nucleus. Brain Res Bull 25(4):569–574PubMedCrossRef Takishita N, Kubo H, Mitani A, Nakamura Y, Masuda S, Iwahashi K, Kataoka K (1990) Differential effects of fasciculus retroflexus lesions on serotonin, glutamate and gamma-aminobutyrate content and choline acetyltransferase activity in the interpeduncular nucleus. Brain Res Bull 25(4):569–574PubMedCrossRef
go back to reference Tardif E, Clarke S (2001) Intrinsic connectivity of human auditory areas: a tracing study with DiI. Eur J Neurosci 13(5):1045–1050PubMedCrossRef Tardif E, Clarke S (2001) Intrinsic connectivity of human auditory areas: a tracing study with DiI. Eur J Neurosci 13(5):1045–1050PubMedCrossRef
go back to reference Tarin P (1750)Adversaria Anatomica. De omnibus corporis humani partium, tum descriptionibus, cum picturis. Adversaria anatomica prima, nervorum et organorum functionibus animalibus inserventium, descriptionibus et iconismis. Parisiis, Paris Tarin P (1750)Adversaria Anatomica. De omnibus corporis humani partium, tum descriptionibus, cum picturis. Adversaria anatomica prima, nervorum et organorum functionibus animalibus inserventium, descriptionibus et iconismis. Parisiis, Paris
go back to reference Tripathi A, Prensa L, Mengual E (2013) Axonal branching patterns of ventral pallidal neurons in the rat. Brain Struct Funct 218(5):1133–1157PubMedCrossRef Tripathi A, Prensa L, Mengual E (2013) Axonal branching patterns of ventral pallidal neurons in the rat. Brain Struct Funct 218(5):1133–1157PubMedCrossRef
go back to reference Troiano R, Siegel A (1975) The ascending and descending connections of the hypothalamus in the cat. Exp Neurol 49(1):161–173PubMedCrossRef Troiano R, Siegel A (1975) The ascending and descending connections of the hypothalamus in the cat. Exp Neurol 49(1):161–173PubMedCrossRef
go back to reference Troiano R, Siegel A (1978a) Efferent connections of the basal forebrain in the cat: the nucleus accumbens. Exp Neurol 61(1):185–197PubMedCrossRef Troiano R, Siegel A (1978a) Efferent connections of the basal forebrain in the cat: the nucleus accumbens. Exp Neurol 61(1):185–197PubMedCrossRef
go back to reference Troiano R, Siegel A (1978b) Efferent connections of the basal forebrain in the cat: the substantia innominata. Exp Neurol 61(1):198–213PubMedCrossRef Troiano R, Siegel A (1978b) Efferent connections of the basal forebrain in the cat: the substantia innominata. Exp Neurol 61(1):198–213PubMedCrossRef
go back to reference Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23(10):4308–4314PubMedPubMedCentralCrossRef Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23(10):4308–4314PubMedPubMedCentralCrossRef
go back to reference Valenstein ES, Nauta WJ (1959) A comparison of the distribution of the fornix system in the rat, guinea pig, cat, and monkey. J Comp Neurol 113(3):337–363PubMedCrossRef Valenstein ES, Nauta WJ (1959) A comparison of the distribution of the fornix system in the rat, guinea pig, cat, and monkey. J Comp Neurol 113(3):337–363PubMedCrossRef
go back to reference Van Der Kooy D, Carter DA (1981) The organization of the efferent projections and striatal afferents of the entopeduncular nucleus and adjacent areas in the rat. Brain Res 211(1):15–36PubMedCrossRef Van Der Kooy D, Carter DA (1981) The organization of the efferent projections and striatal afferents of the entopeduncular nucleus and adjacent areas in the rat. Brain Res 211(1):15–36PubMedCrossRef
go back to reference Van Gehuchten AJLC (1894) Contribution à l'étude du Système nerveux des téléostéens 10:255–295 Van Gehuchten AJLC (1894) Contribution à l'étude du Système nerveux des téléostéens 10:255–295
go back to reference Varga V, Kocsis B, Sharp T (2003) Electrophysiological evidence for convergence of inputs from the medial prefrontal cortex and lateral habenula on single neurons in the dorsal raphe nucleus. Eur J Neurosci 17(2):280–286PubMedCrossRef Varga V, Kocsis B, Sharp T (2003) Electrophysiological evidence for convergence of inputs from the medial prefrontal cortex and lateral habenula on single neurons in the dorsal raphe nucleus. Eur J Neurosci 17(2):280–286PubMedCrossRef
go back to reference Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 442(2):163–187PubMedCrossRef Vertes RP (2002) Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 442(2):163–187PubMedCrossRef
go back to reference Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58PubMedCrossRef Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58PubMedCrossRef
go back to reference Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. Journal of Comparative Neurology 407(4):555–582PubMedCrossRef Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. Journal of Comparative Neurology 407(4):555–582PubMedCrossRef
go back to reference Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275(4):511–541PubMedCrossRef Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275(4):511–541PubMedCrossRef
go back to reference Vesalius A (1543) Andreae Vesalii de humani corporis fabrica libri septem. ex officina Joannis Oporini, Basileæ Vesalius A (1543) Andreae Vesalii de humani corporis fabrica libri septem. ex officina Joannis Oporini, Basileæ
go back to reference Vincent S, Kimura H, McGeer E (1982) A histochemical study of GABA-transaminase in the efferents of the pallidum. Brain Res 241(1):162–165PubMedCrossRef Vincent S, Kimura H, McGeer E (1982) A histochemical study of GABA-transaminase in the efferents of the pallidum. Brain Res 241(1):162–165PubMedCrossRef
go back to reference Vincent SR, Brown JC (1986) Somatostatin immunoreactivity in the entopeduncular projection to the lateral habenula in the rat. Neurosci Lett 68(2):160–164PubMedCrossRef Vincent SR, Brown JC (1986) Somatostatin immunoreactivity in the entopeduncular projection to the lateral habenula in the rat. Neurosci Lett 68(2):160–164PubMedCrossRef
go back to reference Von Bartheld C, Cunningham D, Rubel E (1990) Neuronal tracing with DiI: decalcification, cryosectioning, and photoconversion for light and electron microscopic analysis. J Histochem Cytochem 38(5):725–733CrossRef Von Bartheld C, Cunningham D, Rubel E (1990) Neuronal tracing with DiI: decalcification, cryosectioning, and photoconversion for light and electron microscopic analysis. J Histochem Cytochem 38(5):725–733CrossRef
go back to reference von Bartheld CS, Meyer DL (1990) Paraventricular organ of the lungfish Protopterus dolloi: morphology and projections of CSF-contacting neurons. J Comp Neurol 297(3):410–434CrossRef von Bartheld CS, Meyer DL (1990) Paraventricular organ of the lungfish Protopterus dolloi: morphology and projections of CSF-contacting neurons. J Comp Neurol 297(3):410–434CrossRef
go back to reference von Soemmerring ST (1791) Abbildungen und Beschreibungen einiger Missgeburten die sich ehemals auf dem anatomischen Theater zu Cassel befanden. Universitätsbuchhandlung, Mainz von Soemmerring ST (1791) Abbildungen und Beschreibungen einiger Missgeburten die sich ehemals auf dem anatomischen Theater zu Cassel befanden. Universitätsbuchhandlung, Mainz
go back to reference Wallace ML, Saunders A, Huang KW, Philson AC, Goldman M, Macosko EZ, McCarroll SA, Sabatini BL (2017) Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia. Neuron 94(1):138–152. e135PubMedPubMedCentralCrossRef Wallace ML, Saunders A, Huang KW, Philson AC, Goldman M, Macosko EZ, McCarroll SA, Sabatini BL (2017) Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia. Neuron 94(1):138–152. e135PubMedPubMedCentralCrossRef
go back to reference Wang D-G, Gong N, Luo B, Xu T-L (2006) Absence of GABA type A signaling in adult medial habenular neurons. Neuroscience 141(1):133–141PubMedCrossRef Wang D-G, Gong N, Luo B, Xu T-L (2006) Absence of GABA type A signaling in adult medial habenular neurons. Neuroscience 141(1):133–141PubMedCrossRef
go back to reference Watson C, Paxinos G (1986) The rat brain in stereotaxic coordinates. Academic press, San Diego Watson C, Paxinos G (1986) The rat brain in stereotaxic coordinates. Academic press, San Diego
go back to reference Weller KL, Smith DA (1982) Afferent connections to the bed nucleus of the stria terminalis. Brain Res 232(2):255–270PubMedCrossRef Weller KL, Smith DA (1982) Afferent connections to the bed nucleus of the stria terminalis. Brain Res 232(2):255–270PubMedCrossRef
go back to reference Wenzel JaW, Wenzel C (1812) penitiori structura cerebri hominis et brutorum. Tubingae Wenzel JaW, Wenzel C (1812) penitiori structura cerebri hominis et brutorum. Tubingae
go back to reference Wree A, Zilles K, Schleicher A (1981) Growth of fresh volumes and spontaneous cell death in the nuclei habenulae of albino rats during ontogenesis. Anat Embryol 161(4):419–431PubMedCrossRef Wree A, Zilles K, Schleicher A (1981) Growth of fresh volumes and spontaneous cell death in the nuclei habenulae of albino rats during ontogenesis. Anat Embryol 161(4):419–431PubMedCrossRef
go back to reference Yamadori T (1969) Efferent fibers of the habenula and stria medullaris thalami in rats. Exp Neurol 25(4):541–558PubMedCrossRef Yamadori T (1969) Efferent fibers of the habenula and stria medullaris thalami in rats. Exp Neurol 25(4):541–558PubMedCrossRef
go back to reference Yamaguchi K, Goto N (2008) Development of the human parvocellular red nucleus. Dev Neurosci 30(5):325–330PubMedCrossRef Yamaguchi K, Goto N (2008) Development of the human parvocellular red nucleus. Dev Neurosci 30(5):325–330PubMedCrossRef
go back to reference Yañez J, Anadon R (1994) Afferent and efferent connections of the habenula in the larval sea lamprey (Petromyzon marinus L): an experimental study. J Comp Neurol 345(1):148–160PubMedCrossRef Yañez J, Anadon R (1994) Afferent and efferent connections of the habenula in the larval sea lamprey (Petromyzon marinus L): an experimental study. J Comp Neurol 345(1):148–160PubMedCrossRef
go back to reference Yañez J, Anadón R (1996) Afferent and efferent connections of the habenula in the rainbow trout (Oncorhynchus mykiss): an indocarbocyanine dye (DiI) study. J Comp Neurol 372(4):529–543PubMedCrossRef Yañez J, Anadón R (1996) Afferent and efferent connections of the habenula in the rainbow trout (Oncorhynchus mykiss): an indocarbocyanine dye (DiI) study. J Comp Neurol 372(4):529–543PubMedCrossRef
go back to reference Yang N, Anapindi KD, Rubakhin SS, Wei P, Yu Q, Li L, Kenny PJ, Sweedler JV (2018) Neuropeptidomics of the rat habenular nuclei. J Proteome Res 17(4):1463–1473PubMedPubMedCentralCrossRef Yang N, Anapindi KD, Rubakhin SS, Wei P, Yu Q, Li L, Kenny PJ, Sweedler JV (2018) Neuropeptidomics of the rat habenular nuclei. J Proteome Res 17(4):1463–1473PubMedPubMedCentralCrossRef
go back to reference Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS (2015) Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J Comp Neurol 523(16):2426–2456PubMedPubMedCentralCrossRef Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS (2015) Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J Comp Neurol 523(16):2426–2456PubMedPubMedCentralCrossRef
go back to reference Young MW (1936) The nuclear pattern and fiber connections of the non-cortical centers of the telencephalon of the rabbit (Lepus cuniculus). J Comp Neurol 65(1):295–401CrossRef Young MW (1936) The nuclear pattern and fiber connections of the non-cortical centers of the telencephalon of the rabbit (Lepus cuniculus). J Comp Neurol 65(1):295–401CrossRef
go back to reference Zahm DS, Williams E, Wohltmann C (1996) Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain. J Comp Neurol 364(2):340–362PubMedCrossRef Zahm DS, Williams E, Wohltmann C (1996) Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain. J Comp Neurol 364(2):340–362PubMedCrossRef
go back to reference Zhao-Shea R, Liu L, Pang X, Gardner PD, Tapper AR (2013) Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms. Curr Biol 23(23):2327–2335PubMedCrossRef Zhao-Shea R, Liu L, Pang X, Gardner PD, Tapper AR (2013) Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms. Curr Biol 23(23):2327–2335PubMedCrossRef
go back to reference Zilles K, Schleicher A, Wingert F (1976) Quantitative growth analysis of limbic nuclei areas fresh volume in diencephalon and mesencephalon of an albino mouse ontogenic series III Nucleus interpe-uncularis. J fur Hirnforschung 17(1):21–29 Zilles K, Schleicher A, Wingert F (1976) Quantitative growth analysis of limbic nuclei areas fresh volume in diencephalon and mesencephalon of an albino mouse ontogenic series III Nucleus interpe-uncularis. J fur Hirnforschung 17(1):21–29
go back to reference Zyo K (1963) Experimental studies on the medial forebrain bundle, medial longitudinal fasciculus and supraoptic decussations in the rabbit. Med J Osaka Univ 13(2):193–239PubMed Zyo K (1963) Experimental studies on the medial forebrain bundle, medial longitudinal fasciculus and supraoptic decussations in the rabbit. Med J Osaka Univ 13(2):193–239PubMed
Metadata
Title
Untangling the dorsal diencephalic conduction system: a review of structure and function of the stria medullaris, habenula and fasciculus retroflexus
Authors
Elena Roman
Joshua Weininger
Basil Lim
Marin Roman
Denis Barry
Paul Tierney
Erik O’Hanlon
Kirk Levins
Veronica O’Keane
Darren Roddy
Publication date
01-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2020
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-020-02069-8

Other articles of this Issue 5/2020

Brain Structure and Function 5/2020 Go to the issue