Skip to main content
Top
Published in: Brain Structure and Function 1/2019

Open Access 01-01-2019 | Original Article

Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula)

Authors: A. Docampo-Seara, G. N. Santos-Durán, E. Candal, Miguel Ángel Rodríguez Díaz

Published in: Brain Structure and Function | Issue 1/2019

Login to get access

Abstract

Radial glial cells (RGCs) are the first cell populations of glial nature to appear during brain ontogeny. They act as primary progenitor (stem) cells as well as a scaffold for neuronal migration. The proliferative capacity of these cells, both in development and in adulthood, has been subject of interest during past decades. In contrast with mammals where RGCs are restricted to specific ventricular areas in the adult brain, RGCs are the predominant glial element in fishes. However, developmental studies on the RGCs of cartilaginous fishes are scant. We have studied the expression patterns of RGCs markers including glial fibrillary acidic protein (GFAP), brain lipid binding protein (BLBP), and glutamine synthase (GS) in the telencephalic hemispheres of catshark (Scyliorhinus canicula) from early embryos to post-hatch juveniles. GFAP, BLBP and GS are first detected, respectively, in early, intermediate and late embryos. Expression of these glial markers was observed in cells with radial glia morphology lining the telencephalic ventricles, as well as in their radial processes and endfeet at the pial surface and their expression continue in ependymal cells (or tanycytes) in early juveniles. In addition, BLBP- and GS-immunoreactive cells morphologically resembling oligodendrocytes were observed. In late embryos, most of the GFAP- and BLBP-positive RGCs also coexpress GS and show proliferative activity. Our results indicate the existence of different proliferating subpopulations of RGCs in the embryonic ventricular zone of catshark. Further investigations are needed to determine whether these proliferative RGCs could act as neurogenic and/or gliogenic precursors.
Appendix
Available only for authorised users
Literature
go back to reference Akimoto J, Itoh H, Miwa T, Ikeda K (1993) Immunohistochemical study of glutamine synthetase expression in early glial development. Brain Res Dev Brain Res 72:9–14CrossRefPubMed Akimoto J, Itoh H, Miwa T, Ikeda K (1993) Immunohistochemical study of glutamine synthetase expression in early glial development. Brain Res Dev Brain Res 72:9–14CrossRefPubMed
go back to reference Alexandre P, Reugels AM, Barker D, Blanc E, Clarke JD (2010) Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nat Neurosci 13:673–679CrossRefPubMed Alexandre P, Reugels AM, Barker D, Blanc E, Clarke JD (2010) Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nat Neurosci 13:673–679CrossRefPubMed
go back to reference Alvarez-Buylla A, Kriegstein A (2013) Neural stem cells among glia. In: Rubenstein JLR, Rakic P (eds) Patterning and cell type specification in the developing CNS and PNS, vol 1. Academic, San Diego, pp 685–705CrossRef Alvarez-Buylla A, Kriegstein A (2013) Neural stem cells among glia. In: Rubenstein JLR, Rakic P (eds) Patterning and cell type specification in the developing CNS and PNS, vol 1. Academic, San Diego, pp 685–705CrossRef
go back to reference Alvarez-Buylla A, Theelen M, Nottebohm F (1990) Proliferation “Hot Spots” in adult avian ventricular zone reveal radial cell division. Neuron 5:101–109CrossRefPubMed Alvarez-Buylla A, Theelen M, Nottebohm F (1990) Proliferation “Hot Spots” in adult avian ventricular zone reveal radial cell division. Neuron 5:101–109CrossRefPubMed
go back to reference Alvarez-Buylla A, García-Verdugo JM, Mateo AS, Merchant-Larios H (1998) Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J Neurosci 18:1020–1037CrossRefPubMedPubMedCentral Alvarez-Buylla A, García-Verdugo JM, Mateo AS, Merchant-Larios H (1998) Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J Neurosci 18:1020–1037CrossRefPubMedPubMedCentral
go back to reference Anadón R, Molist P, Rodríguez-Moldes I, López JM, Quintela I, Cerviño MC, Barja P, González A (2000) Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J Comp Neurol 420:139–170CrossRefPubMed Anadón R, Molist P, Rodríguez-Moldes I, López JM, Quintela I, Cerviño MC, Barja P, González A (2000) Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J Comp Neurol 420:139–170CrossRefPubMed
go back to reference Anthony TE, Heintz N (2008) Genetic lineage tracing defines distinct neurogenic and gliogenic stages of ventral telencephalic radial glial development. Neural Dev 3:30CrossRefPubMedPubMedCentral Anthony TE, Heintz N (2008) Genetic lineage tracing defines distinct neurogenic and gliogenic stages of ventral telencephalic radial glial development. Neural Dev 3:30CrossRefPubMedPubMedCentral
go back to reference Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890CrossRefPubMed Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890CrossRefPubMed
go back to reference Ari C, Kálmán M (2008a) Glial architecture of the ghost shark (Callorhinchus milii, Holocephali, Chondrichthyes) as revealed by different immunohistochemical markers. J Exp Zool B Mol Dev Evol 310:504–519CrossRefPubMed Ari C, Kálmán M (2008a) Glial architecture of the ghost shark (Callorhinchus milii, Holocephali, Chondrichthyes) as revealed by different immunohistochemical markers. J Exp Zool B Mol Dev Evol 310:504–519CrossRefPubMed
go back to reference Ari C, Kálmán M (2008b) Evolutionary changes of astroglia in Elasmobranchii comparing to amniotes: a study based on three immunohistochemical markers (GFAP, S-100, and glutamine synthetase). Brain Behav Evol 71:305–324CrossRefPubMed Ari C, Kálmán M (2008b) Evolutionary changes of astroglia in Elasmobranchii comparing to amniotes: a study based on three immunohistochemical markers (GFAP, S-100, and glutamine synthetase). Brain Behav Evol 71:305–324CrossRefPubMed
go back to reference Arochena M, Anadón R, Díaz-Regueira SM (2004) Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. J Comp Neurol 469:413–436CrossRefPubMed Arochena M, Anadón R, Díaz-Regueira SM (2004) Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost. J Comp Neurol 469:413–436CrossRefPubMed
go back to reference Ballard WW, Mellinger J, Lechenault H (1993) A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae). J Exp Zool 267:318–336CrossRef Ballard WW, Mellinger J, Lechenault H (1993) A series of normal stages for development of Scyliorhinus canicula, the lesser spotted dogfish (Chondrichthyes: Scyliorhinidae). J Exp Zool 267:318–336CrossRef
go back to reference Beattie R, Hippenmeyer S (2017) Mechanisms of radial glia progenitor cell lineage progression. FEBS 591:3993–4008CrossRef Beattie R, Hippenmeyer S (2017) Mechanisms of radial glia progenitor cell lineage progression. FEBS 591:3993–4008CrossRef
go back to reference Bejarano-Escobar R, Blasco M, Durán AC, Rodríguez C, Martín-Partido G, Francisco-Morcillo J (2012) Retinal histogenesis and cell differentiation in an elasmobranch species, the small-spotted catshark Scyliorhinus canicula. J Anat 220:318–335CrossRefPubMedPubMedCentral Bejarano-Escobar R, Blasco M, Durán AC, Rodríguez C, Martín-Partido G, Francisco-Morcillo J (2012) Retinal histogenesis and cell differentiation in an elasmobranch species, the small-spotted catshark Scyliorhinus canicula. J Anat 220:318–335CrossRefPubMedPubMedCentral
go back to reference Bernstein H, Bannier J, Meyer-Lotz G, Steiner J, Keilhoff G, Dobrowonly H, Walter M, Bogerts B (2014) Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization. J Chem Neuroanat 61–62:33–50CrossRefPubMed Bernstein H, Bannier J, Meyer-Lotz G, Steiner J, Keilhoff G, Dobrowonly H, Walter M, Bogerts B (2014) Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization. J Chem Neuroanat 61–62:33–50CrossRefPubMed
go back to reference Casper KB, McCarthy KD (2006) GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci 31:676–684CrossRefPubMed Casper KB, McCarthy KD (2006) GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci 31:676–684CrossRefPubMed
go back to reference Coolen M, Menuet A, Chassoux D, Compagnucci C, Henry S, Lévèque L, Da Silva C, Gavory F, Samain S, Wincker P, Thermes C, D’Aubenton-Carafa Y, Rodriguez- Moldes I, Naylor G, Depew M, Sourdaine P, Mazan S (2009) The dogfish Scyliorhinus canicula, a reference in jawed vertebrates. In: Behringer RR, Johnson AD, Krumlauf RE (eds) Emerging model organisms, a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 431–446 Coolen M, Menuet A, Chassoux D, Compagnucci C, Henry S, Lévèque L, Da Silva C, Gavory F, Samain S, Wincker P, Thermes C, D’Aubenton-Carafa Y, Rodriguez- Moldes I, Naylor G, Depew M, Sourdaine P, Mazan S (2009) The dogfish Scyliorhinus canicula, a reference in jawed vertebrates. In: Behringer RR, Johnson AD, Krumlauf RE (eds) Emerging model organisms, a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 431–446
go back to reference D’Amico LA, Daniel Boujard D, Coumailleau P (2011) Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains. Brain Res 1405:31–48CrossRefPubMed D’Amico LA, Daniel Boujard D, Coumailleau P (2011) Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains. Brain Res 1405:31–48CrossRefPubMed
go back to reference Del Río Hortega P (1928) Tercera aportación al conocimiento morfológico e interpretación funcional de la oligodendroglia. Mem Real Soc Esp Hist Nat 14:5–122 Del Río Hortega P (1928) Tercera aportación al conocimiento morfológico e interpretación funcional de la oligodendroglia. Mem Real Soc Esp Hist Nat 14:5–122
go back to reference Díaz-Regueira S, Anadón R (1998) The macroglia of teleosts: characterization, distribution and development. In: Castellano B, González B, Nieto-Sampedro M (eds) Understanding glial cells. Kluwer Academic, Dordrecht, pp 19–46CrossRef Díaz-Regueira S, Anadón R (1998) The macroglia of teleosts: characterization, distribution and development. In: Castellano B, González B, Nieto-Sampedro M (eds) Understanding glial cells. Kluwer Academic, Dordrecht, pp 19–46CrossRef
go back to reference Diotel N, Vaillant C, Kah O, Pellegrini E (2016) Mapping of brain lipid binding protein (Blbp) in the brain of adult zebrafish, co-expression with aromatase B and links with proliferation. Gene Expr Patterns 20:42–54CrossRefPubMed Diotel N, Vaillant C, Kah O, Pellegrini E (2016) Mapping of brain lipid binding protein (Blbp) in the brain of adult zebrafish, co-expression with aromatase B and links with proliferation. Gene Expr Patterns 20:42–54CrossRefPubMed
go back to reference Englund C, Flink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251CrossRefPubMedPubMedCentral Englund C, Flink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251CrossRefPubMedPubMedCentral
go back to reference Farkas LM, Huttner WB (2008) The cell biology of neuronal stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 20:707–715CrossRefPubMed Farkas LM, Huttner WB (2008) The cell biology of neuronal stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 20:707–715CrossRefPubMed
go back to reference Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908CrossRefPubMed Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908CrossRefPubMed
go back to reference Ferreiro-Galve S, Candal E, Rodríguez-Moldes I (2012) Dynamic expression of Pax6 in the shark olfactory system: evidence for the presence of Pax6 cells along the olfactory nerve pathway. J Exp Zool B Mol Dev Evol 318:79–90CrossRefPubMed Ferreiro-Galve S, Candal E, Rodríguez-Moldes I (2012) Dynamic expression of Pax6 in the shark olfactory system: evidence for the presence of Pax6 cells along the olfactory nerve pathway. J Exp Zool B Mol Dev Evol 318:79–90CrossRefPubMed
go back to reference Fox IJ, Paucar AA, Nakano I, Mottahedeh J, Dougherty JD, Kornblum HI (2004) Developmental expression of glial fibrillary acidic protein mRNA in mouse forebrain germinal zones—implications for stem cell biology. Brain Res Dev Brain Res 153:121–125CrossRefPubMed Fox IJ, Paucar AA, Nakano I, Mottahedeh J, Dougherty JD, Kornblum HI (2004) Developmental expression of glial fibrillary acidic protein mRNA in mouse forebrain germinal zones—implications for stem cell biology. Brain Res Dev Brain Res 153:121–125CrossRefPubMed
go back to reference Ganz J, Kaslin J, Hochmann S, Freudenreich D, Brand M (2010) Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia 58:1345–1363CrossRefPubMed Ganz J, Kaslin J, Hochmann S, Freudenreich D, Brand M (2010) Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia 58:1345–1363CrossRefPubMed
go back to reference González-Granero S, Lezameta M, García-Verdugo JM (2011) Adult neurogenesis in reptiles. In: Seki T, Sawamoto K, Parent JM, Alvarez-Buylla A (eds) Neurogenesis in the adult brain, vol I. Springer, Berlin, pp 169–189 González-Granero S, Lezameta M, García-Verdugo JM (2011) Adult neurogenesis in reptiles. In: Seki T, Sawamoto K, Parent JM, Alvarez-Buylla A (eds) Neurogenesis in the adult brain, vol I. Springer, Berlin, pp 169–189
go back to reference Götz M (2013) Radial glial cells. In: Kettenmann H, Ranson BR (eds) Neuroglia. Oxford University Press, New York, pp 50–61 Götz M (2013) Radial glial cells. In: Kettenmann H, Ranson BR (eds) Neuroglia. Oxford University Press, New York, pp 50–61
go back to reference Götz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–1044CrossRefPubMed Götz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–1044CrossRefPubMed
go back to reference Grupp L, Wolburg H, Mack AF (2010) Astroglial structures in the zebrafish brain. J Comp Neurol 518:4277–4287CrossRefPubMed Grupp L, Wolburg H, Mack AF (2010) Astroglial structures in the zebrafish brain. J Comp Neurol 518:4277–4287CrossRefPubMed
go back to reference Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30CrossRefPubMed Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30CrossRefPubMed
go back to reference Kálmán M (1998) Astroglial architecture of the carp (Cyprinus carpio) brain as revealed by immunohistochemical staining against glial fibrillary acidic protein (GFAP). Anat Embryol (Berl) 198:409–433CrossRef Kálmán M (1998) Astroglial architecture of the carp (Cyprinus carpio) brain as revealed by immunohistochemical staining against glial fibrillary acidic protein (GFAP). Anat Embryol (Berl) 198:409–433CrossRef
go back to reference Kálmán M, Gould RM (2001) GFAP-immunopositive structures in spiny dogfish, Squalus acanthias, and little skate, Raia erinacea, brains: differences have evolutionary implications. Anat Embryol (Berl) 204:59–80CrossRef Kálmán M, Gould RM (2001) GFAP-immunopositive structures in spiny dogfish, Squalus acanthias, and little skate, Raia erinacea, brains: differences have evolutionary implications. Anat Embryol (Berl) 204:59–80CrossRef
go back to reference Kirkham M, Hameed LS, Berg DA, Wang H, Simon A (2014) Progenitor cell dynamics in the Newt Telencephalon during homeostasis and neuronal regeneration. Stem Cell Rep 2:507–519CrossRef Kirkham M, Hameed LS, Berg DA, Wang H, Simon A (2014) Progenitor cell dynamics in the Newt Telencephalon during homeostasis and neuronal regeneration. Stem Cell Rep 2:507–519CrossRef
go back to reference Lazzari M, Franceschini V (2004) Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of the African lungfish, Protopterus annectens (Dipnoi: Lepidosirenidae). J Morphol 262:741–749CrossRefPubMed Lazzari M, Franceschini V (2004) Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of the African lungfish, Protopterus annectens (Dipnoi: Lepidosirenidae). J Morphol 262:741–749CrossRefPubMed
go back to reference Lazzari M, Franceschini V (2006) Glial cytoarchitecture in the central nervous system of the soft-shell turtle, Trionyx sinensis, revealed by intermediate filament immunohistochemistry. Anat Embryol 211:497–506CrossRef Lazzari M, Franceschini V (2006) Glial cytoarchitecture in the central nervous system of the soft-shell turtle, Trionyx sinensis, revealed by intermediate filament immunohistochemistry. Anat Embryol 211:497–506CrossRef
go back to reference Li H, Jin G, Qin J, Yang W, Tian M, Tan X, Zhang X, Shi J, Zou L (2011) Identification of neonatal rat hippocampal radial glia cells in vitro. Neurosci Lett 490:209–214CrossRefPubMed Li H, Jin G, Qin J, Yang W, Tian M, Tan X, Zhang X, Shi J, Zou L (2011) Identification of neonatal rat hippocampal radial glia cells in vitro. Neurosci Lett 490:209–214CrossRefPubMed
go back to reference Lyons DA, Guy AT, Clarke JD (2003) Monitoring neural progenitor fate through multiple rounds of division in an intact vertebrate brain. Development 130:3427–3436CrossRefPubMed Lyons DA, Guy AT, Clarke JD (2003) Monitoring neural progenitor fate through multiple rounds of division in an intact vertebrate brain. Development 130:3427–3436CrossRefPubMed
go back to reference Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Götz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37:751–764CrossRefPubMed Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Götz M (2003) Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37:751–764CrossRefPubMed
go back to reference Malatesta P, Appolloni I, Calzolari F (2008) Radial glia and neural stem cells. Cell Tissue Res 331:165–178CrossRefPubMed Malatesta P, Appolloni I, Calzolari F (2008) Radial glia and neural stem cells. Cell Tissue Res 331:165–178CrossRefPubMed
go back to reference Mamber C, Kamphuis W, Haring NL, Peprah N, Middeldorp J et al (2012) GFAPδ expression in glia of the developmental and adolescent mouse brain. PLoS One 7:e52659CrossRefPubMedPubMedCentral Mamber C, Kamphuis W, Haring NL, Peprah N, Middeldorp J et al (2012) GFAPδ expression in glia of the developmental and adolescent mouse brain. PLoS One 7:e52659CrossRefPubMedPubMedCentral
go back to reference Marcus RC, Easter SS Jr (1995) Expression of glial fibrillary acidic protein and its relation to tract formation in embryonic zebrafish (Danio rerio). J Comp Neurol 359:365–381CrossRefPubMed Marcus RC, Easter SS Jr (1995) Expression of glial fibrillary acidic protein and its relation to tract formation in embryonic zebrafish (Danio rerio). J Comp Neurol 359:365–381CrossRefPubMed
go back to reference Marshall CA, Suzuki SO, Goldman JE (2003) Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia 43:52–61CrossRefPubMed Marshall CA, Suzuki SO, Goldman JE (2003) Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia 43:52–61CrossRefPubMed
go back to reference März M, Chapouton P, Diotel N, Vaillant C, Hesl B, Takamiya M, Lam CS, Kah O, Bally-Cuif L, Strähle U (2010) Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia 58:870–888PubMed März M, Chapouton P, Diotel N, Vaillant C, Hesl B, Takamiya M, Lam CS, Kah O, Bally-Cuif L, Strähle U (2010) Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia 58:870–888PubMed
go back to reference Merrick SE, Pleasure SJ, Lurie DI, Pijak DS, Selzer ME, Lee VM (1995) Glial cells of the lamprey nervous system contain keratin-like proteins. J Comp Neurol 355:199–210CrossRefPubMed Merrick SE, Pleasure SJ, Lurie DI, Pijak DS, Selzer ME, Lee VM (1995) Glial cells of the lamprey nervous system contain keratin-like proteins. J Comp Neurol 355:199–210CrossRefPubMed
go back to reference Messenger NJ, Warner AE (1989) The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo. Development 107:43–54PubMed Messenger NJ, Warner AE (1989) The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo. Development 107:43–54PubMed
go back to reference Monzón-Mayor M, Yanes C, De Barry J, Capdevilla-Carbonell C, Renau-Piqueras J, Tholey G, Gombos G (1998) Heterogeneous immunoreactivity of glial cells in the mesencephalon of a lizard: a double labeling immunohistochemical study. J Morphol 235:109–119CrossRefPubMed Monzón-Mayor M, Yanes C, De Barry J, Capdevilla-Carbonell C, Renau-Piqueras J, Tholey G, Gombos G (1998) Heterogeneous immunoreactivity of glial cells in the mesencephalon of a lizard: a double labeling immunohistochemical study. J Morphol 235:109–119CrossRefPubMed
go back to reference Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173CrossRefPubMedPubMedCentral Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173CrossRefPubMedPubMedCentral
go back to reference Norenberg MD (1979) Distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 27:756–762CrossRefPubMed Norenberg MD (1979) Distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 27:756–762CrossRefPubMed
go back to reference Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310CrossRefPubMed Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310CrossRefPubMed
go back to reference Ono K, Ikenaka K (2013) Lineage and development: oligodendrocytes. In: Kettenmann H, Ranson BR (eds) Neuroglia, 3rd edn. Oxford University Press, New York, pp 148–158 Ono K, Ikenaka K (2013) Lineage and development: oligodendrocytes. In: Kettenmann H, Ranson BR (eds) Neuroglia, 3rd edn. Oxford University Press, New York, pp 148–158
go back to reference Pérez SE, Adrio F, Rodríguez MA, Rodríguez-Moldes I, Anadon R (1996) NADPH-diaphorase histochemistry reveals oligodendrocytes in the rainbow trout (teleosts). Neurosci Lett 205:83–86CrossRefPubMed Pérez SE, Adrio F, Rodríguez MA, Rodríguez-Moldes I, Anadon R (1996) NADPH-diaphorase histochemistry reveals oligodendrocytes in the rainbow trout (teleosts). Neurosci Lett 205:83–86CrossRefPubMed
go back to reference Pinto L, Götz M (2007) Radial glial cell heterogeneity—the source of diverse progeny in the CNS. Prog Neurobiol 83:2–23CrossRefPubMed Pinto L, Götz M (2007) Radial glial cell heterogeneity—the source of diverse progeny in the CNS. Prog Neurobiol 83:2–23CrossRefPubMed
go back to reference Podgornyi OV, Aleksandrova MA (2009) BLBP-immunoreactive cells in the primary culture of neural precursors from embryonic mouse brain. Bull Exp Biol Med 147:125–131CrossRefPubMed Podgornyi OV, Aleksandrova MA (2009) BLBP-immunoreactive cells in the primary culture of neural precursors from embryonic mouse brain. Bull Exp Biol Med 147:125–131CrossRefPubMed
go back to reference Quintana-Urzainqui I, Rodríguez-Moldes I, Candal E (2014) Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve. Brain Struct Funct 219:85:104CrossRefPubMed Quintana-Urzainqui I, Rodríguez-Moldes I, Candal E (2014) Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve. Brain Struct Funct 219:85:104CrossRefPubMed
go back to reference Quintana-Urzainqui I, Rodríguez-Moldes I, Mazan S, Candal E (2015) Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications. Brain Struct Funct 220:2905–2926CrossRefPubMed Quintana-Urzainqui I, Rodríguez-Moldes I, Mazan S, Candal E (2015) Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications. Brain Struct Funct 220:2905–2926CrossRefPubMed
go back to reference Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83CrossRefPubMed Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83CrossRefPubMed
go back to reference Rodríguez-Moldes I, Santos-Durán GN, Pose-Méndez S, Quintana-Urzainqui I, Candal E (2017) The brains of cartilaginous fishes. In: Kaas J (ed) Evolution of nervous systems 2e, vol 1. Elsevier, Oxford, pp 77–97. ISBN:9780128040423CrossRef Rodríguez-Moldes I, Santos-Durán GN, Pose-Méndez S, Quintana-Urzainqui I, Candal E (2017) The brains of cartilaginous fishes. In: Kaas J (ed) Evolution of nervous systems 2e, vol 1. Elsevier, Oxford, pp 77–97. ISBN:9780128040423CrossRef
go back to reference Romero-Alemán MdelM, Monzón-Mayor M, Yanes C, Arbelo-Galván JF, Lang D, Renau-Piqueras J, Negrín-Martínez C (2003) S100 immunoreactive glial cells in the forebrain and midbrain of the lizard Gallotia galloti during ontogeny. J Neurobiol 57:54–66CrossRef Romero-Alemán MdelM, Monzón-Mayor M, Yanes C, Arbelo-Galván JF, Lang D, Renau-Piqueras J, Negrín-Martínez C (2003) S100 immunoreactive glial cells in the forebrain and midbrain of the lizard Gallotia galloti during ontogeny. J Neurobiol 57:54–66CrossRef
go back to reference Sánchez-Farías N, Candal E (2015) Doublecortin is widely expressed in the developing and adult retina of sharks. Exp Eye Res 134:90–100CrossRefPubMed Sánchez-Farías N, Candal E (2015) Doublecortin is widely expressed in the developing and adult retina of sharks. Exp Eye Res 134:90–100CrossRefPubMed
go back to reference Smeets WJAJ, Nieuwenhyus R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Springer, BerlinCrossRef Smeets WJAJ, Nieuwenhyus R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Springer, BerlinCrossRef
go back to reference Spassky N, Merkle FT, Flames N, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18CrossRefPubMedPubMedCentral Spassky N, Merkle FT, Flames N, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18CrossRefPubMedPubMedCentral
go back to reference Taverna E, Götz M, Huttner WB (2014) The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol 30:465–502CrossRefPubMed Taverna E, Götz M, Huttner WB (2014) The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol 30:465–502CrossRefPubMed
go back to reference Than-Trong E, Bally-Cuif L (2015) Radial glía and neural progenitors in the adult zebrafish central nervous system. Glia 63:1406–1428CrossRefPubMed Than-Trong E, Bally-Cuif L (2015) Radial glía and neural progenitors in the adult zebrafish central nervous system. Glia 63:1406–1428CrossRefPubMed
go back to reference Thisse B, Pflumio S, Fürthauer M, Looping B, Heyer V, Degrave A, Woehl, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of zebrafish genome during embryogenesis. ZFIN direct data 2001 Thisse B, Pflumio S, Fürthauer M, Looping B, Heyer V, Degrave A, Woehl, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of zebrafish genome during embryogenesis. ZFIN direct data 2001
go back to reference Turrero GM, Harwell CC (2017) Radial glia in the ventral telencephalon. FEBS Lett 591:3942–3959CrossRef Turrero GM, Harwell CC (2017) Radial glia in the ventral telencephalon. FEBS Lett 591:3942–3959CrossRef
go back to reference Villar-Cheda B, Pérez-Costas E, Meléndez-Ferro M, Abalo XM, Rodríguez-Muñoz R, Anadón R, Rodicio MC (2006) Cell proliferation in the forebrain and midbrain of the sea lamprey. J Comp Neurol 494:986–1006CrossRefPubMed Villar-Cheda B, Pérez-Costas E, Meléndez-Ferro M, Abalo XM, Rodríguez-Muñoz R, Anadón R, Rodicio MC (2006) Cell proliferation in the forebrain and midbrain of the sea lamprey. J Comp Neurol 494:986–1006CrossRefPubMed
go back to reference Wasowicz M, Ward R, Repérant J (1999) An investigation of astroglial morphology in Torpedo and Scyliorhinus. J Neurocytol 28:639–653CrossRefPubMed Wasowicz M, Ward R, Repérant J (1999) An investigation of astroglial morphology in Torpedo and Scyliorhinus. J Neurocytol 28:639–653CrossRefPubMed
go back to reference Zerjatke T, Gak IA, Kirova D, Fuhrmann M, Daniel K, Gonciarz M, Müller D, Glauche I, Mansfeld J (2017) Quantitative cell cycle analysis based on an endogenous all-in-one reporter for cell tracking and classification. Cell Rep 19:1953–1966CrossRefPubMedPubMedCentral Zerjatke T, Gak IA, Kirova D, Fuhrmann M, Daniel K, Gonciarz M, Müller D, Glauche I, Mansfeld J (2017) Quantitative cell cycle analysis based on an endogenous all-in-one reporter for cell tracking and classification. Cell Rep 19:1953–1966CrossRefPubMedPubMedCentral
Metadata
Title
Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula)
Authors
A. Docampo-Seara
G. N. Santos-Durán
E. Candal
Miguel Ángel Rodríguez Díaz
Publication date
01-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2019
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1758-2

Other articles of this Issue 1/2019

Brain Structure and Function 1/2019 Go to the issue