Skip to main content
Top
Published in: Brain Structure and Function 8/2018

01-11-2018 | Original Article

Cortical networks of the mouse brain elaborate within the gray matter

Authors: Akiya Watakabe, Junya Hirokawa

Published in: Brain Structure and Function | Issue 8/2018

Login to get access

Abstract

In primates, proximal cortical areas are interconnected via within-cortex “intrinsic” pathway, whereas distant areas are connected via “extrinsic” white matter pathway. To date, such distinction has not been clearly done for small-brained mammals like rodents. In this study, we systematically analyzed the data of Allen Mouse Brain Connectivity Atlas to answer this question and found that the ipsilateral cortical connections in mice are almost exclusively contained within the gray matter, although we observed exceptions for projections from the retrosplenial area and the medial/orbital frontal areas. By analyzing axonal projections within the gray matter using Cortical Box method, which enabled us to investigate the layer patterns across different cortical areas, we obtained the following results. First, widespread axonal projections were observed in both upper and lower layers in the vicinity of injections, whereas highly specific “point-to-point” projections were observed toward remote areas. Second, such long-range projections were predominantly aligned in the anteromedial–posterolateral direction. Third, in the majority of these projections, the connecting axons traveled through layer 6. Finally, the projections from the primary and higher order areas to distant targets preferentially terminated in the middle and superficial layers, respectively, suggesting hierarchical connections similar to those of primates. Overall, our study demonstrated conspicuous differences in gray/white matter segregation of axonal projections between rodents and primates, despite certain similarities in the hierarchical cortical organization.
Appendix
Available only for authorised users
Literature
go back to reference Bassett DS, Bullmore ET (2016) Small-world brain networks revisited. Neuroscientist 23:499–516 Bassett DS, Bullmore ET (2016) Small-world brain networks revisited. Neuroscientist 23:499–516
go back to reference Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefPubMed Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefPubMed
go back to reference Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349CrossRefPubMed Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349CrossRefPubMed
go back to reference D’Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A (2016) Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. Elife 5:e19332CrossRefPubMedPubMedCentral D’Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A (2016) Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. Elife 5:e19332CrossRefPubMedPubMedCentral
go back to reference Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80:184–197CrossRefPubMedPubMedCentral Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80:184–197CrossRefPubMedPubMedCentral
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed
go back to reference Gămănuţ R, Kennedy H, Toroczkai Z, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Burkhalter A (2018) The mouse cortical connectome, characterized by an ultra-dense cortical graph, maintains specificity by distinct connectivity profiles. Neuron 97:698–715.e10CrossRefPubMedPubMedCentral Gămănuţ R, Kennedy H, Toroczkai Z, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Burkhalter A (2018) The mouse cortical connectome, characterized by an ultra-dense cortical graph, maintains specificity by distinct connectivity profiles. Neuron 97:698–715.e10CrossRefPubMedPubMedCentral
go back to reference Goulas A, Uylings HBM, Hilgetag CC (2017) Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse. Brain Struct Funct 222:1281–1295CrossRefPubMed Goulas A, Uylings HBM, Hilgetag CC (2017) Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse. Brain Struct Funct 222:1281–1295CrossRefPubMed
go back to reference Hirokawa J, Bosch M, Sakata S, Sakurai Y, Yamamori T (2008a) Functional role of the secondary visual cortex in multisensory facilitation in rats. Neuroscience 153:1402–1417CrossRefPubMed Hirokawa J, Bosch M, Sakata S, Sakurai Y, Yamamori T (2008a) Functional role of the secondary visual cortex in multisensory facilitation in rats. Neuroscience 153:1402–1417CrossRefPubMed
go back to reference Hirokawa J, Watakabe A, Ohsawa S, Yamamori T (2008b) Analysis of area-specific expression patterns of RORbeta, ER81 and Nurr1 mRNAs in rat neocortex by double in situ hybridization and cortical box method. PLoS One 3:e3266CrossRefPubMedPubMedCentral Hirokawa J, Watakabe A, Ohsawa S, Yamamori T (2008b) Analysis of area-specific expression patterns of RORbeta, ER81 and Nurr1 mRNAs in rat neocortex by double in situ hybridization and cortical box method. PLoS One 3:e3266CrossRefPubMedPubMedCentral
go back to reference Horvát S, Gămănuţ R, Ercsey-Ravasz M, Magrou L, GăăuțB, Van Essen DC, Burkhalter A, Knoblauch K, Toroczkai Z, Kennedy H (2016) Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol 14:e1002512CrossRefPubMedPubMedCentral Horvát S, Gămănuţ R, Ercsey-Ravasz M, Magrou L, GăăuțB, Van Essen DC, Burkhalter A, Knoblauch K, Toroczkai Z, Kennedy H (2016) Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol 14:e1002512CrossRefPubMedPubMedCentral
go back to reference Kaas JH (2000) Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain Mind 1:7–23CrossRef Kaas JH (2000) Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain Mind 1:7–23CrossRef
go back to reference Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB (2017) A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95:1420–1432.e5CrossRefPubMed Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB (2017) A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95:1420–1432.e5CrossRefPubMed
go back to reference Levitt JB, Lewis DA, Yoshioka T, Lund JS (1993) Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). J Comp Neurol 338:360–376CrossRefPubMed Levitt JB, Lewis DA, Yoshioka T, Lund JS (1993) Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). J Comp Neurol 338:360–376CrossRefPubMed
go back to reference Liewald D, Miller R, Logothetis N, Wagner H-J, Schüz A (2014) Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biol Cybern 108:541–557CrossRefPubMedPubMedCentral Liewald D, Miller R, Logothetis N, Wagner H-J, Schüz A (2014) Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biol Cybern 108:541–557CrossRefPubMedPubMedCentral
go back to reference Liska A, Galbusera A, Schwarz AJ, Gozzi A (2015) Functional connectivity hubs of the mouse brain. Neuroimage 115:281–291CrossRefPubMed Liska A, Galbusera A, Schwarz AJ, Gozzi A (2015) Functional connectivity hubs of the mouse brain. Neuroimage 115:281–291CrossRefPubMed
go back to reference Lund JS, Yoshioka T, Levitt JB (1993) Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cereb Cortex 3:148–162CrossRefPubMed Lund JS, Yoshioka T, Levitt JB (1993) Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cereb Cortex 3:148–162CrossRefPubMed
go back to reference Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M, Yamada K, Ota K, Matsubara C, Inutsuka A, Sato M, Ohkura M, Yamanaka A, Yanagawa Y, Nakai J, Hayashi Y, Larkum ME, Murayama M (2015) A top-down cortical circuit for accurate sensory perception. Neuron 86:1304–1316CrossRefPubMed Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M, Yamada K, Ota K, Matsubara C, Inutsuka A, Sato M, Ohkura M, Yamanaka A, Yanagawa Y, Nakai J, Hayashi Y, Larkum ME, Murayama M (2015) A top-down cortical circuit for accurate sensory perception. Neuron 86:1304–1316CrossRefPubMed
go back to reference Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21:1254–1272CrossRefPubMed Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21:1254–1272CrossRefPubMed
go back to reference Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H (2014a) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259CrossRefPubMed Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H (2014a) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259CrossRefPubMed
go back to reference Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC, Kennedy H (2014b) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24(1):17–36CrossRefPubMed Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC, Kennedy H (2014b) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24(1):17–36CrossRefPubMed
go back to reference Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214CrossRefPubMedPubMedCentral Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214CrossRefPubMedPubMedCentral
go back to reference Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320CrossRefPubMed Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320CrossRefPubMed
go back to reference Paxinos G (2014) The rat nervous system, fourth edition. Academic, New York Paxinos G (2014) The rat nervous system, fourth edition. Academic, New York
go back to reference Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates. Elsevier, Amsterdam Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates. Elsevier, Amsterdam
go back to reference Ragan T, Kadiri LR, Venkataraju KU, Bahlmann K, Sutin J, Taranda J, Arganda-Carreras I, Kim Y, Seung HS, Osten P (2012) Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9:255–258CrossRefPubMedPubMedCentral Ragan T, Kadiri LR, Venkataraju KU, Bahlmann K, Sutin J, Taranda J, Arganda-Carreras I, Kim Y, Seung HS, Osten P (2012) Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9:255–258CrossRefPubMedPubMedCentral
go back to reference Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20CrossRefPubMed Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20CrossRefPubMed
go back to reference Schüz A, Chaimow D, Liewald D, Dortenman M (2006) Quantitative aspects of corticocortical connections: a tracer study in the mouse. Cereb Cortex 16:1474–1486CrossRefPubMed Schüz A, Chaimow D, Liewald D, Dortenman M (2006) Quantitative aspects of corticocortical connections: a tracer study in the mouse. Cereb Cortex 16:1474–1486CrossRefPubMed
go back to reference Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J-I, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467(1):60–79CrossRefPubMed Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J-I, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467(1):60–79CrossRefPubMed
go back to reference Vanni MP, Chan AW, Balbi M, Silasi G, Murphy TH (2017) Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules. J Neurosci 37:7513–7533CrossRefPubMedPubMedCentral Vanni MP, Chan AW, Balbi M, Silasi G, Murphy TH (2017) Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules. J Neurosci 37:7513–7533CrossRefPubMedPubMedCentral
go back to reference Wang SS-H, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC, Wagers MW, Wyatt KD (2008) Functional trade-offs in white matter axonal scaling. J Neurosci 28:4047–4056CrossRefPubMedPubMedCentral Wang SS-H, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC, Wagers MW, Wyatt KD (2008) Functional trade-offs in white matter axonal scaling. J Neurosci 28:4047–4056CrossRefPubMedPubMedCentral
go back to reference Wang Q, Sporns O, Burkhalter A (2012) Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J Neurosci 32:4386–4399CrossRefPubMedPubMedCentral Wang Q, Sporns O, Burkhalter A (2012) Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J Neurosci 32:4386–4399CrossRefPubMedPubMedCentral
go back to reference Watakabe A, Hirokawa J, Ichinohe N, Ohsawa S, Kaneko T, Rockland KS, Yamamori T (2012) Area-specific substratification of deep layer neurons in the rat cortex. J Comp Neurol 520:3553–3573CrossRefPubMed Watakabe A, Hirokawa J, Ichinohe N, Ohsawa S, Kaneko T, Rockland KS, Yamamori T (2012) Area-specific substratification of deep layer neurons in the rat cortex. J Comp Neurol 520:3553–3573CrossRefPubMed
go back to reference Watakabe A, Takaji M, Kato S, Kobayashi K, Mizukami H, Ozawa K, Ohsawa S, Matsui R, Watanabe D, Yamamori T (2014) Simultaneous visualization of extrinsic and intrinsic axon collaterals in Golgi-like detail for mouse corticothalamic and corticocortical cells: a double viral infection method. Front Neural Circ 8:110 Watakabe A, Takaji M, Kato S, Kobayashi K, Mizukami H, Ozawa K, Ohsawa S, Matsui R, Watanabe D, Yamamori T (2014) Simultaneous visualization of extrinsic and intrinsic axon collaterals in Golgi-like detail for mouse corticothalamic and corticocortical cells: a double viral infection method. Front Neural Circ 8:110
go back to reference Zhang ZW, Deschêes M (1997) Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 17:6365–6379CrossRefPubMedPubMedCentral Zhang ZW, Deschêes M (1997) Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 17:6365–6379CrossRefPubMedPubMedCentral
go back to reference Zhang S, Xu M, Chang W-C, Ma C, Hoang Do JP, Jeong D, Lei T, Fan JL, Dan Y (2016) Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat Neurosci 19:1733–1742CrossRefPubMedPubMedCentral Zhang S, Xu M, Chang W-C, Ma C, Hoang Do JP, Jeong D, Lei T, Fan JL, Dan Y (2016) Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat Neurosci 19:1733–1742CrossRefPubMedPubMedCentral
go back to reference Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong H-W (2014) Neural networks of the mouse neocortex. Cell 156:1096–1111CrossRefPubMedPubMedCentral Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong H-W (2014) Neural networks of the mouse neocortex. Cell 156:1096–1111CrossRefPubMedPubMedCentral
Metadata
Title
Cortical networks of the mouse brain elaborate within the gray matter
Authors
Akiya Watakabe
Junya Hirokawa
Publication date
01-11-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 8/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1710-5

Other articles of this Issue 8/2018

Brain Structure and Function 8/2018 Go to the issue