Skip to main content
Top
Published in: Brain Structure and Function 6/2018

01-07-2018 | Original Article

How do cortico-striatal projections impact on downstream pallidal circuitry?

Authors: Sarah R. Heilbronner, Mariah A. A. Meyer, Eun Young Choi, Suzanne N. Haber

Published in: Brain Structure and Function | Issue 6/2018

Login to get access

Abstract

The frontal cortico-basal ganglia network plays a central role in action selection, associative learning, and motivation, processes requiring the integration of information from functionally distinct cortical regions. The cortico-striatal projection is a likely substrate of information integration, as terminal fields from different cortical regions converge in the striatum. These intersecting projections form complex zones of unique cortical inputs. Here, our goal was to follow these projection zones downstream in the basal ganglia to the globus pallidus. We combined a sizable database of 3D models of striato-pallidal chartings in macaques with maps of frontal cortical inputs to determine the topography of the striato-pallidal projection and the indirect cortical influence over the pallidum. We found that the striato-pallidal projection is highly topographic, with the location of the striatal injection site strongly predicting the location of the resulting pallidal terminal fields. Furthermore, striato-pallidal projections are specific and largely nonoverlapping. Thus, striatal hubs receiving unique combinations of cortical inputs have distinct projections to the pallidum. However, because of the strong convergence of cortical terminal fields in the striatum, the indirect pallidal representation of any given frontal cortical region remains broad. We illustrate this arrangement by contrasting the pallidal projections from two nearby striatal cases: one a putative hub for cortical attentional bias signals, and the other with a different, more ventral set of cortical inputs. Thus, the striato-pallidal projection faithfully conveys unique combinations of cortical inputs to different locations within the pallidum via the striatum.
Literature
go back to reference Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375CrossRefPubMed Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375CrossRefPubMed
go back to reference Bar-Gad I, Bergman H (2001) Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol 11:689–695CrossRefPubMed Bar-Gad I, Bergman H (2001) Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol 11:689–695CrossRefPubMed
go back to reference Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71:439–473CrossRefPubMed Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71:439–473CrossRefPubMed
go back to reference Beckstead RM (1983) A pallidostriatal projection in the cat and monkey. Brain Res Bull 11:629–632CrossRefPubMed Beckstead RM (1983) A pallidostriatal projection in the cat and monkey. Brain Res Bull 11:629–632CrossRefPubMed
go back to reference Carpenter MB (1976) Anatomical organization of the corpus striatum and related nuclei. In: Yahr MD (ed) The Basal Ganglia. Raven Press, New York, pp 1–36 Carpenter MB (1976) Anatomical organization of the corpus striatum and related nuclei. In: Yahr MD (ed) The Basal Ganglia. Raven Press, New York, pp 1–36
go back to reference DeLong MR, Georgopoulos AP, Crutcher MD et al (1984) Functional organization of the basal ganglia: contributions of single-cell recording studies. In: Functions of the basal ganglia. Pitman, London, pp 64–82 DeLong MR, Georgopoulos AP, Crutcher MD et al (1984) Functional organization of the basal ganglia: contributions of single-cell recording studies. In: Functions of the basal ganglia. Pitman, London, pp 64–82
go back to reference Drevets WC, Videen TO, Price JL et al (1992) A functional anatomical study of unipolar depression. J Neurosci 12:3628–3641CrossRefPubMed Drevets WC, Videen TO, Price JL et al (1992) A functional anatomical study of unipolar depression. J Neurosci 12:3628–3641CrossRefPubMed
go back to reference Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176CrossRefPubMed Filion M, Tremblay L, Bedard PJ (1988) Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176CrossRefPubMed
go back to reference Fox CH, Andrade HN, Du Qui IJ, Rafols JA (1974) The primate globus pallidus. A Golgi and electron microscope study. J R Hirnforsch 15:75–93 Fox CH, Andrade HN, Du Qui IJ, Rafols JA (1974) The primate globus pallidus. A Golgi and electron microscope study. J R Hirnforsch 15:75–93
go back to reference Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330CrossRefPubMed Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330CrossRefPubMed
go back to reference Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867CrossRefPubMed Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867CrossRefPubMed
go back to reference Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382CrossRefPubMed Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382CrossRefPubMed
go back to reference Hazrati LN, Parent A (1992) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592:213–227CrossRefPubMed Hazrati LN, Parent A (1992) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592:213–227CrossRefPubMed
go back to reference Hazrati LN, Parent A, Mitchell S, Haber SN (1990) Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study. Brain Res 533:171–175CrossRefPubMed Hazrati LN, Parent A, Mitchell S, Haber SN (1990) Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study. Brain Res 533:171–175CrossRefPubMed
go back to reference Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the Macaque. J Comp Neurol 304:569–595CrossRefPubMed Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the Macaque. J Comp Neurol 304:569–595CrossRefPubMed
go back to reference Heimer L (1978) The olfactory cortex and the ventral striatum. In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms. Plenum Press, New York, pp 95–187CrossRef Heimer L (1978) The olfactory cortex and the ventral striatum. In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms. Plenum Press, New York, pp 95–187CrossRef
go back to reference Hokama H, Shenton ME, Nestor PG et al (1995) Caudate, putamen, and globus pallidus volume in schizophrenia: a quantitative MRI study. Psychiatry Res 61:209–229CrossRefPubMed Hokama H, Shenton ME, Nestor PG et al (1995) Caudate, putamen, and globus pallidus volume in schizophrenia: a quantitative MRI study. Psychiatry Res 61:209–229CrossRefPubMed
go back to reference Hubner CB, Koob GF (1990) The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res 508:20–29CrossRefPubMed Hubner CB, Koob GF (1990) The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res 508:20–29CrossRefPubMed
go back to reference Ichise M, Vines DC, Gura T et al (2006) Effects of early life stress on [11C]DASB positron emission tomography imaging of serotonin transporters in adolescent peer- and mother-reared rhesus monkeys. J Neurosci 26:4638–4643CrossRefPubMed Ichise M, Vines DC, Gura T et al (2006) Effects of early life stress on [11C]DASB positron emission tomography imaging of serotonin transporters in adolescent peer- and mother-reared rhesus monkeys. J Neurosci 26:4638–4643CrossRefPubMed
go back to reference Johnson TN, Rosvold HE (1971) Topographic projections on the globus pallidus and the substantia nigra of selectively placed lesions in the precommissural caudate nucleus and putamen in the monkey. Exp Neurol 33:584–596CrossRefPubMed Johnson TN, Rosvold HE (1971) Topographic projections on the globus pallidus and the substantia nigra of selectively placed lesions in the precommissural caudate nucleus and putamen in the monkey. Exp Neurol 33:584–596CrossRefPubMed
go back to reference Kemp JM, Powell TP (1971) The connexions of the striatum and globus pallidus: synthesis and speculation. Philos Trans R Soc Lond Ser B Biol Sci 262:441–457CrossRef Kemp JM, Powell TP (1971) The connexions of the striatum and globus pallidus: synthesis and speculation. Philos Trans R Soc Lond Ser B Biol Sci 262:441–457CrossRef
go back to reference Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169:263–290CrossRefPubMed Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169:263–290CrossRefPubMed
go back to reference Kuo J, Carpenter MB (1973) Organization of pallidothalamic projections in the Rhesus monkey. J Comp Neurol 151:201–236CrossRefPubMed Kuo J, Carpenter MB (1973) Organization of pallidothalamic projections in the Rhesus monkey. J Comp Neurol 151:201–236CrossRefPubMed
go back to reference Matsumura M, Tremblay L, Richard H, Filion M (1995) Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum. Neuroscience 65:59–70CrossRefPubMed Matsumura M, Tremblay L, Richard H, Filion M (1995) Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum. Neuroscience 65:59–70CrossRefPubMed
go back to reference Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. Journal Neurophysiol 74:1800–1805CrossRef Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. Journal Neurophysiol 74:1800–1805CrossRef
go back to reference Parent A, Hazrati L-N (1994) Multiple striatal representation in primate substantia nigra. J Comp Neurol 344:305–320CrossRefPubMed Parent A, Hazrati L-N (1994) Multiple striatal representation in primate substantia nigra. J Comp Neurol 344:305–320CrossRefPubMed
go back to reference Parent A, Charara A, Pinault D (1995) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698:280–284CrossRefPubMed Parent A, Charara A, Pinault D (1995) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698:280–284CrossRefPubMed
go back to reference Parent A, Hazrati L-N, Charara A et al (1997) The striatopallidal fiber system in primates. In: Obeso MR, Ohye C, Marsden CDJD (eds) The basal ganglia and new surgical approaches for Parkinson’s disease, advances in neurology. Lippincott-Raven, Philadelphia, pp 19–29 Parent A, Hazrati L-N, Charara A et al (1997) The striatopallidal fiber system in primates. In: Obeso MR, Ohye C, Marsden CDJD (eds) The basal ganglia and new surgical approaches for Parkinson’s disease, advances in neurology. Lippincott-Raven, Philadelphia, pp 19–29
go back to reference Park MR, Falls WM, Kitai ST (1982) An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis. J Comp Neurol 211:284–294CrossRefPubMed Park MR, Falls WM, Kitai ST (1982) An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis. J Comp Neurol 211:284–294CrossRefPubMed
go back to reference Percheron G, Filion M (1991) Parallel processing in the basal ganglia: up to a point. Trends Neurosci 14:55–59CrossRefPubMed Percheron G, Filion M (1991) Parallel processing in the basal ganglia: up to a point. Trends Neurosci 14:55–59CrossRefPubMed
go back to reference Percheron G, Francois C, Yelnik J, Fenelon G (1989). The primate nigro-striato-pallido-nigral system. Not a mere loop. Neural Mechanisms in Disorders of Movement, pp 103–109 Percheron G, Francois C, Yelnik J, Fenelon G (1989). The primate nigro-striato-pallido-nigral system. Not a mere loop. Neural Mechanisms in Disorders of Movement, pp 103–109
go back to reference Spooren WP, Lynd-Balta E, Mitchell S, Haber SN (1996) Ventral pallidostriatal pathway in the monkey: evidence for modulation of basal ganglia circuits. J Comp Neurol 370:295–312CrossRefPubMed Spooren WP, Lynd-Balta E, Mitchell S, Haber SN (1996) Ventral pallidostriatal pathway in the monkey: evidence for modulation of basal ganglia circuits. J Comp Neurol 370:295–312CrossRefPubMed
go back to reference Staines WA, Atmadja S, Fibiger HC (1981) Demonstration of a pallidostriatal pathway by retrograde transport of HRP-labeled lectin. Brain Res 206(2):446–450CrossRef Staines WA, Atmadja S, Fibiger HC (1981) Demonstration of a pallidostriatal pathway by retrograde transport of HRP-labeled lectin. Brain Res 206(2):446–450CrossRef
go back to reference Steinmetz MA, Constantinidis C (1995) Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb Cortex 5:448–456CrossRefPubMed Steinmetz MA, Constantinidis C (1995) Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb Cortex 5:448–456CrossRefPubMed
go back to reference Szabo J (1962) Topical distribution of the striatal efferents in the monkey. Exp Neurol 5:21–36CrossRef Szabo J (1962) Topical distribution of the striatal efferents in the monkey. Exp Neurol 5:21–36CrossRef
go back to reference Szabo J (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp Neurol 27:1–15CrossRefPubMed Szabo J (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp Neurol 27:1–15CrossRefPubMed
go back to reference Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758CrossRefPubMed Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758CrossRefPubMed
go back to reference Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139:43–63CrossRefPubMed Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139:43–63CrossRefPubMed
Metadata
Title
How do cortico-striatal projections impact on downstream pallidal circuitry?
Authors
Sarah R. Heilbronner
Mariah A. A. Meyer
Eun Young Choi
Suzanne N. Haber
Publication date
01-07-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1662-9

Other articles of this Issue 6/2018

Brain Structure and Function 6/2018 Go to the issue