Skip to main content
Top
Published in: Brain Structure and Function 6/2018

01-07-2018 | Original Article

Pattern separation in the hippocampus: distinct circuits under different conditions

Authors: Randa Kassab, Frédéric Alexandre

Published in: Brain Structure and Function | Issue 6/2018

Login to get access

Abstract

Pattern separation is a fundamental hippocampal process thought to be critical for distinguishing similar episodic memories, and has long been recognized as a natural function of the dentate gyrus (DG), supporting autoassociative learning in CA3. Understanding how neural circuits within the DG-CA3 network mediate this process has received much interest, yet the exact mechanisms behind remain elusive. Here, we argue for the case that sparse coding is necessary but not sufficient to ensure efficient separation and, alternatively, propose a possible interaction of distinct circuits which, nevertheless, act in synergy to produce a unitary function of pattern separation. The proposed circuits involve different functional granule-cell populations, a primary population mediates sparsification and provides recurrent excitation to the other populations which are related to additional pattern separation mechanisms with higher degrees of robustness against interference in CA3. A variety of top-down and bottom-up factors, such as motivation, emotion, and pattern similarity, control the selection of circuitry depending on circumstances. According to this framework, a computational model is implemented and tested against model variants in a series of numerical simulations and biological experiments. The results demonstrate that the model combines fast learning, robust pattern separation and high storage capacity. It also accounts for the controversy around the involvement of the DG during memory recall, explains other puzzling findings, and makes predictions that can inform future investigations.
Appendix
Available only for authorised users
Literature
go back to reference Acsády L, Kamondi A, Sik A, Freund T, Buzsáki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18(9):3386–3403CrossRefPubMed Acsády L, Kamondi A, Sik A, Freund T, Buzsáki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18(9):3386–3403CrossRefPubMed
go back to reference Alme C, Buzzetti R, Marrone D, Leutgeb J, Chawla M, Schaner M et al (2010) Hippocampal granule cells opt for early retirement. Hippocampus 20(10):1109–1123CrossRefPubMed Alme C, Buzzetti R, Marrone D, Leutgeb J, Chawla M, Schaner M et al (2010) Hippocampal granule cells opt for early retirement. Hippocampus 20(10):1109–1123CrossRefPubMed
go back to reference Aloisi A, Casamenti F, Scali C, Carli GPGG (1997) Effects of novelty, pain and stress on hippocampal extracellular acetylcholine levels in male rats. Brain Res 748(1–2):219–226 Aloisi A, Casamenti F, Scali C, Carli GPGG (1997) Effects of novelty, pain and stress on hippocampal extracellular acetylcholine levels in male rats. Brain Res 748(1–2):219–226
go back to reference Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22CrossRefPubMedPubMedCentral Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22CrossRefPubMedPubMedCentral
go back to reference Amari S (1989) Characteristics of sparsely encoded associative memory. Neural Netw 2(6):451–457CrossRef Amari S (1989) Characteristics of sparsely encoded associative memory. Neural Netw 2(6):451–457CrossRef
go back to reference Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13(2):222–238PubMed Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13(2):222–238PubMed
go back to reference Berron D, Schütze H, Cardenas-Blanco AMA, Kuijf HJ, Kumaran D, Düzel E (2016) Strong evidence for pattern separation in human dentate gyrus. J Neurosci 36(29):7569–7579CrossRefPubMed Berron D, Schütze H, Cardenas-Blanco AMA, Kuijf HJ, Kumaran D, Düzel E (2016) Strong evidence for pattern separation in human dentate gyrus. J Neurosci 36(29):7569–7579CrossRefPubMed
go back to reference Bijak M, Misgeld U (1995) Adrenergic modulation of hilar neuron activity and granule cell inhibition in the guinea-pig hippocampal slice. Neuroscience 67(3):541–550CrossRef Bijak M, Misgeld U (1995) Adrenergic modulation of hilar neuron activity and granule cell inhibition in the guinea-pig hippocampal slice. Neuroscience 67(3):541–550CrossRef
go back to reference Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356CrossRefPubMedPubMedCentral Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356CrossRefPubMedPubMedCentral
go back to reference Buckmaster PS, Schwartzkroin PA (1994) Hippocampal mossy cell function: a speculative view. Hippocampus 4(4):393–402CrossRefPubMed Buckmaster PS, Schwartzkroin PA (1994) Hippocampal mossy cell function: a speculative view. Hippocampus 4(4):393–402CrossRefPubMed
go back to reference Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366(2):271–292CrossRef Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366(2):271–292CrossRef
go back to reference Chancey HJ, Poulsen DJ, Wadiche JI, Overstreet-Wadiche L (2014) Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci 34(6):2349–2354CrossRefPubMedPubMedCentral Chancey HJ, Poulsen DJ, Wadiche JI, Overstreet-Wadiche L (2014) Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci 34(6):2349–2354CrossRefPubMedPubMedCentral
go back to reference Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, Marriott LK et al (2005) Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15(5):579–586CrossRefPubMed Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, Marriott LK et al (2005) Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15(5):579–586CrossRefPubMed
go back to reference Clelland C, Choi M, Romberg C, Clemenson GJ, Fragniere A, Tyers P et al (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325(5937):210–213CrossRefPubMedPubMedCentral Clelland C, Choi M, Romberg C, Clemenson GJ, Fragniere A, Tyers P et al (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325(5937):210–213CrossRefPubMedPubMedCentral
go back to reference Crusio WE, Schwegler H (2005) Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behav Brain Funct 1:3CrossRefPubMedPubMedCentral Crusio WE, Schwegler H (2005) Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behav Brain Funct 1:3CrossRefPubMedPubMedCentral
go back to reference Daumas S, Halley H, Lassalle J-M (2004) Disruption of hippocampal CA3 network: effects on episodic-like memory processing in c57bl/6j mice. Eur J Neurosci 20(2):597–600CrossRefPubMed Daumas S, Halley H, Lassalle J-M (2004) Disruption of hippocampal CA3 network: effects on episodic-like memory processing in c57bl/6j mice. Eur J Neurosci 20(2):597–600CrossRefPubMed
go back to reference Daumas S, Ceccom J, Halley H, Francés B, Lassalle J-M (2009) Activation of metabotropic glutamate receptor type 2/3 supports the involvement of the hippocampal mossy fiber pathway on contextual fear memory consolidation. Learn Mem 16(8):504–507CrossRefPubMed Daumas S, Ceccom J, Halley H, Francés B, Lassalle J-M (2009) Activation of metabotropic glutamate receptor type 2/3 supports the involvement of the hippocampal mossy fiber pathway on contextual fear memory consolidation. Learn Mem 16(8):504–507CrossRefPubMed
go back to reference de Almeida L, Idiart M, Lisman JE (2007) Memory retrieval time and memory capacity of the CA3 network: role of gamma frequency oscillations. Learn Mem 14(11):795–806CrossRefPubMedPubMedCentral de Almeida L, Idiart M, Lisman JE (2007) Memory retrieval time and memory capacity of the CA3 network: role of gamma frequency oscillations. Learn Mem 14(11):795–806CrossRefPubMedPubMedCentral
go back to reference Deller T, Martinez A, Nitsch R, Frotscher M (1996) A novel entorhinal projection to the rat dentate gyrus: direct innervation of proximal dendrites and cell bodies of granule cells and GABAergic neurons. J Neurosci 16(10):3322–3333CrossRefPubMed Deller T, Martinez A, Nitsch R, Frotscher M (1996) A novel entorhinal projection to the rat dentate gyrus: direct innervation of proximal dendrites and cell bodies of granule cells and GABAergic neurons. J Neurosci 16(10):3322–3333CrossRefPubMed
go back to reference Deng W, Mayford M, Gage FH (2013) Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife 2:e00312CrossRefPubMedPubMedCentral Deng W, Mayford M, Gage FH (2013) Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife 2:e00312CrossRefPubMedPubMedCentral
go back to reference Dieni C, Nietz AK, Panichi R, Wadiche J, Overstreet-Wadiche L (2013) Distinct determinants of sparse activation during granule cell maturation. J Neurosci 33(49):19131–19142CrossRefPubMedPubMedCentral Dieni C, Nietz AK, Panichi R, Wadiche J, Overstreet-Wadiche L (2013) Distinct determinants of sparse activation during granule cell maturation. J Neurosci 33(49):19131–19142CrossRefPubMedPubMedCentral
go back to reference Duffy AM, Schaner MJ, Chin J, Scharfman HE (2013) Expression of c-fos in hilar mossy cells of the dentate gyrus in vivo. Hippocampus 23(8):649–655CrossRef Duffy AM, Schaner MJ, Chin J, Scharfman HE (2013) Expression of c-fos in hilar mossy cells of the dentate gyrus in vivo. Hippocampus 23(8):649–655CrossRef
go back to reference Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44(1):109–120CrossRef Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44(1):109–120CrossRef
go back to reference Galimberti I, Bednarek E, Donato F, Caroni P (2010) Epha4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus. Neuron 65(5):627–642CrossRef Galimberti I, Bednarek E, Donato F, Caroni P (2010) Epha4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus. Neuron 65(5):627–642CrossRef
go back to reference Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54(4):559–566CrossRef Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54(4):559–566CrossRef
go back to reference Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: double dissociation between dentate gyrus and ca1. Hippocampus 11(6):626–636CrossRef Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: double dissociation between dentate gyrus and ca1. Hippocampus 11(6):626–636CrossRef
go back to reference Gluck MA, Meeter M, Myers CE (2003) Computational models of the hippocampal region: linking incremental learning and episodic memory. Trends Cognit Sci 7(6):269–276CrossRef Gluck MA, Meeter M, Myers CE (2003) Computational models of the hippocampal region: linking incremental learning and episodic memory. Trends Cognit Sci 7(6):269–276CrossRef
go back to reference Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2008) The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. Behav Neurosci 122(1):16–26CrossRefPubMed Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2008) The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. Behav Neurosci 122(1):16–26CrossRefPubMed
go back to reference Hasselmo ME, Wyble BP, Wallenstein GV (1996) Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus 6(6):693–708CrossRefPubMed Hasselmo ME, Wyble BP, Wallenstein GV (1996) Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus 6(6):693–708CrossRefPubMed
go back to reference Hasselmo ME, Bodelón C, Wyble BP (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput 14(4):793–817CrossRefPubMed Hasselmo ME, Bodelón C, Wyble BP (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput 14(4):793–817CrossRefPubMed
go back to reference Hetherington PA, Austin KB, Shapiro ML (1994) Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-d-aspartate-dependent long-term potentiation. Hippocampus 4(4):422–438CrossRef Hetherington PA, Austin KB, Shapiro ML (1994) Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-d-aspartate-dependent long-term potentiation. Hippocampus 4(4):422–438CrossRef
go back to reference Hunsaker MR, Rosenberg JS, Kesner RP (2008) The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty. Hippocampus 18(10):1064–1073CrossRefPubMed Hunsaker MR, Rosenberg JS, Kesner RP (2008) The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty. Hippocampus 18(10):1064–1073CrossRefPubMed
go back to reference Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from ca3 pyramidal cells in the rat. J Comp Neurol 295(4):580–623CrossRefPubMed Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from ca3 pyramidal cells in the rat. J Comp Neurol 295(4):580–623CrossRefPubMed
go back to reference Jackson MB, Scharfman HE (1996), Positive feedback ) from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J Neurophysiol 76(1):601–616CrossRef Jackson MB, Scharfman HE (1996), Positive feedback ) from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J Neurophysiol 76(1):601–616CrossRef
go back to reference Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K et al. (2012) Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76(6):1189–1200CrossRef Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K et al. (2012) Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76(6):1189–1200CrossRef
go back to reference Kassab R, Alexandre F (2015) Integration of exteroceptive and interoceptive information within the hippocampus: a computational study. Front Syst Neurosci 5(9):87 Kassab R, Alexandre F (2015) Integration of exteroceptive and interoceptive information within the hippocampus: a computational study. Front Syst Neurosci 5(9):87
go back to reference Kee N, Teixeira C, Wang A, Frankland P (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10(3):355–362CrossRef Kee N, Teixeira C, Wang A, Frankland P (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10(3):355–362CrossRef
go back to reference Kennedy PJ, Shapiro ML (2009) Motivational states activate distinct hippocampal representations to guide goal-directed behaviors. Proc Natl Acad Sci USA 106:10805–10810CrossRef Kennedy PJ, Shapiro ML (2009) Motivational states activate distinct hippocampal representations to guide goal-directed behaviors. Proc Natl Acad Sci USA 106:10805–10810CrossRef
go back to reference Kleschevnikov AM, Routtenberg A (2003) Long-term potentiation recruits a trisynaptic excitatory associative network within the mouse dentate gyrus. Eur J Neurosci 17(12):2690–2702CrossRef Kleschevnikov AM, Routtenberg A (2003) Long-term potentiation recruits a trisynaptic excitatory associative network within the mouse dentate gyrus. Eur J Neurosci 17(12):2690–2702CrossRef
go back to reference Knoblauch A, Palm G, Sommer FT (2010) Memory capacities for synaptic and structural plasticity. Neural Comput 22(2):289–341CrossRefPubMed Knoblauch A, Palm G, Sommer FT (2010) Memory capacities for synaptic and structural plasticity. Neural Comput 22(2):289–341CrossRefPubMed
go back to reference Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71(3):512–528CrossRef Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71(3):512–528CrossRef
go back to reference Larimer P, Strowbridge BW (2010) Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat Neurosci 13(2):213–222CrossRef Larimer P, Strowbridge BW (2010) Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat Neurosci 13(2):213–222CrossRef
go back to reference Lassalle JM, Bataille T, Halley H (2000) Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiol Learn Mem 73(3):243–257CrossRef Lassalle JM, Bataille T, Halley H (2000) Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiol Learn Mem 73(3):243–257CrossRef
go back to reference Lee I, Kesner RP (2004) Encoding versus retrieval of spatial memory: double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus 14(1):66–76CrossRefPubMed Lee I, Kesner RP (2004) Encoding versus retrieval of spatial memory: double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus 14(1):66–76CrossRefPubMed
go back to reference Lee I, Hunsaker M, Kesner R (2005) The role of hippocampal subregions in detecting spatial novelty. Behav Neurosci 119(1):145–153CrossRef Lee I, Hunsaker M, Kesner R (2005) The role of hippocampal subregions in detecting spatial novelty. Behav Neurosci 119(1):145–153CrossRef
go back to reference Leutgeb JK, Leutgeb S, Moser M-B, Moser EI (2007) Pattern separation in the dentate gyrus and ca3 of the hippocampus. Science 315(5814):961–966CrossRefPubMed Leutgeb JK, Leutgeb S, Moser M-B, Moser EI (2007) Pattern separation in the dentate gyrus and ca3 of the hippocampus. Science 315(5814):961–966CrossRefPubMed
go back to reference Li X, Somogyi P, Ylinen A, Buzsáki G (1994) The hippocampal ca3 network: an in vivo intracellular labeling study. J Comp Neurol 339(2):181–208CrossRefPubMed Li X, Somogyi P, Ylinen A, Buzsáki G (1994) The hippocampal ca3 network: an in vivo intracellular labeling study. J Comp Neurol 339(2):181–208CrossRefPubMed
go back to reference Lisman JE (1999), Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentateCA3 interactions. Neuron 22(2):233–242CrossRef Lisman JE (1999), Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentateCA3 interactions. Neuron 22(2):233–242CrossRef
go back to reference Lopez-Rojas J, Kreutz MR (2016) Mature granule cells of the dentate gyrus—passive bystanders or principal performers in hippocampal function. Neurosci Biobehav Rev 64:167–174CrossRefPubMed Lopez-Rojas J, Kreutz MR (2016) Mature granule cells of the dentate gyrus—passive bystanders or principal performers in hippocampal function. Neurosci Biobehav Rev 64:167–174CrossRefPubMed
go back to reference Lysetskiy M, Földy C, Soltesz I (2005) Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus 15(6):691–696CrossRefPubMed Lysetskiy M, Földy C, Soltesz I (2005) Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus 15(6):691–696CrossRefPubMed
go back to reference Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond Ser B Biol Sci 262(841):23–81CrossRef Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond Ser B Biol Sci 262(841):23–81CrossRef
go back to reference McHugh T, Jones M, Quinn J, Balthasar N, Coppari R, Elmquist J et al (2007) Dentate gyrus nmda receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99CrossRefPubMed McHugh T, Jones M, Quinn J, Balthasar N, Coppari R, Elmquist J et al (2007) Dentate gyrus nmda receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99CrossRefPubMed
go back to reference McNaughton BL, Nadel L (1990) Hebb-Marr networks and the neurobiological representation of action in space. In: Gluck MA, Rumelhart DE (eds) Neuroscience and connectionist theory. L. Erlbaum, Hillsdale, pp 1–64 McNaughton BL, Nadel L (1990) Hebb-Marr networks and the neurobiological representation of action in space. In: Gluck MA, Rumelhart DE (eds) Neuroscience and connectionist theory. L. Erlbaum, Hillsdale, pp 1–64
go back to reference McNaughton BL, Barnes CA, Mizomori SY, Green EJ, Sharp PE (1991). The contribution of granule cells to spatial representation in hippocampal circuits: a puzzle. In: Morrell F (ed) Kindling and synaptic plasticity: the legacy of graham goddard. Springer, Boston, pp 110–123 McNaughton BL, Barnes CA, Mizomori SY, Green EJ, Sharp PE (1991). The contribution of granule cells to spatial representation in hippocampal circuits: a puzzle. In: Morrell F (ed) Kindling and synaptic plasticity: the legacy of graham goddard. Springer, Boston, pp 110–123
go back to reference Morris RGM (2001) Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356(1413):1453–1465CrossRefPubMedPubMedCentral Morris RGM (2001) Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356(1413):1453–1465CrossRefPubMedPubMedCentral
go back to reference Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21(11):1190–1215CrossRef Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21(11):1190–1215CrossRef
go back to reference Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ et al (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1):188–201CrossRefPubMedPubMedCentral Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ et al (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1):188–201CrossRefPubMedPubMedCentral
go back to reference O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus 4(6):661–682 O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus 4(6):661–682
go back to reference O’Reilly RC, Rudy JW (2001) Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev 108(2):311–345CrossRefPubMed O’Reilly RC, Rudy JW (2001) Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev 108(2):311–345CrossRefPubMed
go back to reference Restivo L, Niibori Y, Mercaldo V, Josselyn SA, Frankland PW (2015) Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. J Neurosci 35(29):10600–10612CrossRefPubMed Restivo L, Niibori Y, Mercaldo V, Josselyn SA, Frankland PW (2015) Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. J Neurosci 35(29):10600–10612CrossRefPubMed
go back to reference Ribak CE, Peterson GM (1991) Intragranular mossy fibers in rats and gerbils form synapses with the somata and proximal dendrites of basket cells in the dentate gyrus. Hippocampus 1(4):355–364CrossRef Ribak CE, Peterson GM (1991) Intragranular mossy fibers in rats and gerbils form synapses with the somata and proximal dendrites of basket cells in the dentate gyrus. Hippocampus 1(4):355–364CrossRef
go back to reference Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, Oxford Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, Oxford
go back to reference Römer B, Krebs J, Overall RW, Fabel K, Babu H, Overstreet-Wadiche L et al (2011) Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: I. co-regulation by activity. Front Neurosci 5:107CrossRefPubMedPubMedCentral Römer B, Krebs J, Overall RW, Fabel K, Babu H, Overstreet-Wadiche L et al (2011) Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: I. co-regulation by activity. Front Neurosci 5:107CrossRefPubMedPubMedCentral
go back to reference Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B et al (2011) Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473(7348):514–518CrossRefPubMed Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B et al (2011) Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473(7348):514–518CrossRefPubMed
go back to reference Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11(6):1660–1673CrossRefPubMed Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11(6):1660–1673CrossRefPubMed
go back to reference Scharfman HE (1994) Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J Neurophysiol 72:2167–2180CrossRefPubMed Scharfman HE (1994) Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J Neurophysiol 72:2167–2180CrossRefPubMed
go back to reference Scharfman HE, (1995) Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol 74(1):179–194CrossRef Scharfman HE, (1995) Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol 74(1):179–194CrossRef
go back to reference Scharfman HE (2007) The CA3 “backprojection” to the dentate gyrus. Prog Brain Res 163:627–637 Scharfman HE (2007) The CA3 “backprojection” to the dentate gyrus. Prog Brain Res 163:627–637
go back to reference Scharfman H, Sollas A, Smith K, Jackson M, Goodman J (2002) Structural and functional asymmetry in the normal and epileptic rat dentate gyrus. J Comp Neurol 454(4):424–439CrossRef Scharfman H, Sollas A, Smith K, Jackson M, Goodman J (2002) Structural and functional asymmetry in the normal and epileptic rat dentate gyrus. J Comp Neurol 454(4):424–439CrossRef
go back to reference Segal SK, Stark SM, Kattan D, Stark CE, Yassa MA (2012) Norepinephrine-mediated emotional arousal facilitates subsequent pattern separation. Neurobiol Learn Mem 97(4):465–469CrossRefPubMedPubMedCentral Segal SK, Stark SM, Kattan D, Stark CE, Yassa MA (2012) Norepinephrine-mediated emotional arousal facilitates subsequent pattern separation. Neurobiol Learn Mem 97(4):465–469CrossRefPubMedPubMedCentral
go back to reference Seress L, Pokorny J (1981) Structure of the granular layer of the rat dentate gyrus. a light microscopic and golgi study. J Anat 133(Pt 2):181–195 Seress L, Pokorny J (1981) Structure of the granular layer of the rat dentate gyrus. a light microscopic and golgi study. J Anat 133(Pt 2):181–195
go back to reference Toni N, Laplagne D, Zhao C, Lombardi G, Ribak C, Gage F et al (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11(8):901–907CrossRefPubMedPubMedCentral Toni N, Laplagne D, Zhao C, Lombardi G, Ribak C, Gage F et al (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11(8):901–907CrossRefPubMedPubMedCentral
go back to reference Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4(3):374–391CrossRefPubMed Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4(3):374–391CrossRefPubMed
go back to reference Treves A, Tashiro A, Witter M, Moser E (2008) What is the mammalian dentate gyrus good for? Neuroscience 154(4):1155–1172CrossRefPubMed Treves A, Tashiro A, Witter M, Moser E (2008) What is the mammalian dentate gyrus good for? Neuroscience 154(4):1155–1172CrossRefPubMed
go back to reference Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of memory. Academic, New York, pp 382–402 Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of memory. Academic, New York, pp 382–402
go back to reference Vago D, Kesner R (2008) Disruption of the direct perforant path input to the ca1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection. Behav Brain Res 189(2):273–283CrossRef Vago D, Kesner R (2008) Disruption of the direct perforant path input to the ca1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection. Behav Brain Res 189(2):273–283CrossRef
go back to reference Weisz VI, Argibay PF (2009) A putative role for neurogenesis in neurocomputational terms: inferences from a hippocampal model. Cognition 112(2):229–240CrossRefPubMed Weisz VI, Argibay PF (2009) A putative role for neurogenesis in neurocomputational terms: inferences from a hippocampal model. Cognition 112(2):229–240CrossRefPubMed
go back to reference West M, Slomianka L, Gundersen H (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231(4):482–497CrossRef West M, Slomianka L, Gundersen H (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231(4):482–497CrossRef
go back to reference Wills T, Lever C, Cacucci F, Burgess N, O’Keefe J (2005) Attractor dynamics in the hippocampal representation of the local environment. Science 308(5723):873–876CrossRefPubMedPubMedCentral Wills T, Lever C, Cacucci F, Burgess N, O’Keefe J (2005) Attractor dynamics in the hippocampal representation of the local environment. Science 308(5723):873–876CrossRefPubMedPubMedCentral
go back to reference Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memory. Nature 222(5197):960–962CrossRefPubMed Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memory. Nature 222(5197):960–962CrossRefPubMed
go back to reference Wiskott L, Rasch M, Kempermann G (2006) A functional hypothesis for adult hippocampal neurogenesis: avoidance of catastrophic interference in the dentate gyrus. Hippocampus 16(3):329–343CrossRef Wiskott L, Rasch M, Kempermann G (2006) A functional hypothesis for adult hippocampal neurogenesis: avoidance of catastrophic interference in the dentate gyrus. Hippocampus 16(3):329–343CrossRef
go back to reference Witter MP (2010) Connectivity of the hippocampus. In: Cutsuridis V, Graham BP, Cobb S, Vida I (eds) Hippocampal microcircuits: a computational modelers resource book. Springer, New York, pp 5–26CrossRef Witter MP (2010) Connectivity of the hippocampus. In: Cutsuridis V, Graham BP, Cobb S, Vida I (eds) Hippocampal microcircuits: a computational modelers resource book. Springer, New York, pp 5–26CrossRef
go back to reference Wittner L, Henze DA, Záborszky L, Buzsáki G (2006) Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons. Eur J Neurosci 24(5):1286–1298CrossRefPubMed Wittner L, Henze DA, Záborszky L, Buzsáki G (2006) Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons. Eur J Neurosci 24(5):1286–1298CrossRefPubMed
go back to reference Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. Trends Neurosci 34(10):515–525CrossRef Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. Trends Neurosci 34(10):515–525CrossRef
go back to reference Yu E, Dengler C, Frausto S, Putt M, Yue C, Takano H et al (2013) Protracted postnatal development of sparse, specific dentate granule cell activation in the mouse hippocampus. J Neurosci 33(7):2947–2960CrossRefPubMedPubMedCentral Yu E, Dengler C, Frausto S, Putt M, Yue C, Takano H et al (2013) Protracted postnatal development of sparse, specific dentate granule cell activation in the mouse hippocampus. J Neurosci 33(7):2947–2960CrossRefPubMedPubMedCentral
Metadata
Title
Pattern separation in the hippocampus: distinct circuits under different conditions
Authors
Randa Kassab
Frédéric Alexandre
Publication date
01-07-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1659-4

Other articles of this Issue 6/2018

Brain Structure and Function 6/2018 Go to the issue