Skip to main content
Top
Published in: Brain Structure and Function 4/2018

01-05-2018 | Original Article

Plasticity in deep and superficial white matter: a DTI study in world class gymnasts

Authors: Feng Deng, Ling Zhao, Chunlei Liu, Min Lu, Shufei Zhang, Huiyuan Huang, Lixiang Chen, Xiaoyan Wu, Chen Niu, Yuan He, Jun Wang, Ruiwang Huang

Published in: Brain Structure and Function | Issue 4/2018

Login to get access

Abstract

Brain white matter (WM) could be generally categorized into two types, deep and superficial WM. Studies combining these two types WM are important for a better understanding of brain plasticity induced by motor training. In this study, we applied both univariate and multivariate approaches to study gymnastic training-induced plasticity in brain WM. Specifically, we acquired diffusion tensor imaging data from 13 world class gymnasts and 14 non-athlete normal controls, reconstructed brain deep and superficial WM tracts, estimated and compared their fractional anisotropy (FA) difference between the two groups. Taking FA values as the features, we applied logistic regression and support vector machine to distinguish the gymnasts from the controls. Compared to the controls, the gymnasts showed lower FA in four regional deep WM tracts, including the occipital lobe portion of left inferior fronto-occipital fasciculus (IFOF.L), occipital and temporal lobe portion of right inferior longitudinal fasciculus (ILF.R), insular cortex portion of right uncinate fasciculus (UF.R), and parietal lobe portion of right arcuate fasciculus (AF.R). Meanwhile, we found lower FA in the superficial U-shaped tracts within the frontal lobe in the gymnasts compared to the controls. In addition, we detected that mean FA in either the AF.R or the U-shaped tracts connecting the left pars triangularis and superior frontal gyrus was negatively correlated with years of training in the gymnasts. Classification analyses indicated FA in deep WM hold higher potential to distinguish the gymnasts from the controls. Overall, our findings provide a more complete picture of training-induced plasticity in brain WM.
Appendix
Available only for authorised users
Literature
go back to reference Alexander DC et al (2001) Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging 20(11):1131–1139PubMedCrossRef Alexander DC et al (2001) Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging 20(11):1131–1139PubMedCrossRef
go back to reference Anderson EJ et al (2012) Cortical network for gaze control in humans revealed using multimodal MRI. Cereb Cortex 22(4):765–775PubMedCrossRef Anderson EJ et al (2012) Cortical network for gaze control in humans revealed using multimodal MRI. Cereb Cortex 22(4):765–775PubMedCrossRef
go back to reference Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. Am J Neuroradiol 21(6):1099PubMed Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. Am J Neuroradiol 21(6):1099PubMed
go back to reference Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25(1):5PubMedCrossRef Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25(1):5PubMedCrossRef
go back to reference Behrens TE et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757PubMedCrossRef Behrens TE et al (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757PubMedCrossRef
go back to reference Behrens TE et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1):144–155PubMedCrossRef Behrens TE et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1):144–155PubMedCrossRef
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc 57(1):289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc 57(1):289–300
go back to reference Bisley JW, Goldberg ME (2003) Neuronal activity in the lateral intraparietal area and spatial attention. Science 299(5603):81–86PubMedCrossRef Bisley JW, Goldberg ME (2003) Neuronal activity in the lateral intraparietal area and spatial attention. Science 299(5603):81–86PubMedCrossRef
go back to reference Butt A, Berry M (2000) Oligodendrocytes and the control of myelination in vivo: new insights from the rat anterior medullary velum. J Neurosci Res 59(4):477–488PubMedCrossRef Butt A, Berry M (2000) Oligodendrocytes and the control of myelination in vivo: new insights from the rat anterior medullary velum. J Neurosci Res 59(4):477–488PubMedCrossRef
go back to reference Button KS et al (2013) Power failure: Why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14(5):365PubMedCrossRef Button KS et al (2013) Power failure: Why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14(5):365PubMedCrossRef
go back to reference Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. Acm Trans Intell Syst Technol 2(3):27CrossRef Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. Acm Trans Intell Syst Technol 2(3):27CrossRef
go back to reference IBM Corp (2011) IBM SPSS Statistics for Windows, Version 20.0. IBM Corp, Armonk, NY IBM Corp (2011) IBM SPSS Statistics for Windows, Version 20.0. IBM Corp, Armonk, NY
go back to reference Draganski B et al (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312PubMedCrossRef Draganski B et al (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312PubMedCrossRef
go back to reference Fan L et al (2014) Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging. Cereb Cortex 24(12):3365–3378PubMedCrossRef Fan L et al (2014) Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging. Cereb Cortex 24(12):3365–3378PubMedCrossRef
go back to reference Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15(6):626–631PubMedCrossRef Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15(6):626–631PubMedCrossRef
go back to reference Griswold MA et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210PubMedCrossRef Griswold MA et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210PubMedCrossRef
go back to reference Grotegerd D et al (2014) MANIA-a pattern classification toolbox for neuroimaging data. Neuroinformatics 12(3):471–486PubMedCrossRef Grotegerd D et al (2014) MANIA-a pattern classification toolbox for neuroimaging data. Neuroinformatics 12(3):471–486PubMedCrossRef
go back to reference Halsband U, Lange RK (2006) Motor learning in man: a review of functional and clinical studies. J Physiol Paris 99(4):414–424PubMedCrossRef Halsband U, Lange RK (2006) Motor learning in man: a review of functional and clinical studies. J Physiol Paris 99(4):414–424PubMedCrossRef
go back to reference Hanggi J et al (2010) Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Hum Brain Mapp 31(8):(1196–1206)PubMed Hanggi J et al (2010) Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Hum Brain Mapp 31(8):(1196–1206)PubMed
go back to reference Hartzell JF et al (2016) Brains of verbal memory specialists show anatomical differences in language, memory and visual systems. Neuroimage 131:181–192PubMedCrossRef Hartzell JF et al (2016) Brains of verbal memory specialists show anatomical differences in language, memory and visual systems. Neuroimage 131:181–192PubMedCrossRef
go back to reference Hoeft F et al (2007) More is not always better: increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome. J Neurosci 27(44):11960–11965PubMedCrossRef Hoeft F et al (2007) More is not always better: increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome. J Neurosci 27(44):11960–11965PubMedCrossRef
go back to reference Hua K et al (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39(1):336–347PubMedCrossRef Hua K et al (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39(1):336–347PubMedCrossRef
go back to reference Huang R et al (2015) Long-term intensive training induced brain structural changes in world class gymnasts. Brain Struct Funct 220(2):625–644PubMedCrossRef Huang R et al (2015) Long-term intensive training induced brain structural changes in world class gymnasts. Brain Struct Funct 220(2):625–644PubMedCrossRef
go back to reference Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156PubMedCrossRef Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156PubMedCrossRef
go back to reference Johansenberg H, Rushworth MF (2009) Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci 32(1):75CrossRef Johansenberg H, Rushworth MF (2009) Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci 32(1):75CrossRef
go back to reference Johnson RT et al (2014) Diffusion properties of major white matter tracts in young, typically developing children. Neuroimage 88(2):143–154PubMedCrossRef Johnson RT et al (2014) Diffusion properties of major white matter tracts in young, typically developing children. Neuroimage 88(2):143–154PubMedCrossRef
go back to reference Jones DK (2010) Diffusion MRI: Theory, Methods, and Applications. Springer, New York, p 371 Jones DK (2010) Diffusion MRI: Theory, Methods, and Applications. Springer, New York, p 371
go back to reference Karnath HO et al (2004) The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. Cereb Cortex 14(10):1164PubMedCrossRef Karnath HO et al (2004) The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. Cereb Cortex 14(10):1164PubMedCrossRef
go back to reference Konrad A, Winterer G (2008) Disturbed structural connectivity in schizophrenia—primary factor in pathology or epiphenomenon? Schizophr Bull 34(1):72–92PubMedCrossRef Konrad A, Winterer G (2008) Disturbed structural connectivity in schizophrenia—primary factor in pathology or epiphenomenon? Schizophr Bull 34(1):72–92PubMedCrossRef
go back to reference Landi SM, Baguear F, Della-Maggiore V (2011) One week of motor adaptation induces structural changes in primary motor cortex that predict long-term memory one year later. J Neurosci 31(33):11808–11813PubMedPubMedCentralCrossRef Landi SM, Baguear F, Della-Maggiore V (2011) One week of motor adaptation induces structural changes in primary motor cortex that predict long-term memory one year later. J Neurosci 31(33):11808–11813PubMedPubMedCentralCrossRef
go back to reference Lebel C et al (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60(1):340PubMedCrossRef Lebel C et al (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60(1):340PubMedCrossRef
go back to reference Liu M et al (2016) The superficial white matter in temporal lobe epilepsy: a key link between structural and functional network disruptions. Brain 139(9):2431PubMedPubMedCentralCrossRef Liu M et al (2016) The superficial white matter in temporal lobe epilepsy: a key link between structural and functional network disruptions. Brain 139(9):2431PubMedPubMedCentralCrossRef
go back to reference Makris N et al (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15(6):854–869PubMedCrossRef Makris N et al (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15(6):854–869PubMedCrossRef
go back to reference Maricich S et al (2007) Myelination as assessed by conventional MR imaging is normal in young children with idiopathic developmental delay. AJNR American journal of neuroradiology 28(8):1602–1605PubMedCrossRef Maricich S et al (2007) Myelination as assessed by conventional MR imaging is normal in young children with idiopathic developmental delay. AJNR American journal of neuroradiology 28(8):1602–1605PubMedCrossRef
go back to reference Nazeri A et al (2013) Alterations of superficial white matter in schizophrenia and relationship to cognitive performance. Neuropsychopharmacology 38(10):1954PubMedPubMedCentralCrossRef Nazeri A et al (2013) Alterations of superficial white matter in schizophrenia and relationship to cognitive performance. Neuropsychopharmacology 38(10):1954PubMedPubMedCentralCrossRef
go back to reference Nazeri A et al (2015) Superficial white matter as a novel substrate of age-related cognitive decline. Neurobiol Aging 36(6):2094–2106PubMedCrossRef Nazeri A et al (2015) Superficial white matter as a novel substrate of age-related cognitive decline. Neurobiol Aging 36(6):2094–2106PubMedCrossRef
go back to reference Nichols TE, Holmes AP (2002) Nonparametric Permutation Tests For Functional Neuroimaging: A Primer with Examples. Hum Brain Mapp 15(1):1PubMedCrossRef Nichols TE, Holmes AP (2002) Nonparametric Permutation Tests For Functional Neuroimaging: A Primer with Examples. Hum Brain Mapp 15(1):1PubMedCrossRef
go back to reference Oechslin MS et al (2009) The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Front Human Neurosci 3(1):76 Oechslin MS et al (2009) The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Front Human Neurosci 3(1):76
go back to reference Oishi K et al (2008) Human brain white matter atlas: Identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43(3):447–457PubMedPubMedCentralCrossRef Oishi K et al (2008) Human brain white matter atlas: Identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43(3):447–457PubMedPubMedCentralCrossRef
go back to reference Oishi K et al (2011) Superficially Located White Matter Structures Commonly Seen in the Human and the Macaque Brain with Diffusion Tensor Imaging. Brain Connect 1(1):37–47PubMedPubMedCentralCrossRef Oishi K et al (2011) Superficially Located White Matter Structures Commonly Seen in the Human and the Macaque Brain with Diffusion Tensor Imaging. Brain Connect 1(1):37–47PubMedPubMedCentralCrossRef
go back to reference Park IS et al (2015) White matter plasticity in the cerebellum of elite basketball athletes. Anatomy Cell Biol 48(4):262–267CrossRef Park IS et al (2015) White matter plasticity in the cerebellum of elite basketball athletes. Anatomy Cell Biol 48(4):262–267CrossRef
go back to reference Pereira F, Botvinick MM (2009) Machine learning classifiers and fMRI: A tutorial overview. Neuroimage 45(1):S199-S209CrossRef Pereira F, Botvinick MM (2009) Machine learning classifiers and fMRI: A tutorial overview. Neuroimage 45(1):S199-S209CrossRef
go back to reference Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228(1):105–116PubMedCrossRef Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228(1):105–116PubMedCrossRef
go back to reference Petrides M, Pandya DN (1988) Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J Comp Neurol 273(1):52PubMedCrossRef Petrides M, Pandya DN (1988) Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J Comp Neurol 273(1):52PubMedCrossRef
go back to reference Pierpaoli C et al (2001) Diffusion tensor MR imaging of the human brain. Radiology 201(3):637CrossRef Pierpaoli C et al (2001) Diffusion tensor MR imaging of the human brain. Radiology 201(3):637CrossRef
go back to reference Reveley C et al (2015) Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci USA 112(21):E2820PubMedPubMedCentralCrossRef Reveley C et al (2015) Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci USA 112(21):E2820PubMedPubMedCentralCrossRef
go back to reference Schmahmann JD et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130(3):630PubMedCrossRef Schmahmann JD et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130(3):630PubMedCrossRef
go back to reference Schüz A, Braitenberg V, Miller R (2002) The human cortical white matter: quantitative aspects of cortico-cortical long-range connectivity. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor Francis, London, UK, pp 377–385 Schüz A, Braitenberg V, Miller R (2002) The human cortical white matter: quantitative aspects of cortico-cortical long-range connectivity. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor Francis, London, UK, pp 377–385
go back to reference Sexton CE et al (2016) A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. Neuroimage 131:81–90PubMedPubMedCentralCrossRef Sexton CE et al (2016) A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. Neuroimage 131:81–90PubMedPubMedCentralCrossRef
go back to reference Smith SM et al (2006) Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505PubMedCrossRef Smith SM et al (2006) Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505PubMedCrossRef
go back to reference Specht K, Reul J (2003) Functional segregation of the temporal lobes into highly differentiated subsystems for auditory perception: an auditory rapid event-related fMRI-task. Acta Pol Pharm 20(4):1944 Specht K, Reul J (2003) Functional segregation of the temporal lobes into highly differentiated subsystems for auditory perception: an auditory rapid event-related fMRI-task. Acta Pol Pharm 20(4):1944
go back to reference Stuss DT, Alexander MP, Floden D, Binns MA, Levine B, Mcintosh AR et al (2002) Fractionation and localization of distinct frontal lobe processes: evidence from focal lesions in humans. In: Stuss DT, Knight RT (eds) Principles of Frontal Lobe Function. pp 392–407 Stuss DT, Alexander MP, Floden D, Binns MA, Levine B, Mcintosh AR et al (2002) Fractionation and localization of distinct frontal lobe processes: evidence from focal lesions in humans. In: Stuss DT, Knight RT (eds) Principles of Frontal Lobe Function. pp 392–407
go back to reference Szeszko PR, Kingsley PB (2010) MRI atlas of human white matter. Concepts Magn Resonan Part A 28A(2):180–181CrossRef Szeszko PR, Kingsley PB (2010) MRI atlas of human white matter. Concepts Magn Resonan Part A 28A(2):180–181CrossRef
go back to reference Taubert M et al (2010) Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci 30(35):11670–11677PubMedCrossRef Taubert M et al (2010) Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci 30(35):11670–11677PubMedCrossRef
go back to reference Umarova RM et al (2010) Structural connectivity for visuospatial attention: significance of ventral pathways. Cereb Cortex 20(1):121–129PubMedCrossRef Umarova RM et al (2010) Structural connectivity for visuospatial attention: significance of ventral pathways. Cereb Cortex 20(1):121–129PubMedCrossRef
go back to reference Von Der Heide RJ et al (2013) Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 136(6):1692CrossRef Von Der Heide RJ et al (2013) Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 136(6):1692CrossRef
go back to reference Wang B et al (2013) Brain anatomical networks in world class gymnasts: a DTI tractography study. Neuroimage 65(1):476PubMedCrossRef Wang B et al (2013) Brain anatomical networks in world class gymnasts: a DTI tractography study. Neuroimage 65(1):476PubMedCrossRef
go back to reference Wang X et al (2014) White matter microstructure changes induced by motor skill learning utilizing a body machine interface. Neuroimage 88(3):32–40PubMedCrossRef Wang X et al (2014) White matter microstructure changes induced by motor skill learning utilizing a body machine interface. Neuroimage 88(3):32–40PubMedCrossRef
go back to reference Wu M et al (2014) Development of superficial white matter and its structural interplay with cortical gray matter in children and adolescents. Hum Brain Mapp 35(6):2806PubMedCrossRef Wu M et al (2014) Development of superficial white matter and its structural interplay with cortical gray matter in children and adolescents. Hum Brain Mapp 35(6):2806PubMedCrossRef
go back to reference Wu M, Kumar A, Yang S (2016) Development and aging of superficial white matter myelin from young adulthood to old age: Mapping by vertex-based surface statistics (VBSS). Hum Brain Mapp 37(5):1759PubMedCrossRef Wu M, Kumar A, Yang S (2016) Development and aging of superficial white matter myelin from young adulthood to old age: Mapping by vertex-based surface statistics (VBSS). Hum Brain Mapp 37(5):1759PubMedCrossRef
go back to reference Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536PubMedPubMedCentralCrossRef Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536PubMedPubMedCentralCrossRef
Metadata
Title
Plasticity in deep and superficial white matter: a DTI study in world class gymnasts
Authors
Feng Deng
Ling Zhao
Chunlei Liu
Min Lu
Shufei Zhang
Huiyuan Huang
Lixiang Chen
Xiaoyan Wu
Chen Niu
Yuan He
Jun Wang
Ruiwang Huang
Publication date
01-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1594-9

Other articles of this Issue 4/2018

Brain Structure and Function 4/2018 Go to the issue