Skip to main content
Top
Published in: Brain Structure and Function 3/2018

Open Access 01-04-2018 | Original Article

Multi-scale account of the network structure of macaque visual cortex

Authors: Maximilian Schmidt, Rembrandt Bakker, Claus C. Hilgetag, Markus Diesmann, Sacha J. van Albada

Published in: Brain Structure and Function | Issue 3/2018

Login to get access

Abstract

Cortical network structure has been extensively characterized at the level of local circuits and in terms of long-range connectivity, but seldom in a manner that integrates both of these scales. Furthermore, while the connectivity of cortex is known to be related to its architecture, this knowledge has not been used to derive a comprehensive cortical connectivity map. In this study, we integrate data on cortical architecture and axonal tracing data into a consistent multi-scale framework of the structure of one hemisphere of macaque vision-related cortex. The connectivity model predicts the connection probability between any two neurons based on their types and locations within areas and layers. Our analysis reveals regularities of cortical structure. We confirm that cortical thickness decays with cell density. A gradual reduction in neuron density together with the relative constancy of the volume density of synapses across cortical areas yields denser connectivity in visual areas more remote from sensory inputs and of lower structural differentiation. Further, we find a systematic relation between laminar patterns on source and target sides of cortical projections, extending previous findings from combined anterograde and retrograde tracing experiments. Going beyond the classical schemes, we statistically assign synapses to target neurons based on anatomical reconstructions, which suggests that layer 4 neurons receive substantial feedback input. Our derived connectivity exhibits a community structure that corresponds more closely with known functional groupings than previous connectivity maps and identifies layer-specific directional differences in cortico-cortical pathways. The resulting network can form the basis for studies relating structure to neural dynamics in mammalian cortex at multiple scales.
Appendix
Available only for authorised users
Literature
go back to reference Angelucci A, Levitt JB, Lund JS (2002) Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Prog Brain Res 136:373–388PubMedCrossRef Angelucci A, Levitt JB, Lund JS (2002) Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Prog Brain Res 136:373–388PubMedCrossRef
go back to reference Ascoli GA, Donohue DE, Halavi M (2007) Neuromorpho.org: a central resource for neuronal morphologies. J Neurosci 27(35):9247–9251PubMedCrossRef Ascoli GA, Donohue DE, Halavi M (2007) Neuromorpho.org: a central resource for neuronal morphologies. J Neurosci 27(35):9247–9251PubMedCrossRef
go back to reference Bachevalier J, Nemanic S (2008) Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18(1):64–80PubMedCrossRef Bachevalier J, Nemanic S (2008) Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18(1):64–80PubMedCrossRef
go back to reference Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252(3):415–422PubMedCrossRef Barbas H (1986) Pattern in the laminar origin of corticocortical connections. J Comp Neurol 252(3):415–422PubMedCrossRef
go back to reference Barbas H, Hilgetag CC, Saha S, Dermon CR, Suski JL (2005) Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey. BMC Neurosci 6(1):32PubMedPubMedCentralCrossRef Barbas H, Hilgetag CC, Saha S, Dermon CR, Suski JL (2005) Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey. BMC Neurosci 6(1):32PubMedPubMedCentralCrossRef
go back to reference Barnes CL, Pandya DN (1992) Efferent cortical connections of multimodal cortex of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 318(2):222–244PubMedCrossRef Barnes CL, Pandya DN (1992) Efferent cortical connections of multimodal cortex of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 318(2):222–244PubMedCrossRef
go back to reference Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, Fries P (2015a) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85(2):390–401PubMedCrossRef Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R, Dowdall JR, De Weerd P, Kennedy H, Fries P (2015a) Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85(2):390–401PubMedCrossRef
go back to reference Bastos AM, Vezoli J, Fries P (2015b) Communication through coherence with inter-areal delays. Curr Opin Neurobiol 31:173–180PubMedCrossRef Bastos AM, Vezoli J, Fries P (2015b) Communication through coherence with inter-areal delays. Curr Opin Neurobiol 31:173–180PubMedCrossRef
go back to reference Beaulieu C, Kisvarday Z, Somogyi P, Cynader M, Cowey A (1992) Quantitative distribution of GABA-immunopositive and-immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb Cortex 2(4):295–309PubMedCrossRef Beaulieu C, Kisvarday Z, Somogyi P, Cynader M, Cowey A (1992) Quantitative distribution of GABA-immunopositive and-immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb Cortex 2(4):295–309PubMedCrossRef
go back to reference Beul SF, Barbas H, Hilgetag CC (2017) A predictive structural model of the primate connectome. Sci Rep 7(43176):1–12 Beul SF, Barbas H, Hilgetag CC (2017) A predictive structural model of the primate connectome. Sci Rep 7(43176):1–12
go back to reference Binzegger T, Douglas RJ, Martin KAC (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 39(24):8441–8453CrossRef Binzegger T, Douglas RJ, Martin KAC (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 39(24):8441–8453CrossRef
go back to reference Boussaoud D, Ungerleider L, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296(3):462–495PubMedCrossRef Boussaoud D, Ungerleider L, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296(3):462–495PubMedCrossRef
go back to reference Braitenberg V, Schüz A (1991) Anatomy of the cortex: statistics and geometry. Springer, BerlinCrossRef Braitenberg V, Schüz A (1991) Anatomy of the cortex: statistics and geometry. Springer, BerlinCrossRef
go back to reference Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183–208PubMedCrossRef Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183–208PubMedCrossRef
go back to reference Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA, Johnson GA (2015a) A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. NeuroImage 117:408–416PubMedPubMedCentralCrossRef Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA, Johnson GA (2015a) A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. NeuroImage 117:408–416PubMedPubMedCentralCrossRef
go back to reference Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25:4628–4637PubMedPubMedCentralCrossRef Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25:4628–4637PubMedPubMedCentralCrossRef
go back to reference Charvet CJ, Cahalane DJ, Finlay BL (2015) Systematic, cross-cortex variation in neuron numbers in rodents and primates. Cereb Cortex 25(1):147–160PubMedCrossRef Charvet CJ, Cahalane DJ, Finlay BL (2015) Systematic, cross-cortex variation in neuron numbers in rodents and primates. Cereb Cortex 25(1):147–160PubMedCrossRef
go back to reference Colby C, Gattass R, Olson C, Gross C (1988) Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J Comp Neurol 269(3):392–413PubMedCrossRef Colby C, Gattass R, Olson C, Gross C (1988) Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J Comp Neurol 269(3):392–413PubMedCrossRef
go back to reference Cragg B (1967) The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J Anat 101(4):639–654PubMedPubMedCentral Cragg B (1967) The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J Anat 101(4):639–654PubMedPubMedCentral
go back to reference De Valois RL, Albrecht DG, Thorell LG (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vis Res 22(5):545–559PubMedCrossRef De Valois RL, Albrecht DG, Thorell LG (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vis Res 22(5):545–559PubMedCrossRef
go back to reference Deco G, Jirsa VK (2012) Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J Neurosci 32(10):3366–3375PubMedCrossRef Deco G, Jirsa VK (2012) Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J Neurosci 32(10):3366–3375PubMedCrossRef
go back to reference Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA 106(25):10302–10307PubMedPubMedCentralCrossRef Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA 106(25):10302–10307PubMedPubMedCentralCrossRef
go back to reference Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical connections of inferior temporal area teo in macaque monkeys. J Comp Neurol 334(1):125–150PubMedCrossRef Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical connections of inferior temporal area teo in macaque monkeys. J Comp Neurol 334(1):125–150PubMedCrossRef
go back to reference Douglas RJ, Martin KAC, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comput 1:480–488CrossRef Douglas RJ, Martin KAC, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comput 1:480–488CrossRef
go back to reference von Economo CF, Van Bogaert L (1927) L’architecture cellulaire normale de l’écorce cérébrale. Masson et Cie, Paris von Economo CF, Van Bogaert L (1927) L’architecture cellulaire normale de l’écorce cérébrale. Masson et Cie, Paris
go back to reference Eggan S, Lewis D (2007) Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis. Cereb Cortex 17(1):175–191PubMedCrossRef Eggan S, Lewis D (2007) Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: a regional and laminar analysis. Cereb Cortex 17(1):175–191PubMedCrossRef
go back to reference Elston GN (2000) Pyramidal cells of the frontal lobe: all the more spinous to think with. J Neurosci 20(18):RC95:1–RC95:4 Elston GN (2000) Pyramidal cells of the frontal lobe: all the more spinous to think with. J Neurosci 20(18):RC95:1–RC95:4
go back to reference Elston GN, Rosa MG (2000) Pyramidal cells, patches, and cortical columns: a comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey. J Neurosci 20(24):RC117:1–RC117:5 Elston GN, Rosa MG (2000) Pyramidal cells, patches, and cortical columns: a comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey. J Neurosci 20(24):RC117:1–RC117:5
go back to reference Fabri M, Manzoni T (1996) Glutamate decarboxylase immunoreactivity in corticocortical projecting neurons of rat somatic sensory cortex. Neuroscience 72(2):435–448PubMedCrossRef Fabri M, Manzoni T (1996) Glutamate decarboxylase immunoreactivity in corticocortical projecting neurons of rat somatic sensory cortex. Neuroscience 72(2):435–448PubMedCrossRef
go back to reference Fabri M, Manzoni T (2004) Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas. Neuroscience 123(2):557–566PubMedCrossRef Fabri M, Manzoni T (2004) Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas. Neuroscience 123(2):557–566PubMedCrossRef
go back to reference Felleman D, Burkhalter A, Van Essen D (1997) Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex. J Comp Neurol 379(1):21–47PubMedCrossRef Felleman D, Burkhalter A, Van Essen D (1997) Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex. J Comp Neurol 379(1):21–47PubMedCrossRef
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRef Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRef
go back to reference Ford LR Jr (1956) Network flow theory. Tech. rep, DTIC Document Ford LR Jr (1956) Network flow theory. Tech. rep, DTIC Document
go back to reference Gabbott PL, Bacon SJ (1996) Local circuit neurons in the medial prefrontal cortex (areas 24a, b, c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions. J Comp Neurol 364(4):609–636PubMedCrossRef Gabbott PL, Bacon SJ (1996) Local circuit neurons in the medial prefrontal cortex (areas 24a, b, c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions. J Comp Neurol 364(4):609–636PubMedCrossRef
go back to reference Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153(2):158–170PubMedCrossRef Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153(2):158–170PubMedCrossRef
go back to reference Gattass R, Sousa A, Mishkin M, Ungerleider L (1997) Cortical projections of area V2 in the macaque. Cereb Cortex 7(2):110–129PubMedCrossRef Gattass R, Sousa A, Mishkin M, Ungerleider L (1997) Cortical projections of area V2 in the macaque. Cereb Cortex 7(2):110–129PubMedCrossRef
go back to reference Gonchar Y, Johnson P, Weinberg R (1995) GABA-immunopositive neurons in rat neocortex with contralateral projections to SI. Brain Res 697(1):27–34PubMedCrossRef Gonchar Y, Johnson P, Weinberg R (1995) GABA-immunopositive neurons in rat neocortex with contralateral projections to SI. Brain Res 697(1):27–34PubMedCrossRef
go back to reference Goulas A, Bastiani M, Bezgin G, Uylings HB, Roebroeck A, Stiers P (2014) Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput Biol 10(3):e1003529PubMedPubMedCentralCrossRef Goulas A, Bastiani M, Bezgin G, Uylings HB, Roebroeck A, Stiers P (2014) Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput Biol 10(3):e1003529PubMedPubMedCentralCrossRef
go back to reference Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran JP (2007) Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2(7):e597PubMedPubMedCentralCrossRef Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran JP (2007) Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2(7):e597PubMedPubMedCentralCrossRef
go back to reference Harrison KH, Hof PR, Wang SH (2002) Scaling laws in the mammalian neocortex: does form provide clues to function? J Neurocytol 31:289–298PubMedCrossRef Harrison KH, Hof PR, Wang SH (2002) Scaling laws in the mammalian neocortex: does form provide clues to function? J Neurocytol 31:289–298PubMedCrossRef
go back to reference Helias M, Tetzlaff T, Diesmann M (2013) Echoes in correlated neural systems. New J Phys 15(023):002 Helias M, Tetzlaff T, Diesmann M (2013) Echoes in correlated neural systems. New J Phys 15(023):002
go back to reference Higo S, Udaka N, Tamamaki N (2007) Long-range GABAergic projection neurons in the cat neocortex. J Comp Neurol 503(3):421–431PubMedCrossRef Higo S, Udaka N, Tamamaki N (2007) Long-range GABAergic projection neurons in the cat neocortex. J Comp Neurol 503(3):421–431PubMedCrossRef
go back to reference Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput Biol 2(3):146–159CrossRef Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput Biol 2(3):146–159CrossRef
go back to reference Hilgetag CC, Grant S (2010) Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. NeuroImage 51(3):1006–1017PubMedCrossRef Hilgetag CC, Grant S (2010) Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. NeuroImage 51(3):1006–1017PubMedCrossRef
go back to reference Hilgetag CC, Burns GAPC, O’Neil MA, Scannel JW, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and cat. Philos Trans R Soc B 355:91–100CrossRef Hilgetag CC, Burns GAPC, O’Neil MA, Scannel JW, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and cat. Philos Trans R Soc B 355:91–100CrossRef
go back to reference Hilgetag CC, Medalla M, Beul SF, Barbas H (2016) The primate connectome in context: principles of connections of the cortical visual system. NeuroImage 134:685–702PubMedPubMedCentralCrossRef Hilgetag CC, Medalla M, Beul SF, Barbas H (2016) The primate connectome in context: principles of connections of the cortical visual system. NeuroImage 134:685–702PubMedPubMedCentralCrossRef
go back to reference Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104(24):10240–10245PubMedPubMedCentralCrossRef Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104(24):10240–10245PubMedPubMedCentralCrossRef
go back to reference Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex 6(2):102–119PubMedCrossRef Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex 6(2):102–119PubMedCrossRef
go back to reference Johnson RR, Burkhalter A (1996) Microcircuitry of forward and feedback connections within rat visual cortex. J Comp Neurol 368:383–398PubMedCrossRef Johnson RR, Burkhalter A (1996) Microcircuitry of forward and feedback connections within rat visual cortex. J Comp Neurol 368:383–398PubMedCrossRef
go back to reference Jones E, Coulter J, Hendry S (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181(2):291–347PubMedCrossRef Jones E, Coulter J, Hendry S (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181(2):291–347PubMedCrossRef
go back to reference Jouve B, Rosenstiehl P, Imbert M (1998) A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. Cereb Cortex 8(1):28–39PubMedCrossRef Jouve B, Rosenstiehl P, Imbert M (1998) A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. Cereb Cortex 8(1):28–39PubMedCrossRef
go back to reference Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31(1):7–15CrossRef Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31(1):7–15CrossRef
go back to reference Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vázquez-Reina A, Kaynig V, Jones TR et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162(3):648–661PubMedCrossRef Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vázquez-Reina A, Kaynig V, Jones TR et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162(3):648–661PubMedCrossRef
go back to reference Knock S, McIntosh A, Sporns O, Kötter R, Hagmann P, Jirsa V (2009) The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models. J Neurosci Methods 1(183):86–94CrossRef Knock S, McIntosh A, Sporns O, Kötter R, Hagmann P, Jirsa V (2009) The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models. J Neurosci Methods 1(183):86–94CrossRef
go back to reference Körding KP, König P (2001) Supervised and unsupervised learning with two sites of synaptic integration. J Comput Neurosci 11(3):207–215PubMedCrossRef Körding KP, König P (2001) Supervised and unsupervised learning with two sites of synaptic integration. J Comput Neurosci 11(3):207–215PubMedCrossRef
go back to reference la Fougère C, Grant S, Kostikov A, Schirrmacher R, Gravel P, Schipper HM, Reader A, Evans A, Thiel A (2011) Where in-vivo imaging meets cytoarchitectonics: the relationship between cortical thickness and neuronal density measured with high-resolution [18F]flumazenil-PET. NeuroImage 56(3):951–960PubMedCrossRef la Fougère C, Grant S, Kostikov A, Schirrmacher R, Gravel P, Schipper HM, Reader A, Evans A, Thiel A (2011) Where in-vivo imaging meets cytoarchitectonics: the relationship between cortical thickness and neuronal density measured with high-resolution [18F]flumazenil-PET. NeuroImage 56(3):951–960PubMedCrossRef
go back to reference Lavenex P, Suzuki W, Amaral D (2002) Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J Comp Neurol 447(4):394–420PubMedCrossRef Lavenex P, Suzuki W, Amaral D (2002) Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J Comp Neurol 447(4):394–420PubMedCrossRef
go back to reference Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas v1, v2, and v4 of macaque visual cortex. J Neurophysiol 77(1):24–42PubMedCrossRef Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas v1, v2, and v4 of macaque visual cortex. J Neurophysiol 77(1):24–42PubMedCrossRef
go back to reference Maier-Hein K, Neher P, Houde JC, Cote MA, Garyfallidis E, Zhong J, Chamberland M, Yeh FC, Lin YC, Ji Q, Reddick WE, Glass JO, Chen DQ, Feng Y, Gao C, Wu Y, Ma J, Renjie H, Li Q, Westin CF, Deslauriers-Gauthier S, Gonzalez JOO, Paquette M, St-Jean S, Girard G, Rheault F, Sidhu J, Tax CMW, Guo F, Mesri HY, David S, Froeling M, Heemskerk AM, Leemans A, Bore A, Pinsard B, Bedetti C, Desrosiers M, Brambati S, Doyon J, Sarica A, Vasta R, Cerasa A, Quattrone A, Yeatman J, Khan AR, Hodges W, Alexander S, Romascano D, Barakovic M, Auria A, Esteban O, Lemkaddem A, Thiran JP, Cetingul HE, Odry BL, Mailhe B, Nadar M, Pizzagalli F, Prasad G, Villalon-Reina J, Galvis J, Thompson P, Requejo F, Laguna P, Lacerda L, Barrett R, Dell’Acqua F, Catani M, Petit L, Caruyer E, Daducci A, Dyrby T, Holland-Letz T, Hilgetag C, Stieltjes B, Descoteaux M (2016) Tractography-based connectomes are dominated by false-positive connections. bioRxiv. https://doi.org/10.1101/084137, http://www.biorxiv.org/content/early/2016/11/21/084137 Maier-Hein K, Neher P, Houde JC, Cote MA, Garyfallidis E, Zhong J, Chamberland M, Yeh FC, Lin YC, Ji Q, Reddick WE, Glass JO, Chen DQ, Feng Y, Gao C, Wu Y, Ma J, Renjie H, Li Q, Westin CF, Deslauriers-Gauthier S, Gonzalez JOO, Paquette M, St-Jean S, Girard G, Rheault F, Sidhu J, Tax CMW, Guo F, Mesri HY, David S, Froeling M, Heemskerk AM, Leemans A, Bore A, Pinsard B, Bedetti C, Desrosiers M, Brambati S, Doyon J, Sarica A, Vasta R, Cerasa A, Quattrone A, Yeatman J, Khan AR, Hodges W, Alexander S, Romascano D, Barakovic M, Auria A, Esteban O, Lemkaddem A, Thiran JP, Cetingul HE, Odry BL, Mailhe B, Nadar M, Pizzagalli F, Prasad G, Villalon-Reina J, Galvis J, Thompson P, Requejo F, Laguna P, Lacerda L, Barrett R, Dell’Acqua F, Catani M, Petit L, Caruyer E, Daducci A, Dyrby T, Holland-Letz T, Hilgetag C, Stieltjes B, Descoteaux M (2016) Tractography-based connectomes are dominated by false-positive connections. bioRxiv. https://​doi.​org/​10.​1101/​084137, http://​www.​biorxiv.​org/​content/​early/​2016/​11/​21/​084137
go back to reference Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366PubMedCrossRef Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366PubMedCrossRef
go back to reference Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21(6):1254–1272PubMedCrossRef Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21(6):1254–1272PubMedCrossRef
go back to reference Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H (2014b) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522(1):225–259. https://doi.org/10.1002/cne.23458 PubMedCrossRef Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H (2014b) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522(1):225–259. https://​doi.​org/​10.​1002/​cne.​23458 PubMedCrossRef
go back to reference Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S et al (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163(2):456–492PubMedCrossRef Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S et al (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163(2):456–492PubMedCrossRef
go back to reference Maunsell JH, Newsome WT (1987) Visual processing in monkey extrastriate cortex. Annu Rev Neurosci 10(1):363–401PubMedCrossRef Maunsell JH, Newsome WT (1987) Visual processing in monkey extrastriate cortex. Annu Rev Neurosci 10(1):363–401PubMedCrossRef
go back to reference McCulloch CE, Searle SR, Neuhaus JM (2008) Generalized, Linear, and Mixed Models, 2nd edn. Wiley, New York McCulloch CE, Searle SR, Neuhaus JM (2008) Generalized, Linear, and Mixed Models, 2nd edn. Wiley, New York
go back to reference McDonald CT, Burkhalter A (1993) Organisation of long-range inhibitory connections within rat visual cortex. J Neurosci 13(2):768–781PubMed McDonald CT, Burkhalter A (1993) Organisation of long-range inhibitory connections within rat visual cortex. J Neurosci 13(2):768–781PubMed
go back to reference Michalareas G, Vezoli J, van Pelt S, Schoffelen JM, Kennedy H, Fries P (2016) Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89(2):384–397PubMedPubMedCentralCrossRef Michalareas G, Vezoli J, van Pelt S, Schoffelen JM, Kennedy H, Fries P (2016) Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89(2):384–397PubMedPubMedCentralCrossRef
go back to reference Morel A, Bullier J (1990) Anatomical segregation of two cortical visual pathways in the macaque monkey. Vis Neurosci 4(06):555–578PubMedCrossRef Morel A, Bullier J (1990) Anatomical segregation of two cortical visual pathways in the macaque monkey. Vis Neurosci 4(06):555–578PubMedCrossRef
go back to reference Nakamura H, Gattass R, Desimone R, Ungerleider LG (1993) The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. J Neurosci 13(September):3681–3691PubMed Nakamura H, Gattass R, Desimone R, Ungerleider LG (1993) The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. J Neurosci 13(September):3681–3691PubMed
go back to reference Nemanic S, Alvarado MC, Bachevalier J (2004) The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys. J Neurosci 24(8):2013–2026PubMedCrossRef Nemanic S, Alvarado MC, Bachevalier J (2004) The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys. J Neurosci 24(8):2013–2026PubMedCrossRef
go back to reference Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM et al (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207–214PubMedPubMedCentralCrossRef Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM et al (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207–214PubMedPubMedCentralCrossRef
go back to reference O’Kusky J, Colonnier M (1982) A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. J Comp Neurol 210(3):278–290PubMedCrossRef O’Kusky J, Colonnier M (1982) A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. J Comp Neurol 210(3):278–290PubMedCrossRef
go back to reference Perkel DJ, Bullier J, Kennedy H (1986) Topography of the afferent connectivity of area 17 in the macaque monkey: a double-labelling study. J Comp Neurol 253(3):374–402PubMedCrossRef Perkel DJ, Bullier J, Kennedy H (1986) Topography of the afferent connectivity of area 17 in the macaque monkey: a double-labelling study. J Comp Neurol 253(3):374–402PubMedCrossRef
go back to reference Petrides M, Pandya D (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11(3):1011–1036PubMedCrossRef Petrides M, Pandya D (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11(3):1011–1036PubMedCrossRef
go back to reference Pinto A, Fuentes C, Paré D (2006) Feedforward inhibition regulates perirhinal transmission of neocortical inputs to the entorhinal cortex: ultrastructural study in guinea pigs. J Comp Neurol 495(6):722–734PubMedPubMedCentralCrossRef Pinto A, Fuentes C, Paré D (2006) Feedforward inhibition regulates perirhinal transmission of neocortical inputs to the entorhinal cortex: ultrastructural study in guinea pigs. J Comp Neurol 495(6):722–734PubMedPubMedCentralCrossRef
go back to reference Porter L (1997) Morphological characterization of a cortico-cortical relay in the cat sensorimotor cortex. Cereb Cortex 7(2):100–109PubMedCrossRef Porter L (1997) Morphological characterization of a cortico-cortical relay in the cat sensorimotor cortex. Cereb Cortex 7(2):100–109PubMedCrossRef
go back to reference Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate galago and the anthropoid primate macaca. J Comp Neurol 310(4):429–474PubMedCrossRef Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate galago and the anthropoid primate macaca. J Comp Neurol 310(4):429–474PubMedCrossRef
go back to reference Rakic P, Suñer I, Williams R (1991) A novel cytoarchitectonic area induced experimentally within the primate visual cortex. Proc Natl Acad Sci USA 88(6):2083–2087PubMedPubMedCentralCrossRef Rakic P, Suñer I, Williams R (1991) A novel cytoarchitectonic area induced experimentally within the primate visual cortex. Proc Natl Acad Sci USA 88(6):2083–2087PubMedPubMedCentralCrossRef
go back to reference Robinson PA, Sarkar S, Pandejee GM, Henderson JA (2014) Determination of effective brain connectivity from functional connectivity with application to resting state connectivities. Phys Rev E 90:012707:1–012707:6 Robinson PA, Sarkar S, Pandejee GM, Henderson JA (2014) Determination of effective brain connectivity from functional connectivity with application to resting state connectivities. Phys Rev E 90:012707:1–012707:6
go back to reference Rockland K (1992) Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. Cereb Cortex 2(5):353–374PubMedCrossRef Rockland K (1992) Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. Cereb Cortex 2(5):353–374PubMedCrossRef
go back to reference Rockland KS, Kaas JH (2003) Feedback connections: splitting the arrow. In: Collins CE (ed) The primate visual system. CRC Press, Boca Raton, pp 387–406 Rockland KS, Kaas JH (2003) Feedback connections: splitting the arrow. In: Collins CE (ed) The primate visual system. CRC Press, Boca Raton, pp 387–406
go back to reference Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20PubMedCrossRef Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20PubMedCrossRef
go back to reference Rosvall M, Axelsson D, Bergstrom CT (2009) The map equation. Eur Phys J Spec Top 178(1):13–23CrossRef Rosvall M, Axelsson D, Bergstrom CT (2009) The map equation. Eur Phys J Spec Top 178(1):13–23CrossRef
go back to reference Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou G, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16(10):1389–1417PubMedCrossRef Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou G, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16(10):1389–1417PubMedCrossRef
go back to reference Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069PubMedCrossRef Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069PubMedCrossRef
go back to reference Salin P, Bullier J, Kennedy H (1989) Convergence and divergence in the afferent projections to cat area 17. J Comp Neurol 283(4):486–512PubMedCrossRef Salin P, Bullier J, Kennedy H (1989) Convergence and divergence in the afferent projections to cat area 17. J Comp Neurol 283(4):486–512PubMedCrossRef
go back to reference Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75(1):107–154PubMedCrossRef Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75(1):107–154PubMedCrossRef
go back to reference Schmidt M, Bakker R, Shen K, Bezgin G, Hilgetag CC, Diesmann M, van Albada SJ (2016) Full-density multi-scale account of structure and dynamics of macaque visual cortex. arXiv:151109364v4 Schmidt M, Bakker R, Shen K, Bezgin G, Hilgetag CC, Diesmann M, van Albada SJ (2016) Full-density multi-scale account of structure and dynamics of macaque visual cortex. arXiv:​151109364v4
go back to reference Seltzer B, Pandya DN (1994) Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J Comp Neurol 343(3):445–463PubMedCrossRef Seltzer B, Pandya DN (1994) Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J Comp Neurol 343(3):445–463PubMedCrossRef
go back to reference Shepherd G, Stepanyants A, Bureau I, Chklovskii D, Svoboda K (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8:782–790PubMedCrossRef Shepherd G, Stepanyants A, Bureau I, Chklovskii D, Svoboda K (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8:782–790PubMedCrossRef
go back to reference Shimbel A (1955) Structure in communication nets. In: Proceedings of the symposium on information networks. Polytechnic Press of the Polytechnic Institute of Brooklyn, pp 199–203 Shimbel A (1955) Structure in communication nets. In: Proceedings of the symposium on information networks. Polytechnic Press of the Polytechnic Institute of Brooklyn, pp 199–203
go back to reference Song S, Sjöström P, Reigl M, Nelson S, Chklovskii D (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3):e68PubMedPubMedCentralCrossRef Song S, Sjöström P, Reigl M, Nelson S, Chklovskii D (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3):e68PubMedPubMedCentralCrossRef
go back to reference Stephan K, Kamper L, Bozkurt A, Burns G, Young M, Kötter R (2001) Advanced database methodology for the collation of connectivity data on the macaque brain (CoCoMac). Philos Trans R Soc B 356:1159–1186CrossRef Stephan K, Kamper L, Bozkurt A, Burns G, Young M, Kötter R (2001) Advanced database methodology for the collation of connectivity data on the macaque brain (CoCoMac). Philos Trans R Soc B 356:1159–1186CrossRef
go back to reference Suzuki WA, Amaral DG (1994a) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14(3):1856–1877PubMed Suzuki WA, Amaral DG (1994a) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14(3):1856–1877PubMed
go back to reference Suzuki WA, Amaral DG (2003) Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463(1):67–91PubMedCrossRef Suzuki WA, Amaral DG (2003) Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463(1):67–91PubMedCrossRef
go back to reference Suzuki WL, Amaral DG (1994b) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350(4):497–533PubMedCrossRef Suzuki WL, Amaral DG (1994b) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350(4):497–533PubMedCrossRef
go back to reference Thomas C, Frank QY, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111(46):16574–16579PubMedPubMedCentralCrossRef Thomas C, Frank QY, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111(46):16574–16579PubMedPubMedCentralCrossRef
go back to reference Tomioka R, Rockland KS (2007) Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J Comp Neurol 505(5):526–538PubMedCrossRef Tomioka R, Rockland KS (2007) Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J Comp Neurol 505(5):526–538PubMedCrossRef
go back to reference Tomioka R, Okamoto K, Furuta T, Fujiyama F, Iwasato T, Yanagawa Y, Obata K, Kaneko T, Tamamaki N (2005) Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. Eur J Neurosci 21:1587–1600PubMedCrossRef Tomioka R, Okamoto K, Furuta T, Fujiyama F, Iwasato T, Yanagawa Y, Obata K, Kaneko T, Tamamaki N (2005) Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. Eur J Neurosci 21:1587–1600PubMedCrossRef
go back to reference Urbanczik R, Senn W (2014) Learning by the dendritic prediction of somatic spiking. Neuron 81(3):521–528PubMedCrossRef Urbanczik R, Senn W (2014) Learning by the dendritic prediction of somatic spiking. Neuron 81(3):521–528PubMedCrossRef
go back to reference Van Essen DC (2002) Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr Opin Neurobiol 12(5):574–579PubMedCrossRef Van Essen DC (2002) Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr Opin Neurobiol 12(5):574–579PubMedCrossRef
go back to reference Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH (2001) An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Inf Assoc 8(5):443–459CrossRef Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH (2001) An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Inf Assoc 8(5):443–459CrossRef
go back to reference Webster M, Ungerleider L, Bachevalier J (1991) Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11(4):1095–1116PubMed Webster M, Ungerleider L, Bachevalier J (1991) Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11(4):1095–1116PubMed
go back to reference Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4(5):470–483PubMedCrossRef Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4(5):470–483PubMedCrossRef
go back to reference Wedeen VJ, Wang R, Schmahmann JD, Benner T, Tseng W, Dai G, Pandya D, Hagmann P, D’Arceuil H, de Crespigny AJ (2008) Diffusion spectrum magnetic resonance imaging (dsi) tractography of crossing fibers. NeuroImage 41(4):1267–1277PubMedCrossRef Wedeen VJ, Wang R, Schmahmann JD, Benner T, Tseng W, Dai G, Pandya D, Hagmann P, D’Arceuil H, de Crespigny AJ (2008) Diffusion spectrum magnetic resonance imaging (dsi) tractography of crossing fibers. NeuroImage 41(4):1267–1277PubMedCrossRef
Metadata
Title
Multi-scale account of the network structure of macaque visual cortex
Authors
Maximilian Schmidt
Rembrandt Bakker
Claus C. Hilgetag
Markus Diesmann
Sacha J. van Albada
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1554-4

Other articles of this Issue 3/2018

Brain Structure and Function 3/2018 Go to the issue