Skip to main content
Top
Published in: Brain Structure and Function 3/2018

Open Access 01-04-2018 | Original Article

Interplay of prefrontal cortex and amygdala during extinction of drug seeking

Authors: Valeria Oliva, Emilio Cartoni, Emanuele Claudio Latagliata, Stefano Puglisi-Allegra, Gianluca Baldassarre

Published in: Brain Structure and Function | Issue 3/2018

Login to get access

Abstract

Extinction of Pavlovian conditioning is a complex process that involves brain regions such as the medial prefrontal cortex (mPFC), the amygdala and the locus coeruleus. In particular, noradrenaline (NA) coming from the locus coeruleus has been recently shown to play a different role in two subregions of the mPFC, the prelimbic (PL) and the infralimbic (IL) regions. How these regions interact in conditioning and subsequent extinction is an open issue. We studied these processes using two approaches: computational modelling and NA manipulation in a conditioned place preference paradigm (CPP) in mice. In the computational model, NA in PL and IL causes inputs arriving to these regions to be amplified, thus allowing them to modulate learning processes in amygdala. The model reproduces results from studies involving depletion of NA from PL, IL, or both in CPP. In addition, we simulated new experiments of NA manipulations in mPFC, making predictions on the possible results. We searched the parameters of the model and tested the robustness of the predictions by performing a sensitivity analysis. We also present an empirical experiment where, in accord with the model, a double depletion of NA from both PL and IL in CPP with amphetamine impairs extinction. Overall the proposed model, supported by anatomical, physiological, and behavioural data, explains the differential role of NA in PL and IL and opens up the possibility to understand extinction mechanisms more in depth and hence to aid the development of treatments for disorders such as addiction.
Appendix
Available only for authorised users
Literature
go back to reference Bernardi RE, Lattal KM (2010) A role for alpha-adrenergic receptors in extinction of conditioned fear and cocaine conditioned place preference. Behav Neurosci 124(2):204–210CrossRefPubMedPubMedCentral Bernardi RE, Lattal KM (2010) A role for alpha-adrenergic receptors in extinction of conditioned fear and cocaine conditioned place preference. Behav Neurosci 124(2):204–210CrossRefPubMedPubMedCentral
go back to reference Bissonette GB, Powell EM, Roesch MR (2013) Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex. Behav Brain Res 250:91–101CrossRefPubMedPubMedCentral Bissonette GB, Powell EM, Roesch MR (2013) Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex. Behav Brain Res 250:91–101CrossRefPubMedPubMedCentral
go back to reference Bouret S, Sara SJ (2004) Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. Eur J Neurosci 20(3):791–802CrossRefPubMed Bouret S, Sara SJ (2004) Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. Eur J Neurosci 20(3):791–802CrossRefPubMed
go back to reference Burgos-Robles A, Vidal-Gonzalez I, Quirk GJ (2009) Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J Neurosci 29(26):8474–8482CrossRefPubMedPubMedCentral Burgos-Robles A, Vidal-Gonzalez I, Quirk GJ (2009) Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J Neurosci 29(26):8474–8482CrossRefPubMedPubMedCentral
go back to reference Busti D, Geracitano R, Whittle N, Dalezios Y, Manko M, Kaufmann W, Sätzler K, Singewald N, Capogna M, Ferraguti F (2011) Different fear states engage distinct networks within the intercalated cell clusters of the amygdala. J Neurosci 31(13):5131–5144CrossRefPubMed Busti D, Geracitano R, Whittle N, Dalezios Y, Manko M, Kaufmann W, Sätzler K, Singewald N, Capogna M, Ferraguti F (2011) Different fear states engage distinct networks within the intercalated cell clusters of the amygdala. J Neurosci 31(13):5131–5144CrossRefPubMed
go back to reference Cabib S, Orsini C, Le Moal M, Piazza PV (2000) Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience. Science 289(5478):463–465CrossRefPubMed Cabib S, Orsini C, Le Moal M, Piazza PV (2000) Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience. Science 289(5478):463–465CrossRefPubMed
go back to reference Capriles N, Rodaros D, Sorge RE, Stewart J (2003) A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 168(1–2):66–74CrossRef Capriles N, Rodaros D, Sorge RE, Stewart J (2003) A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 168(1–2):66–74CrossRef
go back to reference Cassaday HJ, Nelson AJD, Pezze MA (2014) From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations. Front Syst Neurosci 8:160CrossRefPubMedPubMedCentral Cassaday HJ, Nelson AJD, Pezze MA (2014) From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations. Front Syst Neurosci 8:160CrossRefPubMedPubMedCentral
go back to reference Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc 1(4):1662–1670CrossRefPubMed Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc 1(4):1662–1670CrossRefPubMed
go back to reference Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28(7):771–784CrossRefPubMed Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28(7):771–784CrossRefPubMed
go back to reference De Bruin JP, Feenstra MG, Broersen LM, Van Leeuwen M, Arens C, De Vries S, Joosten RN (2000) Role of the prefrontal cortex of the rat in learning and decision making: effects of transient inactivation. Prog Brain Res 126:103–113CrossRefPubMed De Bruin JP, Feenstra MG, Broersen LM, Van Leeuwen M, Arens C, De Vries S, Joosten RN (2000) Role of the prefrontal cortex of the rat in learning and decision making: effects of transient inactivation. Prog Brain Res 126:103–113CrossRefPubMed
go back to reference Delamater AR, Westbrook RF (2014) Psychological and neural mechanisms of experimental extinction: a selective review. Neurobiol Learn Mem 108:38–51CrossRefPubMed Delamater AR, Westbrook RF (2014) Psychological and neural mechanisms of experimental extinction: a selective review. Neurobiol Learn Mem 108:38–51CrossRefPubMed
go back to reference Devilbiss DM, Waterhouse BD (2000) Norepinephrine exhibits two distinct profiles of action on sensory cortical neuron responses to excitatory synaptic stimuli. Synapse 37(4):273–282CrossRefPubMed Devilbiss DM, Waterhouse BD (2000) Norepinephrine exhibits two distinct profiles of action on sensory cortical neuron responses to excitatory synaptic stimuli. Synapse 37(4):273–282CrossRefPubMed
go back to reference Di Pietro NC, Black YD, Kantak KM (2006) Context-dependent prefrontal cortex regulation of cocaine self-administration and reinstatement behaviors in rats. Eur J Neurosci 24(11):3285–3298CrossRefPubMed Di Pietro NC, Black YD, Kantak KM (2006) Context-dependent prefrontal cortex regulation of cocaine self-administration and reinstatement behaviors in rats. Eur J Neurosci 24(11):3285–3298CrossRefPubMed
go back to reference Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ (2015) Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 35(8):3607–3615CrossRefPubMedPubMedCentral Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ (2015) Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 35(8):3607–3615CrossRefPubMedPubMedCentral
go back to reference Erb S, Hitchcott PK, Rajabi H, Mueller D, Shaham Y, Stewart J (2000) Alpha-2 adrenergic receptor agonists block stress-induced reinstatement of cocaine seeking. Neuropsychopharmacology 23(2):138–150CrossRefPubMed Erb S, Hitchcott PK, Rajabi H, Mueller D, Shaham Y, Stewart J (2000) Alpha-2 adrenergic receptor agonists block stress-induced reinstatement of cocaine seeking. Neuropsychopharmacology 23(2):138–150CrossRefPubMed
go back to reference Everitt BJ, Cardinal RN, Parkinson JA, Robbins TW (2003) Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann N Y Acad Sci 985:233–250CrossRefPubMed Everitt BJ, Cardinal RN, Parkinson JA, Robbins TW (2003) Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann N Y Acad Sci 985:233–250CrossRefPubMed
go back to reference Fiore VG, Mannella F, Mirolli M, Latagliata EC, Valzania A, Cabib S, Dolan RJ, Puglisi-Allegra S, Baldassarre G (2015) Corticolimbic catecholamines in stress: a computational model of the appraisal of controllability. Brain Struct Funct 220(3):1339–1353CrossRefPubMed Fiore VG, Mannella F, Mirolli M, Latagliata EC, Valzania A, Cabib S, Dolan RJ, Puglisi-Allegra S, Baldassarre G (2015) Corticolimbic catecholamines in stress: a computational model of the appraisal of controllability. Brain Struct Funct 220(3):1339–1353CrossRefPubMed
go back to reference Fricks-Gleason AN, Marshall JF (2008) Post-retrieval beta-adrenergic receptor blockade: effects on extinction and reconsolidation of cocaine-cue memories. Learn Mem 15(9):643–648CrossRefPubMedPubMedCentral Fricks-Gleason AN, Marshall JF (2008) Post-retrieval beta-adrenergic receptor blockade: effects on extinction and reconsolidation of cocaine-cue memories. Learn Mem 15(9):643–648CrossRefPubMedPubMedCentral
go back to reference Gabbott PLA, Warner TA, Busby SJ (2006) Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex. Neuroscience 139(3):1039–1048CrossRefPubMed Gabbott PLA, Warner TA, Busby SJ (2006) Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex. Neuroscience 139(3):1039–1048CrossRefPubMed
go back to reference Gass JT, Chandler LJ (2013) The plasticity of extinction: Contribution of the prefrontal cortex in treating addiction through inhibitory learning. Front Psychiatry 4:46CrossRefPubMedPubMedCentral Gass JT, Chandler LJ (2013) The plasticity of extinction: Contribution of the prefrontal cortex in treating addiction through inhibitory learning. Front Psychiatry 4:46CrossRefPubMedPubMedCentral
go back to reference Gerstner W, Kistler W M (2002) Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, Cambridge Gerstner W, Kistler W M (2002) Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, Cambridge
go back to reference Herry C, Ciocchi S, Senn V, Demmou L, Müller C, Lüthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454(7204):600–606CrossRefPubMed Herry C, Ciocchi S, Senn V, Demmou L, Müller C, Lüthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454(7204):600–606CrossRefPubMed
go back to reference Hunter JD (2007) Matplotlib: a 2d graphics environment. Comput Sci Eng 9(3):90–95CrossRef Hunter JD (2007) Matplotlib: a 2d graphics environment. Comput Sci Eng 9(3):90–95CrossRef
go back to reference John YJ, Bullock D, Zikopoulos B, Barbas H (2013) Anatomy and computational modeling of networks underlying cognitive-emotional interaction. Front Hum Neurosci 7:101PubMedPubMedCentral John YJ, Bullock D, Zikopoulos B, Barbas H (2013) Anatomy and computational modeling of networks underlying cognitive-emotional interaction. Front Hum Neurosci 7:101PubMedPubMedCentral
go back to reference Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96(3):417–431CrossRefPubMed Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96(3):417–431CrossRefPubMed
go back to reference LaLumiere RT, Niehoff KE, Kalivas PW (2010) The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn Mem 17(4):168–175CrossRefPubMedPubMedCentral LaLumiere RT, Niehoff KE, Kalivas PW (2010) The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn Mem 17(4):168–175CrossRefPubMedPubMedCentral
go back to reference LaLumiere RT, Smith KC, Kalivas PW (2012) Neural circuit competition in cocaine-seeking: roles of the infralimbic cortex and nucleus accumbens shell. Eur J Neurosci 35(4):614–622CrossRefPubMedPubMedCentral LaLumiere RT, Smith KC, Kalivas PW (2012) Neural circuit competition in cocaine-seeking: roles of the infralimbic cortex and nucleus accumbens shell. Eur J Neurosci 35(4):614–622CrossRefPubMedPubMedCentral
go back to reference Latagliata EC, Saccoccio P, Milia C, Puglisi-Allegra S (2016) Norepinephrine in prelimbic cortex delays extinction of amphetamine-induced conditioned place preference. Psychopharmacology (Berl) 233(6):973–982CrossRef Latagliata EC, Saccoccio P, Milia C, Puglisi-Allegra S (2016) Norepinephrine in prelimbic cortex delays extinction of amphetamine-induced conditioned place preference. Psychopharmacology (Berl) 233(6):973–982CrossRef
go back to reference Latagliata Saccoccio Milia P-A (2014) Prefrontal cortical norepinephrine delays extinction of amphetamine-induced conditioned place preference. Poster session presented at Federation of European Neuroscience Societies, Milan, Italy Latagliata Saccoccio Milia P-A (2014) Prefrontal cortical norepinephrine delays extinction of amphetamine-induced conditioned place preference. Poster session presented at Federation of European Neuroscience Societies, Milan, Italy
go back to reference Laughlin RE, Grant TL, Williams RW, Jentsch JD (2011) Genetic dissection of behavioral flexibility: reversal learning in mice. Biol Psychiatry 69(11):1109–1116CrossRefPubMedPubMedCentral Laughlin RE, Grant TL, Williams RW, Jentsch JD (2011) Genetic dissection of behavioral flexibility: reversal learning in mice. Biol Psychiatry 69(11):1109–1116CrossRefPubMedPubMedCentral
go back to reference Laurent V, Marchand AR, Westbrook RF (2008) The basolateral amygdala is necessary for learning but not relearning extinction of context conditioned fear. Learn Mem 15(5):304–314CrossRefPubMedPubMedCentral Laurent V, Marchand AR, Westbrook RF (2008) The basolateral amygdala is necessary for learning but not relearning extinction of context conditioned fear. Learn Mem 15(5):304–314CrossRefPubMedPubMedCentral
go back to reference Li G, Amano T, Pare D, Nair SS (2011) Impact of infralimbic inputs on intercalated amygdala neurons: a biophysical modeling study. Learn Mem 18(4):226–240CrossRefPubMedPubMedCentral Li G, Amano T, Pare D, Nair SS (2011) Impact of infralimbic inputs on intercalated amygdala neurons: a biophysical modeling study. Learn Mem 18(4):226–240CrossRefPubMedPubMedCentral
go back to reference Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Paré D (2008) Amygdala intercalated neurons are required for expression of fear extinction. Nature 454(7204):642–645CrossRefPubMedPubMedCentral Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Paré D (2008) Amygdala intercalated neurons are required for expression of fear extinction. Nature 454(7204):642–645CrossRefPubMedPubMedCentral
go back to reference Luo F, Tang H, Li B-M, Li S-H (2014) Activation of \(\alpha\)1-adrenoceptors enhances excitatory synaptic transmission via a pre- and postsynaptic protein kinase c-dependent mechanism in the medial prefrontal cortex of rats. Eur J Neurosci 39(8):1281–1293CrossRefPubMed Luo F, Tang H, Li B-M, Li S-H (2014) Activation of \(\alpha\)1-adrenoceptors enhances excitatory synaptic transmission via a pre- and postsynaptic protein kinase c-dependent mechanism in the medial prefrontal cortex of rats. Eur J Neurosci 39(8):1281–1293CrossRefPubMed
go back to reference Ma Y-Y, Lee BR, Wang X, Guo C, Liu L, Cui R, Lan Y, Balcita-Pedicino JJ, Wolf ME, Sesack SR, Shaham Y, Schlüter OM, Huang YH, Dong Y (2014) Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 83(6):1453–1467CrossRefPubMedPubMedCentral Ma Y-Y, Lee BR, Wang X, Guo C, Liu L, Cui R, Lan Y, Balcita-Pedicino JJ, Wolf ME, Sesack SR, Shaham Y, Schlüter OM, Huang YH, Dong Y (2014) Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 83(6):1453–1467CrossRefPubMedPubMedCentral
go back to reference Maity S, Rah S, Sonenberg N, Gkogkas CG, Nguyen PV (2015) Norepinephrine triggers metaplasticity of ltp by increasing translation of specific mrnas. Learn Mem 22(10):499–508CrossRefPubMedPubMedCentral Maity S, Rah S, Sonenberg N, Gkogkas CG, Nguyen PV (2015) Norepinephrine triggers metaplasticity of ltp by increasing translation of specific mrnas. Learn Mem 22(10):499–508CrossRefPubMedPubMedCentral
go back to reference Mannella F, Mirolli M, Baldassarre G (2010) The interplay of pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat. In: Tosh C, Ruxton G (eds) Modelling Perception With Artificial Neural Networks. Cambridge University Press, Cambridge, pp 93–113CrossRef Mannella F, Mirolli M, Baldassarre G (2010) The interplay of pavlovian and instrumental processes in devaluation experiments: a computational embodied neuroscience model tested with a simulated rat. In: Tosh C, Ruxton G (eds) Modelling Perception With Artificial Neural Networks. Cambridge University Press, Cambridge, pp 93–113CrossRef
go back to reference Mannella F, Mirolli M, Baldassarre G (2016) Goal-directed behaviour and instrumental devaluation: a neural system-level computational model. Front Behav Neurosci 10:181CrossRefPubMedPubMedCentral Mannella F, Mirolli M, Baldassarre G (2016) Goal-directed behaviour and instrumental devaluation: a neural system-level computational model. Front Behav Neurosci 10:181CrossRefPubMedPubMedCentral
go back to reference Mannella F, Zappacosta S, Mirolli M, Baldassarre G (2008) A computational model of the amygdala nuclei’s role in second order conditioning. From Animals to Animats 10: Proceedings of the Tenth International Conference on the Simulation of Adaptive Behavior (SAB2008). Lecture Notes in Artificial Intelligence 5040, pp 321–330 Mannella F, Zappacosta S, Mirolli M, Baldassarre G (2008) A computational model of the amygdala nuclei’s role in second order conditioning. From Animals to Animats 10: Proceedings of the Tenth International Conference on the Simulation of Adaptive Behavior (SAB2008). Lecture Notes in Artificial Intelligence 5040, pp 321–330
go back to reference Mashhoon Y, Wells AM, Kantak KM (2010) Interaction of the rostral basolateral amygdala and prelimbic prefrontal cortex in regulating reinstatement of cocaine-seeking behavior. Pharmacol Biochem Behav 96(3):347–353CrossRefPubMedPubMedCentral Mashhoon Y, Wells AM, Kantak KM (2010) Interaction of the rostral basolateral amygdala and prelimbic prefrontal cortex in regulating reinstatement of cocaine-seeking behavior. Pharmacol Biochem Behav 96(3):347–353CrossRefPubMedPubMedCentral
go back to reference McNally G P (2014) Extinction of drug seeking: Neural circuits and approaches to augmentation. Neuropharmacology 76 Pt B:528–532 McNally G P (2014) Extinction of drug seeking: Neural circuits and approaches to augmentation. Neuropharmacology 76 Pt B:528–532
go back to reference Millan EZ, Marchant NJ, McNally GP (2011) Extinction of drug seeking. Behav Brain Res 217(2):454–462CrossRefPubMed Millan EZ, Marchant NJ, McNally GP (2011) Extinction of drug seeking. Behav Brain Res 217(2):454–462CrossRefPubMed
go back to reference Mirolli M, Mannella F, Baldassarre G (2010) The roles of the amygdala in the affective regulation of body, brain and behaviour. Connect Sci 3(22):215–245CrossRef Mirolli M, Mannella F, Baldassarre G (2010) The roles of the amygdala in the affective regulation of body, brain and behaviour. Connect Sci 3(22):215–245CrossRef
go back to reference Moorman DE, James MH, McGlinchey EM, Aston-Jones G (2015) Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 1628:130–146CrossRefPubMed Moorman DE, James MH, McGlinchey EM, Aston-Jones G (2015) Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 1628:130–146CrossRefPubMed
go back to reference Moren J, Balkenius C (2000) A computational model of emotional learning in the amygdala. Anim Anim 6:383–391 Moren J, Balkenius C (2000) A computational model of emotional learning in the amygdala. Anim Anim 6:383–391
go back to reference Moustafa AA, Gilbertson MW, Orr SP, Herzallah MM, Servatius RJ, Myers CE (2013) A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals. Brain Cogn 81(1):29–43CrossRefPubMed Moustafa AA, Gilbertson MW, Orr SP, Herzallah MM, Servatius RJ, Myers CE (2013) A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals. Brain Cogn 81(1):29–43CrossRefPubMed
go back to reference Mueller D, Cahill SP (2010) Noradrenergic modulation of extinction learning and exposure therapy. Behav Brain Res 208(1):1–11CrossRefPubMed Mueller D, Cahill SP (2010) Noradrenergic modulation of extinction learning and exposure therapy. Behav Brain Res 208(1):1–11CrossRefPubMed
go back to reference Orsini C, Bonito-Oliva A, Conversi D, Cabib S (2008) Genetic liability increases propensity to prime-induced reinstatement of conditioned place preference in mice exposed to low cocaine. Psychopharmacology (Berl) 198(2):287–296CrossRef Orsini C, Bonito-Oliva A, Conversi D, Cabib S (2008) Genetic liability increases propensity to prime-induced reinstatement of conditioned place preference in mice exposed to low cocaine. Psychopharmacology (Berl) 198(2):287–296CrossRef
go back to reference Otis JM, Dashew KB, Mueller D (2013) Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory. J Neurosci 33(3):1271–181aCrossRefPubMedPubMedCentral Otis JM, Dashew KB, Mueller D (2013) Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory. J Neurosci 33(3):1271–181aCrossRefPubMedPubMedCentral
go back to reference Ovari J, Leri F (2008) Inactivation of the ventromedial prefrontal cortex mimics re-emergence of heroin seeking caused by heroin reconditioning. Neurosci Lett 444(1):52–55CrossRefPubMed Ovari J, Leri F (2008) Inactivation of the ventromedial prefrontal cortex mimics re-emergence of heroin seeking caused by heroin reconditioning. Neurosci Lett 444(1):52–55CrossRefPubMed
go back to reference Pendyam S, Bravo-Rivera C, Burgos-Robles A, Sotres-Bayon F, Quirk GJ, Nair SS (2013) Fear signaling in the prelimbic-amygdala circuit: a computational modeling and recording study. J Neurophysiol 110(4):844–861CrossRefPubMedPubMedCentral Pendyam S, Bravo-Rivera C, Burgos-Robles A, Sotres-Bayon F, Quirk GJ, Nair SS (2013) Fear signaling in the prelimbic-amygdala circuit: a computational modeling and recording study. J Neurophysiol 110(4):844–861CrossRefPubMedPubMedCentral
go back to reference Perez F, Granger BE, Hunter JD (2011) Python: an ecosystem for scientific computing. Comput Sci Eng 13(2):13–21CrossRef Perez F, Granger BE, Hunter JD (2011) Python: an ecosystem for scientific computing. Comput Sci Eng 13(2):13–21CrossRef
go back to reference Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28(23):6046–6053CrossRefPubMedPubMedCentral Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28(23):6046–6053CrossRefPubMedPubMedCentral
go back to reference Rhodes SEV, Killcross AS (2007) Lesions of rat infralimbic cortex enhance renewal of extinguished appetitive pavlovian responding. Eur J Neurosci 25(8):2498–2503CrossRefPubMed Rhodes SEV, Killcross AS (2007) Lesions of rat infralimbic cortex enhance renewal of extinguished appetitive pavlovian responding. Eur J Neurosci 25(8):2498–2503CrossRefPubMed
go back to reference Rhodes SEV, Killcross S (2004) Lesions of rat infralimbic cortex enhance recovery and reinstatement of an appetitive pavlovian response. Learn Mem 11(5):611–616CrossRefPubMedPubMedCentral Rhodes SEV, Killcross S (2004) Lesions of rat infralimbic cortex enhance recovery and reinstatement of an appetitive pavlovian response. Learn Mem 11(5):611–616CrossRefPubMedPubMedCentral
go back to reference Royer S, Pare D (2002) Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 115(2):455–462CrossRefPubMed Royer S, Pare D (2002) Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 115(2):455–462CrossRefPubMed
go back to reference Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3):211–223CrossRefPubMed Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3):211–223CrossRefPubMed
go back to reference Sara SJ, Segal M (1991) Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: implications for cognition. Prog Brain Res 88:571–585CrossRefPubMed Sara SJ, Segal M (1991) Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: implications for cognition. Prog Brain Res 88:571–585CrossRefPubMed
go back to reference Schroeder BE, Binzak JM, Kelley AE (2001) A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues. Neuroscience 105(3):535–545CrossRefPubMed Schroeder BE, Binzak JM, Kelley AE (2001) A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues. Neuroscience 105(3):535–545CrossRefPubMed
go back to reference Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36(2):529–538CrossRefPubMed Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36(2):529–538CrossRefPubMed
go back to reference Silvetti M, Alexander W, Verguts T, Brown J (2014) From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex. Neurosci Biobehav Rev 46(1):44–57CrossRefPubMed Silvetti M, Alexander W, Verguts T, Brown J (2014) From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex. Neurosci Biobehav Rev 46(1):44–57CrossRefPubMed
go back to reference Silvetti M, Seurinck R, Verguts T (2011) Value and prediction error in medial frontal cortex: integrating the single-unit and systems levels of analysis. Front Hum Neurosci 5:75CrossRefPubMedPubMedCentral Silvetti M, Seurinck R, Verguts T (2011) Value and prediction error in medial frontal cortex: integrating the single-unit and systems levels of analysis. Front Hum Neurosci 5:75CrossRefPubMedPubMedCentral
go back to reference Sivagnanam S, Majumdar A, Yoshimoto K, Astakhov V, Bandrowski A, Martone ME, Carnevale NT (2013) Introducing the Neuroscience Gateway, IWSG, volume 993 of CEUR Workshop Proceedings. http://CEUR-WS.org. Accessed 8 Sept 2016 Sivagnanam S, Majumdar A, Yoshimoto K, Astakhov V, Bandrowski A, Martone ME, Carnevale NT (2013) Introducing the Neuroscience Gateway, IWSG, volume 993 of CEUR Workshop Proceedings. http://​CEUR-WS.​org. Accessed 8 Sept 2016
go back to reference Spink AJ, Tegelenbosch RA, Buma MO, Noldus LP (2001) The ethovision video tracking system: a tool for behavioral phenotyping of transgenic mice. Physiol Behav 73(5):731–744CrossRefPubMed Spink AJ, Tegelenbosch RA, Buma MO, Noldus LP (2001) The ethovision video tracking system: a tool for behavioral phenotyping of transgenic mice. Physiol Behav 73(5):731–744CrossRefPubMed
go back to reference St Onge JR, Floresco SB (2010) Prefrontal cortical contribution to risk-based decision making. Cereb Cortex 20(8):1816–1828CrossRefPubMed St Onge JR, Floresco SB (2010) Prefrontal cortical contribution to risk-based decision making. Cereb Cortex 20(8):1816–1828CrossRefPubMed
go back to reference Tzschentke TM (2007) Measuring reward with the conditioned place preference (cpp) paradigm: update of the last decade. Addict Biol 12(3–4):227–462CrossRefPubMed Tzschentke TM (2007) Measuring reward with the conditioned place preference (cpp) paradigm: update of the last decade. Addict Biol 12(3–4):227–462CrossRefPubMed
go back to reference Van den Oever MC, Spijker S, Smit AB, De Vries TJ (2010) Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev 35(2):276–284CrossRefPubMed Van den Oever MC, Spijker S, Smit AB, De Vries TJ (2010) Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev 35(2):276–284CrossRefPubMed
go back to reference van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Computi Sci Eng 13(2):22–30CrossRef van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Computi Sci Eng 13(2):22–30CrossRef
go back to reference Ventura R, Alcaro A, Puglisi-Allegra S (2005) Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cereb Cortex 15(12):1877–1886CrossRefPubMed Ventura R, Alcaro A, Puglisi-Allegra S (2005) Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cereb Cortex 15(12):1877–1886CrossRefPubMed
go back to reference Ventura R, Cabib S, Alcaro A, Orsini C, Puglisi-Allegra S (2003) Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci 23(5):1879–1885PubMed Ventura R, Cabib S, Alcaro A, Orsini C, Puglisi-Allegra S (2003) Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci 23(5):1879–1885PubMed
go back to reference Ventura R, Latagliata EC, Morrone C, La Mela I, Puglisi-Allegra S (2008) Prefrontal norepinephrine determines attribution of “high” motivational salience. PLoS One 3(8):e3044CrossRefPubMedPubMedCentral Ventura R, Latagliata EC, Morrone C, La Mela I, Puglisi-Allegra S (2008) Prefrontal norepinephrine determines attribution of “high” motivational salience. PLoS One 3(8):e3044CrossRefPubMedPubMedCentral
go back to reference Ventura R, Morrone C, Puglisi-Allegra S (2007) Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci USA 104(12):5181–5186CrossRefPubMedPubMedCentral Ventura R, Morrone C, Puglisi-Allegra S (2007) Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci USA 104(12):5181–5186CrossRefPubMedPubMedCentral
go back to reference Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58CrossRefPubMed Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58CrossRefPubMed
go back to reference Weissenborn R, Robbins TW, Everitt BJ (1997) Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology (Berl) 134(3):242–257CrossRef Weissenborn R, Robbins TW, Everitt BJ (1997) Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology (Berl) 134(3):242–257CrossRef
go back to reference Zavala AR, Weber SM, Rice HJ, Alleweireldt AT, Neisewander JL (2003) Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction, and reinstatement of cocaine-conditioned place preference. Brain Res 990(1–2):157–164CrossRefPubMed Zavala AR, Weber SM, Rice HJ, Alleweireldt AT, Neisewander JL (2003) Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction, and reinstatement of cocaine-conditioned place preference. Brain Res 990(1–2):157–164CrossRefPubMed
go back to reference Zikopoulos B, John Y, Garcia-Cabezas M, Bunce J, Barbas H (2016) The intercalated nuclear complex of the primate amygdala. Neuroscience 330:267–290 Zikopoulos B, John Y, Garcia-Cabezas M, Bunce J, Barbas H (2016) The intercalated nuclear complex of the primate amygdala. Neuroscience 330:267–290
Metadata
Title
Interplay of prefrontal cortex and amygdala during extinction of drug seeking
Authors
Valeria Oliva
Emilio Cartoni
Emanuele Claudio Latagliata
Stefano Puglisi-Allegra
Gianluca Baldassarre
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1533-9

Other articles of this Issue 3/2018

Brain Structure and Function 3/2018 Go to the issue