Skip to main content
Top
Published in: Brain Structure and Function 1/2018

Open Access 01-01-2018 | Original Article

The corpus callosum as anatomical marker of intelligence? A critical examination in a large-scale developmental study

Authors: René Westerhausen, Charline-Marie Friesen, Darius A. Rohani, Stine K. Krogsrud, Christian K. Tamnes, Jon S. Skranes, Asta K. Håberg, Anders M. Fjell, Kristine B. Walhovd

Published in: Brain Structure and Function | Issue 1/2018

Login to get access

Abstract

Intellectual abilities are supported by a large-scale fronto-parietal brain network distributed across both cerebral hemispheres. This bihemispheric network suggests a functional relevance of inter-hemispheric coordination, a notion which is supported by a series of recent structural magnetic resonance imaging (MRI) studies demonstrating correlations between intelligence scores (IQ) and corpus-callosum anatomy. However, these studies also reveal an age-related dissociation: mostly positive associations are reported in adult samples, while negative associations are found in developing samples. In the present study, we re-examine the association between corpus callosum and intelligence measures in a large (734 datasets from 495 participants) developmental mixed cross-sectional and longitudinal sample (6.4–21.9 years) using raw test scores rather than deviation IQ measures to account for the ongoing cognitive development in this age period. Analyzing mid-sagittal measures of regional callosal thickness, a positive association in the splenium of the corpus callosum was found for both verbal and performance raw test scores. This association was not present when the participants’ age was considered in the analysis. Thus, we did not reveal any association that cannot be explained by a temporal co-occurrence of overall developmental trends in intellectual abilities and corpus callosum maturation in the present developing sample.
Appendix
Available only for authorised users
Literature
go back to reference Angoff WH (1984) Scales, norms, and equivalent scores. Educational testing service, Princeton Angoff WH (1984) Scales, norms, and equivalent scores. Educational testing service, Princeton
go back to reference Banich MT (2003) Interaction between the hemispheres and its implications for the processing capacity of the brain. In: Davidson RJ, Hugdahl K (eds) The asymmetrical brain. MIT Press, Cambridge, pp 261–302 Banich MT (2003) Interaction between the hemispheres and its implications for the processing capacity of the brain. In: Davidson RJ, Hugdahl K (eds) The asymmetrical brain. MIT Press, Cambridge, pp 261–302
go back to reference Belger A, Banich MT (1998) Costs and benefits of integrating information between the cerebral hemispheres: a computational perspective. Neuropsychology 12(3):380CrossRefPubMed Belger A, Banich MT (1998) Costs and benefits of integrating information between the cerebral hemispheres: a computational perspective. Neuropsychology 12(3):380CrossRefPubMed
go back to reference Benedictis A, Petit L, Descoteaux M, Marras CE, Barbareschi M, Corsini F, Sarubbo S (2016) New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography. Hum Brain Mapp 37(12):4718–4735CrossRefPubMed Benedictis A, Petit L, Descoteaux M, Marras CE, Barbareschi M, Corsini F, Sarubbo S (2016) New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography. Hum Brain Mapp 37(12):4718–4735CrossRefPubMed
go back to reference Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188CrossRef Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188CrossRef
go back to reference Burgaleta M, Johnson W, Waber DP, Colom R, Karama S (2014) Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. Neuroimage 84:810–819CrossRefPubMed Burgaleta M, Johnson W, Waber DP, Colom R, Karama S (2014) Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. Neuroimage 84:810–819CrossRefPubMed
go back to reference Campbell AL, Bogen JE, Smith A (1981) Disorganization and reorganization of cognitive and sensorimotor functions in cerebral commissurotomy. Brain 104(3):493–511CrossRefPubMed Campbell AL, Bogen JE, Smith A (1981) Disorganization and reorganization of cognitive and sensorimotor functions in cerebral commissurotomy. Brain 104(3):493–511CrossRefPubMed
go back to reference Choi YY, Shamosh NA, Cho SH, DeYoung CG, Lee MJ, Lee J-M, Gray JR (2008) Multiple bases of human intelligence revealed by cortical thickness and neural activation. J Neurosci 28(41):10323–10329CrossRefPubMed Choi YY, Shamosh NA, Cho SH, DeYoung CG, Lee MJ, Lee J-M, Gray JR (2008) Multiple bases of human intelligence revealed by cortical thickness and neural activation. J Neurosci 28(41):10323–10329CrossRefPubMed
go back to reference Davis SW, Cabeza R (2015) Cross-hemispheric collaboration and segregation associated with task difficulty as revealed by structural and functional connectivity. J Neurosci 35(21):8191–8200CrossRefPubMedPubMedCentral Davis SW, Cabeza R (2015) Cross-hemispheric collaboration and segregation associated with task difficulty as revealed by structural and functional connectivity. J Neurosci 35(21):8191–8200CrossRefPubMedPubMedCentral
go back to reference Faul F, Erdfelder E, Buchner A, Lang A-G (2009) Statistical power analyses using G* Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160CrossRefPubMed Faul F, Erdfelder E, Buchner A, Lang A-G (2009) Statistical power analyses using G* Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41(4):1149–1160CrossRefPubMed
go back to reference Giedd JN, Rumsey JM, Castellanos FX, Rajapakse JC, Kaysen D, Vaituzis AC, Rapoport JL (1996) A quantitative MRI study of the corpus callosum in children and adolescents. Dev Brain Res 91(2):274–280CrossRef Giedd JN, Rumsey JM, Castellanos FX, Rajapakse JC, Kaysen D, Vaituzis AC, Rapoport JL (1996) A quantitative MRI study of the corpus callosum in children and adolescents. Dev Brain Res 91(2):274–280CrossRef
go back to reference Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT (2004) Structural brain variation and general intelligence. Neuroimage 23(1):425–433CrossRefPubMed Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT (2004) Structural brain variation and general intelligence. Neuroimage 23(1):425–433CrossRefPubMed
go back to reference Hansen TI, Brezova V, Eikenes L, Haberg A, Vangberg TR (2015) How does the accuracy of intracranial volume measurements affect normalized brain volumes? Sample size estimates based on 966 subjects from the HUNT MRI cohort. AJNR Am J Neuroradiol 36(8):1450–1456. doi:10.3174/ajnr.A4299 CrossRefPubMed Hansen TI, Brezova V, Eikenes L, Haberg A, Vangberg TR (2015) How does the accuracy of intracranial volume measurements affect normalized brain volumes? Sample size estimates based on 966 subjects from the HUNT MRI cohort. AJNR Am J Neuroradiol 36(8):1450–1456. doi:10.​3174/​ajnr.​A4299 CrossRefPubMed
go back to reference Hofer SM, Flaherty BP, Hoffman L (2006) Cross-sectional analysis of time-dependent data: mean-induced association in age-heterogeneous samples and an alternative method based on sequential narrow age-cohort samples. Multivar Behav Res 41(2):165–187CrossRef Hofer SM, Flaherty BP, Hoffman L (2006) Cross-sectional analysis of time-dependent data: mean-induced association in age-heterogeneous samples and an alternative method based on sequential narrow age-cohort samples. Multivar Behav Res 41(2):165–187CrossRef
go back to reference Huster RJ, Westerhausen R, Herrmann C (2011) Sex differences in cognitive control are associated with midcingulate and callosal morphology. Brain Struct Funct 215(3–4):225–235CrossRefPubMed Huster RJ, Westerhausen R, Herrmann C (2011) Sex differences in cognitive control are associated with midcingulate and callosal morphology. Brain Struct Funct 215(3–4):225–235CrossRefPubMed
go back to reference Jäncke L, Preis S, Steinmetz H (1999) The relation between forebrain volume and midsagittal size of the corpus callosum in children. Neuroreport 10(14):2981–2985CrossRefPubMed Jäncke L, Preis S, Steinmetz H (1999) The relation between forebrain volume and midsagittal size of the corpus callosum in children. Neuroreport 10(14):2981–2985CrossRefPubMed
go back to reference Karama S, Colom R, Johnson W, Deary IJ, Haier R, Waber DP, Evans AC (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6–18. Neuroimage 55(4):1443–1453CrossRefPubMedPubMedCentral Karama S, Colom R, Johnson W, Deary IJ, Haier R, Waber DP, Evans AC (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6–18. Neuroimage 55(4):1443–1453CrossRefPubMedPubMedCentral
go back to reference Kompus K, Kalpouzos G, Westerhausen R (2011) The size of the anterior corpus callosum correlates with the strength of hemispheric encoding-retrieval asymmetry in the ventrolateral prefrontal cortex. Brain Res 1419:61–67CrossRefPubMed Kompus K, Kalpouzos G, Westerhausen R (2011) The size of the anterior corpus callosum correlates with the strength of hemispheric encoding-retrieval asymmetry in the ventrolateral prefrontal cortex. Brain Res 1419:61–67CrossRefPubMed
go back to reference Luders E, Cherbuin N, Thompson PM, Gutman B, Anstey KJ, Sachdev P, Toga AW (2010a) When more is less: associations between corpus callosum size and handedness lateralization. Neuroimage 52(1):43–49CrossRefPubMedPubMedCentral Luders E, Cherbuin N, Thompson PM, Gutman B, Anstey KJ, Sachdev P, Toga AW (2010a) When more is less: associations between corpus callosum size and handedness lateralization. Neuroimage 52(1):43–49CrossRefPubMedPubMedCentral
go back to reference Mamelak AN, Barbaro NM, Walker JA, Laxer KD (1993) Corpus callosotomy: a quantitative study of the extent of resection, seizure control, and neuropsychological outcome. J Neurosurg 79(5):688–695CrossRefPubMed Mamelak AN, Barbaro NM, Walker JA, Laxer KD (1993) Corpus callosotomy: a quantitative study of the extent of resection, seizure control, and neuropsychological outcome. J Neurosurg 79(5):688–695CrossRefPubMed
go back to reference McDaniel MA (2005) Big-brained people are smarter: a meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 33(4):337–346CrossRef McDaniel MA (2005) Big-brained people are smarter: a meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 33(4):337–346CrossRef
go back to reference Men W, Falk D, Sun T, Chen W, Li J, Yin D, Fan M (2014) The corpus callosum of Albert Einstein‘s brain: another clue to his high intelligence? Brain 137(4):e268CrossRefPubMed Men W, Falk D, Sun T, Chen W, Li J, Yin D, Fan M (2014) The corpus callosum of Albert Einstein‘s brain: another clue to his high intelligence? Brain 137(4):e268CrossRefPubMed
go back to reference Menary K, Collins PF, Porter JN, Muetzel R, Olson EA, Kumar V, Luciana M (2013) Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence 41(5):597–606CrossRefPubMedPubMedCentral Menary K, Collins PF, Porter JN, Muetzel R, Olson EA, Kumar V, Luciana M (2013) Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence 41(5):597–606CrossRefPubMedPubMedCentral
go back to reference Narr KL, Woods RP, Thompson PM, Szeszko P, Robinson D, Dimtcheva T, Bilder RM (2007) Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cereb Cortex 17(9):2163–2171CrossRefPubMed Narr KL, Woods RP, Thompson PM, Szeszko P, Robinson D, Dimtcheva T, Bilder RM (2007) Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cereb Cortex 17(9):2163–2171CrossRefPubMed
go back to reference Navas-Sanchez FJ, Aleman-Gomez Y, Sanchez-Gonzalez J, Guzman-De-Villoria JA, Franco C, Robles O, Desco M (2014) White matter microstructure correlates of mathematical giftedness and intelligence quotient. Hum Brain Mapp 35(6):2619–2631. doi:10.1002/hbm.22355 CrossRefPubMed Navas-Sanchez FJ, Aleman-Gomez Y, Sanchez-Gonzalez J, Guzman-De-Villoria JA, Franco C, Robles O, Desco M (2014) White matter microstructure correlates of mathematical giftedness and intelligence quotient. Hum Brain Mapp 35(6):2619–2631. doi:10.​1002/​hbm.​22355 CrossRefPubMed
go back to reference Neisser U (1997) Rising scores on intelligence tests: test scores are certainly going up all over the world, but whether intelligence itself has risen remains controversial. Am Sci 85(5):440–447 Neisser U (1997) Rising scores on intelligence tests: test scores are certainly going up all over the world, but whether intelligence itself has risen remains controversial. Am Sci 85(5):440–447
go back to reference Nosarti C, Rushe TM, Woodruff PW, Stewart AL, Rifkin L, Murray RM (2004) Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain 127(9):2080–2089CrossRefPubMed Nosarti C, Rushe TM, Woodruff PW, Stewart AL, Rifkin L, Murray RM (2004) Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain 127(9):2080–2089CrossRefPubMed
go back to reference Oguni H, Olivier A, Andermann F, Comair J (1991) Anterior callosotomy in the treatment of medically intractable epilepsies: a study of 43 patients with a mean follow-up of 39 months. Ann Neurol 30(3):357–364CrossRefPubMed Oguni H, Olivier A, Andermann F, Comair J (1991) Anterior callosotomy in the treatment of medically intractable epilepsies: a study of 43 patients with a mean follow-up of 39 months. Ann Neurol 30(3):357–364CrossRefPubMed
go back to reference Penke L, Maniega SM, Bastin M, Hernandez MV, Murray C, Royle N, Deary I (2012) Brain white matter tract integrity as a neural foundation for general intelligence. Mol Psychiatry 17(10):1026–1030CrossRefPubMed Penke L, Maniega SM, Bastin M, Hernandez MV, Murray C, Royle N, Deary I (2012) Brain white matter tract integrity as a neural foundation for general intelligence. Mol Psychiatry 17(10):1026–1030CrossRefPubMed
go back to reference Peterson BS, Feineigle PA, Staib LH, Gore JC (2001) Automated measurement of latent morphological features in the human corpus callosum. Hum Brain Mapp 12(4):232–245CrossRefPubMed Peterson BS, Feineigle PA, Staib LH, Gore JC (2001) Automated measurement of latent morphological features in the human corpus callosum. Hum Brain Mapp 12(4):232–245CrossRefPubMed
go back to reference Pietschnig J, Penke L, Wicherts JM, Zeiler M, Voracek M (2015) Meta-analysis of associations between human brain volume and intelligence differences: how strong are they and what do they mean? Neurosci Biobehav Rev 57:411–432CrossRefPubMed Pietschnig J, Penke L, Wicherts JM, Zeiler M, Voracek M (2015) Meta-analysis of associations between human brain volume and intelligence differences: how strong are they and what do they mean? Neurosci Biobehav Rev 57:411–432CrossRefPubMed
go back to reference Pujol J, Vendrell P, Junqué C, Martí-Vilalta JL, Capdevila A (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34(1):71–75CrossRefPubMed Pujol J, Vendrell P, Junqué C, Martí-Vilalta JL, Capdevila A (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34(1):71–75CrossRefPubMed
go back to reference Putnam MC, Steven MS, Doron KW, Riggall AC, Gazzaniga MS (2010) Cortical projection topography of the human splenium: hemispheric asymmetry and individual differences. J Cogn Neurosci 22(8):1662–1669CrossRefPubMed Putnam MC, Steven MS, Doron KW, Riggall AC, Gazzaniga MS (2010) Cortical projection topography of the human splenium: hemispheric asymmetry and individual differences. J Cogn Neurosci 22(8):1662–1669CrossRefPubMed
go back to reference Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, OxfordCrossRef Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, OxfordCrossRef
go back to reference Schulte T, Müller-Oehring E, Salo R, Pfefferbaum A, Sullivan E (2006) Callosal involvement in a lateralized stroop task in alcoholic and healthy subjects. Neuropsychology 20(6):727CrossRefPubMed Schulte T, Müller-Oehring E, Salo R, Pfefferbaum A, Sullivan E (2006) Callosal involvement in a lateralized stroop task in alcoholic and healthy subjects. Neuropsychology 20(6):727CrossRefPubMed
go back to reference Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Giedd J (2006) Intellectual ability and cortical development in children and adolescents. Nature 440(7084):676–679CrossRefPubMed Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Giedd J (2006) Intellectual ability and cortical development in children and adolescents. Nature 440(7084):676–679CrossRefPubMed
go back to reference Spitzka EA (1907) A study of the brains of six eminent scientists and scholars belonging to the American Anthropometric Society, together with a description of the skull of Professor E. D. Cope. Trans Am Philos Soc 21(4):175–308CrossRef Spitzka EA (1907) A study of the brains of six eminent scientists and scholars belonging to the American Anthropometric Society, together with a description of the skull of Professor E. D. Cope. Trans Am Philos Soc 21(4):175–308CrossRef
go back to reference Tamnes CK, Østby Y, Walhovd KB, Westlye LT, Due-Tønnessen P, Fjell AM (2010) Intellectual abilities and white matter microstructure in development: a diffusion tensor imaging study. Hum Brain Mapp 31(10):1609–1625CrossRefPubMed Tamnes CK, Østby Y, Walhovd KB, Westlye LT, Due-Tønnessen P, Fjell AM (2010) Intellectual abilities and white matter microstructure in development: a diffusion tensor imaging study. Hum Brain Mapp 31(10):1609–1625CrossRefPubMed
go back to reference Tamnes CK, Walhovd KB, Dale AM, Østby Y, Grydeland H, Richardson G, Due-Tønnessen P (2013) Brain development and aging: overlapping and unique patterns of change. Neuroimage 68:63–74CrossRefPubMed Tamnes CK, Walhovd KB, Dale AM, Østby Y, Grydeland H, Richardson G, Due-Tønnessen P (2013) Brain development and aging: overlapping and unique patterns of change. Neuroimage 68:63–74CrossRefPubMed
go back to reference Tang C, Eaves E, Ng J, Carpenter D, Mai X, Schroeder D, Haier R (2010) Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI. Intelligence 38(3):293–303CrossRef Tang C, Eaves E, Ng J, Carpenter D, Mai X, Schroeder D, Haier R (2010) Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI. Intelligence 38(3):293–303CrossRef
go back to reference Tanriverdi T, Olivier A, Poulin N, Andermann F, Dubeau F (2009) Long-term seizure outcome after corpus callosotomy: a retrospective analysis of 95 patients: clinical article. J Neurosurg 110(2):332–342CrossRefPubMed Tanriverdi T, Olivier A, Poulin N, Andermann F, Dubeau F (2009) Long-term seizure outcome after corpus callosotomy: a retrospective analysis of 95 patients: clinical article. J Neurosurg 110(2):332–342CrossRefPubMed
go back to reference Verbeke G, Molenberghs G (2009) Linear mixed models for longitudinal data. Springer Science & Business Media, Heidelberg Verbeke G, Molenberghs G (2009) Linear mixed models for longitudinal data. Springer Science & Business Media, Heidelberg
go back to reference Wechsler D (1999) Wechsler Abbreviated Scale of Intelligence (WASI). The Psychological Corporation, San Antonio Wechsler D (1999) Wechsler Abbreviated Scale of Intelligence (WASI). The Psychological Corporation, San Antonio
go back to reference Welcome SE, Chiarello C (2008) How dynamic is interhemispheric interaction? Effects of task switching on the across-hemisphere advantage. Brain Cogn 67(1):69–75CrossRefPubMedPubMedCentral Welcome SE, Chiarello C (2008) How dynamic is interhemispheric interaction? Effects of task switching on the across-hemisphere advantage. Brain Cogn 67(1):69–75CrossRefPubMedPubMedCentral
go back to reference Westerhausen R, Kreuder F, Sequeira SDS, Walter C, Woerner W, Wittling RA, Wittling W (2004) Effects of handedness and gender on macro-and microstructure of the corpus callosum and its subregions: a combined high-resolution and diffusion-tensor MRI study. Cogn Brain Res 21(3):418–426CrossRef Westerhausen R, Kreuder F, Sequeira SDS, Walter C, Woerner W, Wittling RA, Wittling W (2004) Effects of handedness and gender on macro-and microstructure of the corpus callosum and its subregions: a combined high-resolution and diffusion-tensor MRI study. Cogn Brain Res 21(3):418–426CrossRef
go back to reference Westerhausen R, Gruner R, Specht K, Hugdahl K (2009) Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19(6):1322–1329. doi:10.1093/cercor/bhn173 CrossRefPubMed Westerhausen R, Gruner R, Specht K, Hugdahl K (2009) Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19(6):1322–1329. doi:10.​1093/​cercor/​bhn173 CrossRefPubMed
go back to reference Westerhausen R, Luders E, Specht K, Ofte SH, Toga AW, Thompson PM, Hugdahl K (2011) Structural and functional reorganization of the corpus callosum between the age of 6 and 8 years. Cereb Cortex 21(5):1012–1017CrossRefPubMed Westerhausen R, Luders E, Specht K, Ofte SH, Toga AW, Thompson PM, Hugdahl K (2011) Structural and functional reorganization of the corpus callosum between the age of 6 and 8 years. Cereb Cortex 21(5):1012–1017CrossRefPubMed
Metadata
Title
The corpus callosum as anatomical marker of intelligence? A critical examination in a large-scale developmental study
Authors
René Westerhausen
Charline-Marie Friesen
Darius A. Rohani
Stine K. Krogsrud
Christian K. Tamnes
Jon S. Skranes
Asta K. Håberg
Anders M. Fjell
Kristine B. Walhovd
Publication date
01-01-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1493-0

Other articles of this Issue 1/2018

Brain Structure and Function 1/2018 Go to the issue