Skip to main content
Top
Published in: Brain Structure and Function 8/2017

Open Access 01-11-2017 | Original Article

The neurons expressing calcium-binding proteins in the amygdala of the guinea pig: precisely designed interface for sex hormones

Author: Maciej Równiak

Published in: Brain Structure and Function | Issue 8/2017

Login to get access

Abstract

The generation of emotional responses by the amygdala is determined largely by the balance of excitatory and inhibitory inputs to its principal neurons. These responses are often sex-specific, and any imbalance in excitatory and/or inhibitory tones leads to serious psychiatric disorders which occur with different rates in men versus women. To investigate the neural basis of sex-specific processing in the amygdala, relationships between the neurons expressing calbindin (CB), parvalbumin (PV) and calretinin (CR), which form in the amygdala main subsets of γ-aminobutyric acid (GABA)-ergic inhibitory system, and neurons endowed with oestrogen alpha (ERα), oestrogen beta (ERβ) or androgen (AR) receptors were analysed using double immunohistochemistry in male and female guinea pig subjects. The results show that in various nuclei of the amygdala in both sexes small subsets of CB neurons and substantial proportions of PV neurons co-express ERβ, while many of the CR neurons co-express ERα. Both these oestrogen-sensitive populations are strictly separated as CB and PV neurons almost never co-express ERα, while CR cells are usually devoid of ERβ. In addition, in the medial nucleus and some other neighbouring regions, there are non-overlapping subpopulations of CB and CR neurons which co-express AR. In conclusion, the localization of ERα, ERβ or AR within subsets of GABAergic interneurons across diverse amygdaloid regions suggests that steroid hormones may exert a significant influence over local neuronal activity by directly modulating inhibitory tone. The control of inhibitory tone may be one of the mechanisms whereby oestrogen and androgen could modulate amygdala processing in a sex-specific manner. Another mechanism may be thorough steroid-sensitive projection neurons, which are most probably located in the medial and central nuclei.
Literature
go back to reference Airaksinen MS, Eilers J, Garaschuk O et al (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci USA 94:1488–1493CrossRefPubMedPubMedCentral Airaksinen MS, Eilers J, Garaschuk O et al (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci USA 94:1488–1493CrossRefPubMedPubMedCentral
go back to reference Alcántara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl) 188:63–73CrossRef Alcántara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl) 188:63–73CrossRef
go back to reference Bartesaghi R, Severi S (2004) Effects of early environment on field CA2 pyramidal neurons in the guinea-pig. Neuroscience 123:703–714CrossRefPubMed Bartesaghi R, Severi S (2004) Effects of early environment on field CA2 pyramidal neurons in the guinea-pig. Neuroscience 123:703–714CrossRefPubMed
go back to reference Barth C, Villringer A, Sacher J (2015) Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci. doi:10.3389/fnins.2015.00037 Barth C, Villringer A, Sacher J (2015) Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci. doi:10.​3389/​fnins.​2015.​00037
go back to reference Bekker MHJ, van Mens-Verhulst J (2007) Anxiety disorders: sex differences in prevalence, degree, and background, but gender-neutral treatment. Gend Med 4(Suppl B):S178–S193CrossRefPubMed Bekker MHJ, van Mens-Verhulst J (2007) Anxiety disorders: sex differences in prevalence, degree, and background, but gender-neutral treatment. Gend Med 4(Suppl B):S178–S193CrossRefPubMed
go back to reference Blurton-Jones M, Tuszynski MH (2002) Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats. J Comp Neurol 452:276–287. doi:10.1002/cne.10393 CrossRefPubMed Blurton-Jones M, Tuszynski MH (2002) Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats. J Comp Neurol 452:276–287. doi:10.​1002/​cne.​10393 CrossRefPubMed
go back to reference Córdoba Montoya DA, Carrer HF (1997) Estrogen facilitates induction of long term potentiation in the hippocampus of awake rats. Brain Res 778:430–438CrossRefPubMed Córdoba Montoya DA, Carrer HF (1997) Estrogen facilitates induction of long term potentiation in the hippocampus of awake rats. Brain Res 778:430–438CrossRefPubMed
go back to reference Fagergren P, Hurd YL (1999) Mesolimbic gender differences in peptide CART mRNA expression: effects of cocaine. NeuroReport 10:3449–3452CrossRefPubMed Fagergren P, Hurd YL (1999) Mesolimbic gender differences in peptide CART mRNA expression: effects of cocaine. NeuroReport 10:3449–3452CrossRefPubMed
go back to reference Gonchar Y, Burkhalter A (1999) Connectivity of GABAergic calretinin-immunoreactive neurons in rat primary visual cortex. Cereb Cortex N Y N 1991 9:683–696 Gonchar Y, Burkhalter A (1999) Connectivity of GABAergic calretinin-immunoreactive neurons in rat primary visual cortex. Cereb Cortex N Y N 1991 9:683–696
go back to reference Gréco B, Allegretto EA, Tetel MJ, Blaustein JD (2001) Coexpression of ERβ with ERα and progestin receptor proteins in the female rat forebrain: effects of estradiol treatment. Endocrinology 142:5172–5181CrossRefPubMed Gréco B, Allegretto EA, Tetel MJ, Blaustein JD (2001) Coexpression of ERβ with ERα and progestin receptor proteins in the female rat forebrain: effects of estradiol treatment. Endocrinology 142:5172–5181CrossRefPubMed
go back to reference Gulyás AI, Hájos N, Freund TF (1996) Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 16:3397–3411PubMed Gulyás AI, Hájos N, Freund TF (1996) Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 16:3397–3411PubMed
go back to reference Hamann S (2005) Sex differences in the responses of the human amygdala. Neuroscientist 11:288–293CrossRefPubMed Hamann S (2005) Sex differences in the responses of the human amygdala. Neuroscientist 11:288–293CrossRefPubMed
go back to reference Herbison AE, Fénelon VS (1995) Estrogen regulation of GABAA receptor subunit mRNA expression in preoptic area and bed nucleus of the stria terminalis of female rat brain. J Neurosci 15:2328–2337PubMed Herbison AE, Fénelon VS (1995) Estrogen regulation of GABAA receptor subunit mRNA expression in preoptic area and bed nucleus of the stria terminalis of female rat brain. J Neurosci 15:2328–2337PubMed
go back to reference Herbison AE, Augood SJ, Simonian SX, Chapman C (1995) Regulation of GABA transporter activity and mRNA expression by estrogen in rat preoptic area. J Neurosci 15:8302–8309PubMed Herbison AE, Augood SJ, Simonian SX, Chapman C (1995) Regulation of GABA transporter activity and mRNA expression by estrogen in rat preoptic area. J Neurosci 15:8302–8309PubMed
go back to reference Hof PR, Glezer II, Condé F et al (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116CrossRefPubMed Hof PR, Glezer II, Condé F et al (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116CrossRefPubMed
go back to reference Kemppainen S, Pitkänen A (2000) Distribution of parvalbumin, calretinin, and calbindin-D(28k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol 426:441–467CrossRefPubMed Kemppainen S, Pitkänen A (2000) Distribution of parvalbumin, calretinin, and calbindin-D(28k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol 426:441–467CrossRefPubMed
go back to reference Kevetter GA, Winans SS (1981) Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the “vomeronasal amygdala”. J Comp Neurol 197:81–98CrossRefPubMed Kevetter GA, Winans SS (1981) Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the “vomeronasal amygdala”. J Comp Neurol 197:81–98CrossRefPubMed
go back to reference Kiss J, Csaba Z, Csáki Á, Halász B (2013) Demonstration of estrogen receptor α protein in glutamatergic (vesicular glutamate transporter 2 immunoreactive) neurons of the female rat hypothalamus and amygdala using double-label immunocytochemistry. Exp Brain Res 226:595–602. doi:10.1007/s00221-013-3474-8 CrossRefPubMed Kiss J, Csaba Z, Csáki Á, Halász B (2013) Demonstration of estrogen receptor α protein in glutamatergic (vesicular glutamate transporter 2 immunoreactive) neurons of the female rat hypothalamus and amygdala using double-label immunocytochemistry. Exp Brain Res 226:595–602. doi:10.​1007/​s00221-013-3474-8 CrossRefPubMed
go back to reference Krȩżel W, Dupont S, Krust A et al (2001) Increased anxiety and synaptic plasticity in estrogen receptor β-deficient mice. Proc Natl Acad Sci 98:12278–12282CrossRefPubMedPubMedCentral Krȩżel W, Dupont S, Krust A et al (2001) Increased anxiety and synaptic plasticity in estrogen receptor β-deficient mice. Proc Natl Acad Sci 98:12278–12282CrossRefPubMedPubMedCentral
go back to reference Kritzer MF (2002) Regional, laminar, and cellular distribution of immunoreactivity for ERα and ERβ in the cerebral cortex of hormonally intact, adult male and female rats. Cereb Cortex 12:116–128CrossRefPubMed Kritzer MF (2002) Regional, laminar, and cellular distribution of immunoreactivity for ERα and ERβ in the cerebral cortex of hormonally intact, adult male and female rats. Cereb Cortex 12:116–128CrossRefPubMed
go back to reference Kritzer M (2004) The distribution of immunoreactivity for intracellular androgen receptors in the cerebral cortex of hormonally intact adult male and female rats: localization in pyramidal neurons making corticocortical connections. Cereb Cortex 14:268–280. doi:10.1093/cercor/bhg127 CrossRefPubMed Kritzer M (2004) The distribution of immunoreactivity for intracellular androgen receptors in the cerebral cortex of hormonally intact adult male and female rats: localization in pyramidal neurons making corticocortical connections. Cereb Cortex 14:268–280. doi:10.​1093/​cercor/​bhg127 CrossRefPubMed
go back to reference Kritzer MF (2005) Regional, laminar and cellular distribution of immunoreactivity for ER in the cerebral cortex of hormonally intact, postnatally developing male and female rats. Cereb Cortex 16:1181–1192. doi:10.1093/cercor/bhj059 CrossRefPubMed Kritzer MF (2005) Regional, laminar and cellular distribution of immunoreactivity for ER in the cerebral cortex of hormonally intact, postnatally developing male and female rats. Cereb Cortex 16:1181–1192. doi:10.​1093/​cercor/​bhj059 CrossRefPubMed
go back to reference Martel KL, Baum MJ (2009) A centrifugal pathway to the mouse accessory olfactory bulb from the medial amygdala conveys gender-specific volatile pheromonal signals. Eur J Neurosci 29:368–376CrossRefPubMed Martel KL, Baum MJ (2009) A centrifugal pathway to the mouse accessory olfactory bulb from the medial amygdala conveys gender-specific volatile pheromonal signals. Eur J Neurosci 29:368–376CrossRefPubMed
go back to reference Mascagni F, McDonald AJ (2003) Immunohistochemical characterization of cholecystokinin containing neurons in the rat basolateral amygdala. Brain Res 976:171–184CrossRefPubMed Mascagni F, McDonald AJ (2003) Immunohistochemical characterization of cholecystokinin containing neurons in the rat basolateral amygdala. Brain Res 976:171–184CrossRefPubMed
go back to reference McDonald AJ (1985) Immunohistochemical identification of gamma-aminobutyric acid-containing neurons in the rat basolateral amygdala. Neurosci Lett 53:203–207CrossRefPubMed McDonald AJ (1985) Immunohistochemical identification of gamma-aminobutyric acid-containing neurons in the rat basolateral amygdala. Neurosci Lett 53:203–207CrossRefPubMed
go back to reference McDonald AJ (1989) Coexistence of somatostatin with neuropeptide Y, but not with cholecystokinin or vasoactive intestinal peptide, in neurons of the rat amygdala. Brain Res 500:37–45CrossRefPubMed McDonald AJ (1989) Coexistence of somatostatin with neuropeptide Y, but not with cholecystokinin or vasoactive intestinal peptide, in neurons of the rat amygdala. Brain Res 500:37–45CrossRefPubMed
go back to reference McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 105:681–693CrossRefPubMed McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 105:681–693CrossRefPubMed
go back to reference McDonald AJ, Mascagni F (2002) Immunohistochemical characterization of somatostatin containing interneurons in the rat basolateral amygdala. Brain Res 943:237–244CrossRefPubMed McDonald AJ, Mascagni F (2002) Immunohistochemical characterization of somatostatin containing interneurons in the rat basolateral amygdala. Brain Res 943:237–244CrossRefPubMed
go back to reference McDonald AJ, Mascagni F (2004) Parvalbumin-containing interneurons in the basolateral amygdala express high levels of the α1 subunit of the GABAA receptor. J Comp Neurol 473:137–146. doi:10.1002/cne.20101 CrossRefPubMed McDonald AJ, Mascagni F (2004) Parvalbumin-containing interneurons in the basolateral amygdala express high levels of the α1 subunit of the GABAA receptor. J Comp Neurol 473:137–146. doi:10.​1002/​cne.​20101 CrossRefPubMed
go back to reference McDonald AJ, Mascagni F, Zaric V (2012) Subpopulations of somatostatin-immunoreactive non-pyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex. Front Neural Circuits 6:46. doi:10.3389/fncir.2012.00046 CrossRefPubMedPubMedCentral McDonald AJ, Mascagni F, Zaric V (2012) Subpopulations of somatostatin-immunoreactive non-pyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex. Front Neural Circuits 6:46. doi:10.​3389/​fncir.​2012.​00046 CrossRefPubMedPubMedCentral
go back to reference Melchitzky DS, Lewis DA (2008) Dendritic-targeting GABA neurons in monkey prefrontal cortex: comparison of somatostatin- and calretinin-immunoreactive axon terminals. Synap N Y N 62:456–465. doi:10.1002/syn.20514 CrossRef Melchitzky DS, Lewis DA (2008) Dendritic-targeting GABA neurons in monkey prefrontal cortex: comparison of somatostatin- and calretinin-immunoreactive axon terminals. Synap N Y N 62:456–465. doi:10.​1002/​syn.​20514 CrossRef
go back to reference Meskenaite V (1997) Calretinin-immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, Macaca fascicularis. J Comp Neurol 379:113–132CrossRefPubMed Meskenaite V (1997) Calretinin-immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, Macaca fascicularis. J Comp Neurol 379:113–132CrossRefPubMed
go back to reference Miettinen R, Gulyás AI, Baimbridge KG et al (1992) Calretinin is present in non-pyramidal cells of the rat hippocampus—II. Co-existence with other calcium binding proteins and GABA. Neuroscience 48:29–43CrossRefPubMed Miettinen R, Gulyás AI, Baimbridge KG et al (1992) Calretinin is present in non-pyramidal cells of the rat hippocampus—II. Co-existence with other calcium binding proteins and GABA. Neuroscience 48:29–43CrossRefPubMed
go back to reference Miles R, Tóth K, Gulyás AI et al (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815–823CrossRefPubMed Miles R, Tóth K, Gulyás AI et al (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815–823CrossRefPubMed
go back to reference Morris JA, Jordan CL, King ZA et al (2008) Sexual dimorphism and steroid responsiveness of the posterodorsal medial amygdala in adult mice. Brain Res 1190:115–121CrossRefPubMed Morris JA, Jordan CL, King ZA et al (2008) Sexual dimorphism and steroid responsiveness of the posterodorsal medial amygdala in adult mice. Brain Res 1190:115–121CrossRefPubMed
go back to reference Moryś J, Berdel B, Kowiański P et al (1999) Relationship of calcium-binding protein containing neurons and projection neurons in the rat basolateral amygdala. Neurosci Lett 259:91–94CrossRefPubMed Moryś J, Berdel B, Kowiański P et al (1999) Relationship of calcium-binding protein containing neurons and projection neurons in the rat basolateral amygdala. Neurosci Lett 259:91–94CrossRefPubMed
go back to reference Murphy DD, Cole NB, Greenberger V, Segal M (1998) Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J Neurosci 18:2550–2559PubMed Murphy DD, Cole NB, Greenberger V, Segal M (1998) Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J Neurosci 18:2550–2559PubMed
go back to reference Nakamura NH, Rosell DR, Akama KT, McEwen BS (2004) Estrogen and ovariectomy regulate mRNA and protein of glutamic acid decarboxylases and cation-chloride cotransporters in the adult rat hippocampus. Neuroendocrinology 80:308–323. doi:10.1159/000083657 CrossRefPubMed Nakamura NH, Rosell DR, Akama KT, McEwen BS (2004) Estrogen and ovariectomy regulate mRNA and protein of glutamic acid decarboxylases and cation-chloride cotransporters in the adult rat hippocampus. Neuroendocrinology 80:308–323. doi:10.​1159/​000083657 CrossRefPubMed
go back to reference Ogawa S, Lubahn DB, Korach KS, Pfaff DW (1997) Behavioral effects of estrogen receptor gene disruption in male mice. Proc Natl Acad Sci USA 94:1476–1481CrossRefPubMedPubMedCentral Ogawa S, Lubahn DB, Korach KS, Pfaff DW (1997) Behavioral effects of estrogen receptor gene disruption in male mice. Proc Natl Acad Sci USA 94:1476–1481CrossRefPubMedPubMedCentral
go back to reference Oyola MG, Portillo W, Reyna A et al (2012) Anxiolytic effects and neuroanatomical targets of estrogen receptor-β (ERβ) activation by a selective ERβ agonist in female mice. Endocrinology 153:837–846. doi:10.1210/en.2011-1674 CrossRefPubMed Oyola MG, Portillo W, Reyna A et al (2012) Anxiolytic effects and neuroanatomical targets of estrogen receptor-β (ERβ) activation by a selective ERβ agonist in female mice. Endocrinology 153:837–846. doi:10.​1210/​en.​2011-1674 CrossRefPubMed
go back to reference Pitkänen A, Amaral DG (1994) The distribution of GABAergic cells, fibers, and terminals in the monkey amygdaloid complex: an immunohistochemical and in situ hybridization study. J Neurosci 14:2200–2224PubMed Pitkänen A, Amaral DG (1994) The distribution of GABAergic cells, fibers, and terminals in the monkey amygdaloid complex: an immunohistochemical and in situ hybridization study. J Neurosci 14:2200–2224PubMed
go back to reference Rollins BL, King BM (2000) Amygdala-lesion obesity: what is the role of the various amygdaloid nuclei? Am J Physiol Regul Integr Comp Physiol 279:R1348–R1356PubMed Rollins BL, King BM (2000) Amygdala-lesion obesity: what is the role of the various amygdaloid nuclei? Am J Physiol Regul Integr Comp Physiol 279:R1348–R1356PubMed
go back to reference Saha S, Batten TF, Henderson Z (2000) A GABAergic projection from the central nucleus of the amygdala to the nucleus of the solitary tract: a combined anterograde tracing and electron microscopic immunohistochemical study. Neuroscience 99:613–626CrossRefPubMed Saha S, Batten TF, Henderson Z (2000) A GABAergic projection from the central nucleus of the amygdala to the nucleus of the solitary tract: a combined anterograde tracing and electron microscopic immunohistochemical study. Neuroscience 99:613–626CrossRefPubMed
go back to reference Sánchez MP, Frassoni C, Alvarez-Bolado G et al (1992) Distribution of calbindin and parvalbumin in the developing somatosensory cortex and its primordium in the rat: an immunocytochemical study. J Neurocytol 21:717–736CrossRefPubMed Sánchez MP, Frassoni C, Alvarez-Bolado G et al (1992) Distribution of calbindin and parvalbumin in the developing somatosensory cortex and its primordium in the rat: an immunocytochemical study. J Neurocytol 21:717–736CrossRefPubMed
go back to reference Segovia S, Garcia-Falgueras A, Carrillo B et al (2006) Sexual dimorphism in the vomeronasal system of the rabbit. Brain Res 1102:52–62CrossRefPubMed Segovia S, Garcia-Falgueras A, Carrillo B et al (2006) Sexual dimorphism in the vomeronasal system of the rabbit. Brain Res 1102:52–62CrossRefPubMed
go back to reference Seidlitz L, Diener E (1998) Sex differences in the recall of affective experiences. J Pers Soc Psychol 74:262–271CrossRefPubMed Seidlitz L, Diener E (1998) Sex differences in the recall of affective experiences. J Pers Soc Psychol 74:262–271CrossRefPubMed
go back to reference Seo D-O, Funderburk SC, Bhatti DL et al (2016) A GABAergic projection from the centromedial nuclei of the amygdala to ventromedial prefrontal cortex modulates reward behavior. J Neurosci Off J Soc Neurosci 36:10831–10842. doi:10.1523/JNEUROSCI.1164-16.2016 CrossRef Seo D-O, Funderburk SC, Bhatti DL et al (2016) A GABAergic projection from the centromedial nuclei of the amygdala to ventromedial prefrontal cortex modulates reward behavior. J Neurosci Off J Soc Neurosci 36:10831–10842. doi:10.​1523/​JNEUROSCI.​1164-16.​2016 CrossRef
go back to reference Shughrue PJ, Lane MV, Merchenthaler I (1997) Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 388:507–525CrossRefPubMed Shughrue PJ, Lane MV, Merchenthaler I (1997) Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 388:507–525CrossRefPubMed
go back to reference Smith CC, Vedder LC, McMahon LL (2009) Estradiol and the relationship between dendritic spines, NR2B containing NMDA receptors, and the magnitude of long-term potentiation at hippocampal CA3–CA1 synapses. Psychoneuroendocrinology 34(Suppl 1):S130–S142. doi:10.1016/j.psyneuen.2009.06.003 CrossRefPubMed Smith CC, Vedder LC, McMahon LL (2009) Estradiol and the relationship between dendritic spines, NR2B containing NMDA receptors, and the magnitude of long-term potentiation at hippocampal CA3–CA1 synapses. Psychoneuroendocrinology 34(Suppl 1):S130–S142. doi:10.​1016/​j.​psyneuen.​2009.​06.​003 CrossRefPubMed
go back to reference Solbach S, Celio MR (1991) Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat Embryol (Berl) 184:103–124CrossRef Solbach S, Celio MR (1991) Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat Embryol (Berl) 184:103–124CrossRef
go back to reference Sorvari H, Miettinen R, Soininen H, Pitkänen A (1996) Parvalbumin-immunoreactive neurons make inhibitory synapses on pyramidal cells in the human amygdala: a light and electron microscopic study. Neurosci Lett 217:93–96CrossRefPubMed Sorvari H, Miettinen R, Soininen H, Pitkänen A (1996) Parvalbumin-immunoreactive neurons make inhibitory synapses on pyramidal cells in the human amygdala: a light and electron microscopic study. Neurosci Lett 217:93–96CrossRefPubMed
go back to reference Stefanova N, Bozhilova-Patirova A, Ovtscharoff W (1997) Sex differences of parvalbumin-immunoreactive neurons in the rat brain. Biomed Rev 7:91–96CrossRef Stefanova N, Bozhilova-Patirova A, Ovtscharoff W (1997) Sex differences of parvalbumin-immunoreactive neurons in the rat brain. Biomed Rev 7:91–96CrossRef
go back to reference Swaab DF, Chung WCJ, Kruijver FPM et al (2003) Sex differences in the hypothalamus in the different stages of human life. Neurobiol Aging 24:S1–S19CrossRefPubMed Swaab DF, Chung WCJ, Kruijver FPM et al (2003) Sex differences in the hypothalamus in the different stages of human life. Neurobiol Aging 24:S1–S19CrossRefPubMed
go back to reference Wallen K, Baum MJ (2002) Masculinization and defeminization in altricial and precocial mammals: comparative aspects of steroid hormone action. Horm Brain Behav 4:385–423CrossRef Wallen K, Baum MJ (2002) Masculinization and defeminization in altricial and precocial mammals: comparative aspects of steroid hormone action. Horm Brain Behav 4:385–423CrossRef
go back to reference Wood RI, Newman SW (1999) Androgen receptor immunoreactivity in the male and female Syrian hamster brain. J Neurobiol 39:359–370CrossRefPubMed Wood RI, Newman SW (1999) Androgen receptor immunoreactivity in the male and female Syrian hamster brain. J Neurobiol 39:359–370CrossRefPubMed
go back to reference Zimmermann L, Schwaller B (2002) Monoclonal antibodies recognizing epitopes of calretinins: dependence on Ca2+-binding status and differences in antigen accessibility in colon cancer cells. Cell Calcium 31:13–25. doi:10.1054/ceca.2001.0255 CrossRefPubMed Zimmermann L, Schwaller B (2002) Monoclonal antibodies recognizing epitopes of calretinins: dependence on Ca2+-binding status and differences in antigen accessibility in colon cancer cells. Cell Calcium 31:13–25. doi:10.​1054/​ceca.​2001.​0255 CrossRefPubMed
Metadata
Title
The neurons expressing calcium-binding proteins in the amygdala of the guinea pig: precisely designed interface for sex hormones
Author
Maciej Równiak
Publication date
01-11-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 8/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1432-0

Other articles of this Issue 8/2017

Brain Structure and Function 8/2017 Go to the issue